JPH04370310A - Exhaust gas post-processing device for internal combustion engine - Google Patents

Exhaust gas post-processing device for internal combustion engine

Info

Publication number
JPH04370310A
JPH04370310A JP3147496A JP14749691A JPH04370310A JP H04370310 A JPH04370310 A JP H04370310A JP 3147496 A JP3147496 A JP 3147496A JP 14749691 A JP14749691 A JP 14749691A JP H04370310 A JPH04370310 A JP H04370310A
Authority
JP
Japan
Prior art keywords
filter
exhaust
passage
exhaust gas
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3147496A
Other languages
Japanese (ja)
Inventor
Yasuo Matsumoto
松本 泰郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3147496A priority Critical patent/JPH04370310A/en
Publication of JPH04370310A publication Critical patent/JPH04370310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To reduce the cost by simplifying the constitution, and burn and remove exhaust gas particulates while improving the fuel consumption. CONSTITUTION:A cylindrical filter 7 is arranged as that the filter straddles an air-intake passage 1 and an exhaust gas passage 5 by making each part of the air-intake passage 1 and the exhaust gas passage 5 mutually close. The filter 7 is rotated in synchronization with the engine speed, and the exhaust gas particulates collected in the exhaust gas passage 5 are introduced into a combustion chamber 4 through the air-intake passage 1 by the sucked air flow to burn and remove the particulates.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内燃機関の排気後処理
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust aftertreatment device for an internal combustion engine.

【0002】0002

【従来の技術】従来、ディ−ゼルエンジンから排出され
る排気微粒子が大気中に放出されるのを低減するために
種々の捕集装置が、提案されている。これら捕集装置は
、捕集された排気微粒子による目詰まりを防止するため
に、所定条件になったときに炭素と可溶性未燃HC(以
下、SOFと称す)とを主とする排気微粒子をバ−ナ等
の加熱装置により燃焼除去するようにしている。
2. Description of the Related Art Conventionally, various collection devices have been proposed for reducing the emission of exhaust particulates from diesel engines into the atmosphere. In order to prevent clogging caused by collected exhaust particulates, these collection devices collect exhaust particulates mainly consisting of carbon and soluble unburned HC (hereinafter referred to as SOF) when predetermined conditions are met. - Burning and removal is done using a heating device such as a heater.

【0003】0003

【発明が解決しようとする課題】しかし、このような従
来のものでは、排気微粒子を燃焼除去するためにバーナ
等の加熱装置が必要となり、また燃焼除去を行うための
条件を検出するセンサとその検出信号に基づいて加熱装
置により制御信号を出力する制御装置とが必要となり、
更に燃焼除去擦るための燃料が必要となり、コスト高に
なると共に、ディーゼルエンジンの最大のメリットであ
る燃費が悪化擦るという不具合がある。
[Problems to be Solved by the Invention] However, in such conventional devices, a heating device such as a burner is required to burn and remove the exhaust particulates, and a sensor and its sensor are required to detect the conditions for burning and removing the exhaust particles. A control device that outputs a control signal by the heating device based on the detection signal is required.
Furthermore, fuel is required for combustion and removal, which increases costs and also worsens the fuel efficiency, which is the biggest advantage of diesel engines.

【0004】また、特開昭60−8412号公報及び実
開昭63−170150号公報等においては、円筒状の
捕集装置を排気通路に回動自由に取付け、再生時に回動
させることにより捕集装置の一部を排気通路の外方に位
置させ、捕集装置にブロアから清浄空気を噴付けて排気
微粒子を除去するものが提案されている。しかし、これ
らのものにおいては、排気微粒子をある程度捕集してか
ら除去する考えのものであるため、エンジンから排出さ
れた直後の再燃焼し易い微細な排気微粒子が凝集してし
まい再燃焼がしにくくなる不具合がある。
[0004] Furthermore, in Japanese Unexamined Patent Publication No. 60-8412 and Japanese Utility Model Application No. 63-170150, a cylindrical collection device is rotatably attached to the exhaust passage, and the collection device is rotated during regeneration. It has been proposed that a part of the collection device is located outside the exhaust passage, and clean air is blown onto the collection device from a blower to remove exhaust particulates. However, since these devices are designed to collect a certain amount of exhaust particulates before removing them, the fine exhaust particulates that are easily re-burned immediately after being emitted from the engine may aggregate and cause re-combustion. There is a problem that makes it difficult.

【0005】本発明は、このような実状に鑑みてなされ
たもので、エンジンから排出された微細な微粒子が凝集
しない間にすぐに再燃焼させる排気後処理装置を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an exhaust after-treatment device that immediately re-combusts fine particulates discharged from an engine without agglomerating them.

【0006】[0006]

【課題を解決するための手段】このため、本発明は、請
求項1においては、機関の燃焼室に吸入空気を導く吸気
通路の一部と、燃焼室から排気を外方に排出する排気通
路の一部と、を、略平行でかつ吸入空気と排気との流通
方向が反対方向になるように近接させ、前記平行部に円
筒状の収納部を、該収納部の一側部に前記排気通路上流
側と吸気通路下流側とを連通させる一方収納部の他側部
に前記排気通路下流側と吸気通路上流側とを連通させて
、形成し、前記収納部に排気中の排気微粒子を捕集する
円筒状にフィルタを前記排気通路と吸気通路とに跨がら
せて収納し、かつ前記フィルタを該フィルタの円筒軸を
略回動軸として機関回転に同期して回動させる回動装置
を設けるようにした。
[Means for Solving the Problems] Accordingly, the present invention provides, in claim 1, a part of an intake passage that guides intake air into a combustion chamber of an engine, and an exhaust passage that discharges exhaust gas from the combustion chamber to the outside. are placed close to each other so that they are approximately parallel to each other and the directions of flow of intake air and exhaust air are opposite to each other, a cylindrical storage part is provided in the parallel part, and a part of the exhaust air is provided on one side of the storage part. The upstream side of the passage and the downstream side of the intake passage communicate with each other, while the other side of the storage part communicates the downstream side of the exhaust passage with the upstream side of the intake passage, and the storage part captures exhaust particulates in the exhaust gas. a rotating device for storing a filter in a cylindrical shape that straddles the exhaust passage and the intake passage, and for rotating the filter in synchronization with engine rotation with a cylindrical axis of the filter as a substantially rotating axis; I decided to set it up.

【0007】また、請求項2においては、フィルタはメ
ッシュサイズが夫々異なる複数のフィルタ本体から構成
され、フィルタ本体は排気通路の上流側から下流側に向
かってメッシュサイズが順次小さくなるように配設する
ようにした。さらに、請求項3においては、回動装置は
、フィルタの回転速度と機関回転速度との変速比を変化
させる変速装置を、備えるようにした。
Further, in claim 2, the filter is constituted by a plurality of filter bodies each having a different mesh size, and the filter bodies are arranged such that the mesh size gradually decreases from the upstream side to the downstream side of the exhaust passage. I decided to do so. Furthermore, in claim 3, the rotation device includes a transmission device that changes the gear ratio between the rotation speed of the filter and the rotation speed of the engine.

【0008】[0008]

【作用】そして、請求項1においては、フィルタを回動
させることにより、フィルタにより排気微粒子を捕集し
た後、捕集された排気微粒子を吸入空気流によりフィル
タから除去して燃焼室に導入し燃焼除去するようにした
。また、請求項2においては、メッシュサイズが異なる
複数のフィルタ本体を、排気通路の上流側から下流側に
向かってメッシュサイズが順次小さくなるように、配設
することにより、排気微粒子の捕集効率を高めつつ、フ
ィルタが吸入空気抵抗及び排気抵抗になるのを抑制する
ようにした。
[Operation] According to claim 1, by rotating the filter, exhaust particulates are collected by the filter, and then the collected exhaust particulates are removed from the filter by the intake air flow and introduced into the combustion chamber. Removed by burning. Further, in claim 2, by arranging a plurality of filter bodies having different mesh sizes so that the mesh sizes gradually become smaller from the upstream side to the downstream side of the exhaust passage, the collection efficiency of exhaust particulates is improved. The filter is designed to suppress intake air resistance and exhaust resistance while increasing the air resistance.

【0009】さらに、請求項3においては、フィルタを
機関回転速度に応じて最適な回転速度で回動させるよう
にした。
Furthermore, in the third aspect of the present invention, the filter is rotated at an optimum rotational speed depending on the engine rotational speed.

【0010】0010

【実施例】以下に、本発明の実施例を図面に基づいて説
明する。図1〜図3は請求項1〜2に対応する第1実施
例を示す。図1において、ディ−ゼルエンジンの吸気通
路1の上流部にはエアクリ−ナ2が介装され、吸入空気
はエアクリ−ナ2,吸気通路1及びコレクタ3を介して
燃焼室4に導入される。また、燃焼室4において燃焼を
終えた排気は排気通路5に排出される。
Embodiments Below, embodiments of the present invention will be explained based on the drawings. 1-3 show a first embodiment corresponding to claims 1-2. In FIG. 1, an air cleaner 2 is installed at the upstream side of an intake passage 1 of a diesel engine, and intake air is introduced into a combustion chamber 4 through the air cleaner 2, intake passage 1, and collector 3. . Furthermore, the exhaust gas that has finished combustion in the combustion chamber 4 is discharged into the exhaust passage 5.

【0011】前記排気通路5の一部を吸気通路1の一部
に接近させて、吸入空気と排気との流通方向が反対方向
になるように平行部が形成され、この平行部には円筒状
の収納部6が取付けられている。収納部6の一側壁には
排気通路5の上流側と吸気通路1の下流側とが連通され
る一方、収納部6の他側壁には、排気通路5の下流側と
吸気通路1の上流側とが連通されている。
A parallel portion is formed by bringing a portion of the exhaust passage 5 close to a portion of the intake passage 1 so that the flow directions of intake air and exhaust air are opposite to each other, and this parallel portion has a cylindrical shape. A storage section 6 is attached. One side wall of the storage section 6 communicates with the upstream side of the exhaust passage 5 and the downstream side of the intake passage 1, while the other side wall of the storage section 6 communicates with the downstream side of the exhaust passage 5 and the upstream side of the intake passage 1. are in communication.

【0012】前記収納部6には円筒状のフィルタ7が前
記吸気通路1と排気通路5とに跨がるように配設され、
フィルタ7は支持部材8によりフィルタ7の円筒軸を略
中心として回転自由に支持されている。また、支持部材
8の一端部にはプ−リ9が取付られている。また、カム
シャフト,クランクシャフト若しくは捕機の回転に同期
換言すれば機関回転に同期して回転するプ−リ10が設
けられ、このプ−リ10と前記プ−リ9とがベルト11
により連結されている。
[0012] A cylindrical filter 7 is disposed in the storage portion 6 so as to straddle the intake passage 1 and the exhaust passage 5;
The filter 7 is supported by a support member 8 so as to be freely rotatable about the cylindrical axis of the filter 7 . Further, a pulley 9 is attached to one end of the support member 8. Further, a pulley 10 is provided which rotates in synchronization with the rotation of the camshaft, crankshaft or catcher, in other words, in synchronization with the rotation of the engine.
are connected by.

【0013】前記フィルタ7には、セラミック等の多孔
性部材からなるハニカム状の通路7Aが多数形成されて
いる。また、フィルタ7には第1〜第3フィルタ本体7
B〜7Dが排気流と略直交させると共に排気通路5に沿
って所定間隔で設けられている。ここで、第1フィルタ
本体7Bのメッシュサイズは排気通路下流側の第2フィ
ルタ本体7Cのメッシュサイズより大きく(粗く)形成
され、第2フィルタ本体7Cメッシュサイズは第3フィ
ルタ本体7Dのメッシュサイズより大きく形成されてい
る。したがって、フィルタ本体7B〜7Dは、排気通路
の下流側ほどメッシュサイズが小さくなり、排気下流側
ほど、粒径が小さな排気微粒子を捕集出来るようになっ
ている。前記ハニカム状の通路7Aの最外周部は目封じ
され、また中央部の通路7Aは吸気通路1と排気通路5
とを隔成するように目封じされている。
The filter 7 is formed with a large number of honeycomb-shaped passages 7A made of a porous material such as ceramic. The filter 7 also includes first to third filter bodies 7.
B to 7D are provided substantially perpendicularly to the exhaust flow and at predetermined intervals along the exhaust passage 5. Here, the mesh size of the first filter body 7B is formed larger (coarse) than the mesh size of the second filter body 7C on the downstream side of the exhaust passage, and the mesh size of the second filter body 7C is larger than the mesh size of the third filter body 7D. Largely formed. Therefore, in the filter bodies 7B to 7D, the mesh size becomes smaller toward the downstream side of the exhaust passage, and exhaust particulates having a smaller particle size can be collected toward the downstream side of the exhaust passage. The outermost periphery of the honeycomb-shaped passage 7A is sealed, and the central passage 7A is connected to the intake passage 1 and the exhaust passage 5.
It is sealed to separate them from each other.

【0014】また、吸気通路1及び排気通路5のフィル
タ7の入口側と出口側との開口部は、図3に示すように
、略半円上に形成されている。また、排気通路5のフィ
ルタ7入口側開口部と、フィルタ7出口側開口部とは、
図3に示すように、所定角度θだけずらして形成されて
いる。ここで、排気が吸気通路1側に流入しない所定角
度θを以下に説明する。
Further, the openings of the intake passage 1 and the exhaust passage 5 on the inlet side and the outlet side of the filter 7 are formed approximately semicircularly, as shown in FIG. Furthermore, the opening on the inlet side of the filter 7 and the opening on the outlet side of the filter 7 of the exhaust passage 5 are as follows.
As shown in FIG. 3, they are formed to be shifted by a predetermined angle θ. Here, the predetermined angle θ at which exhaust gas does not flow into the intake passage 1 will be described below.

【0015】まず、機関排気量をV(cc),機関回転
速度をNE(ypm),フィルタ7の排気通路側流路断
面積をAに設定したときには、排気流速V(cm/se
c)は下式にて表せる。   V=NE/60×B/2×1/A=NE×V/(1
20×A)また、フィルタ7を排気が通過する時間TG
は、フィルタ7の長さをLcmに設定すると、TG=1
/v=120×A×  L/(NE×  V)(sec
)となる。
First, when the engine displacement is set to V (cc), the engine rotational speed is set to NE (ypm), and the cross-sectional area of the exhaust passage side of the filter 7 is set to A, the exhaust flow velocity V (cm/s
c) can be expressed by the following formula. V=NE/60×B/2×1/A=NE×V/(1
20×A) Also, the time TG for the exhaust gas to pass through the filter 7
When the length of the filter 7 is set to Lcm, TG=1
/v=120×A×L/(NE×V)(sec
).

【0016】一方、フィルタ7が前記所定角度θだけ回
転する時間TSは、フィルタ7の回転速度をNF(rp
m)に設定すると、TS=60/NF×θ/360=θ
/(6×NF)となる。そして、フィルタ7を排気が通
過する間にフィルタ7が前記所定角度だけ回転したとき
には前記時間TGとTSとが等しくなるため、TG=T
Sとなる。これにより、前記演算式から、120×A×
L/(NE×V)=θ/(6×NF)が得られ、この関
係式から、θ=720×L×A×(A/V)×(NF/
NE)が得られる。
On the other hand, the time TS during which the filter 7 rotates by the predetermined angle θ changes the rotational speed of the filter 7 to NF (rp
m), TS=60/NF×θ/360=θ
/(6×NF). When the filter 7 rotates by the predetermined angle while the exhaust gas passes through the filter 7, the times TG and TS become equal, so TG=T
It becomes S. As a result, from the above calculation formula, 120×A×
L/(NE×V)=θ/(6×NF) is obtained, and from this relational expression, θ=720×L×A×(A/V)×(NF/
NE) is obtained.

【0017】したがって、排気通路の入口側開口部と、
出口側開口部と、に、関係式より演算された所定角度θ
だけ、ずれを形成すると、排気が吸気通路に流入しなく
なる。尚、12は燃焼噴射弁である。次に、作用を説明
する。
[0017] Therefore, the inlet side opening of the exhaust passage;
A predetermined angle θ calculated from the relational expression between the exit side opening and
If there is a misalignment, exhaust gas will not flow into the intake passage. Note that 12 is a combustion injection valve. Next, the effect will be explained.

【0018】燃焼を終えた排気は、燃焼時に発生する微
細な排気微粒子(主として炭素とSOFとからなる)と
共に、排気通路5に排出されてフィルタ7に導入され、
フィルタ7の第1〜第3フィルタ本体7B〜7Dにより
排気微粒子が捕集される。そして、フィルタ7は機関回
転に同期して回転し、排気通路5内に位置するフィルタ
7は、次の瞬間には吸気通路1内に位置する。このとき
、吸入空気の流通方向は排気の流通方向とは反対方向で
あるので、フィルタ7に捕集された排気微粒子は凝集し
ないうちに吸入空気によりブロ−されて吸入空気と共に
燃焼室4に吸引された後、次の燃焼行程において噴射さ
れた燃料と共に排気微粒子は燃焼される。
After combustion, the exhaust gas is discharged into the exhaust passage 5 and introduced into the filter 7 together with fine exhaust particles (mainly composed of carbon and SOF) generated during combustion.
Exhaust particles are collected by the first to third filter bodies 7B to 7D of the filter 7. The filter 7 rotates in synchronization with the rotation of the engine, and the filter 7 located in the exhaust passage 5 is located in the intake passage 1 at the next moment. At this time, since the flow direction of the intake air is opposite to the flow direction of the exhaust gas, the exhaust particulates collected by the filter 7 are blown by the intake air before they aggregate and are drawn into the combustion chamber 4 together with the intake air. After that, the exhaust particulates are burned together with the injected fuel in the next combustion stroke.

【0019】以上説明したように、吸気通路1と排気通
路5とを接近させて収納部6を形成すると共に収納部6
にフィルタ7を収納し、フィルタ7を回動させつつ排気
微粒子を捕集した後、吸入空気流によりフィルタ7から
排気微粒子を除去して燃焼室4にて燃焼除去するように
したので、従来のものより簡易な構成で排気微粒子の大
気中への放出量を低減でき、コストを低減できると共に
燃費も向上できる。
As explained above, the intake passage 1 and the exhaust passage 5 are brought close to each other to form the storage section 6.
The filter 7 is housed in the filter 7, and after the filter 7 is rotated to collect the exhaust particulates, the exhaust particulates are removed from the filter 7 by the intake air flow and burned in the combustion chamber 4, which is different from the conventional method. With a simpler configuration, it is possible to reduce the amount of exhaust particulates released into the atmosphere, reduce costs, and improve fuel efficiency.

【0020】また、第1〜第3フィルタ本体7B〜7D
を排気上流側から下流側に向かってメッシュサイズを順
次大きくするようにしたので、捕集される排気微粒子の
粒径が排気上流側から順次小さくなり排気微粒子を効率
よく捕集できると共に、捕集効率を高めても同一メッシ
ュサイズにて細かく設定するものに較べて排気抵抗を小
さく抑制できる。また、逆に吸気通路1においては、第
1〜第3フィルタ本体7B〜7Dのメッシュサイズは吸
気上流側から下流側に向かって順次大きくなるので、吸
気抵抗を抑制しつつ吸入空気により第1〜第3フィルタ
本体7B〜7Dから排気微粒子を良好に除去できる。
[0020] Also, the first to third filter bodies 7B to 7D
Since the mesh size is gradually increased from the upstream side of the exhaust gas to the downstream side of the exhaust gas, the particle size of the collected exhaust particulates gradually decreases from the upstream side of the exhaust gas, and the exhaust particulates can be efficiently collected. Even if the efficiency is increased, the exhaust resistance can be suppressed to a smaller value than when the mesh size is finely set. Conversely, in the intake passage 1, the mesh size of the first to third filter bodies 7B to 7D gradually increases from the intake upstream side to the downstream side. Exhaust particulates can be removed satisfactorily from the third filter bodies 7B to 7D.

【0021】図4は請求項1〜3に対応する本発明の第
2実施例を示す。尚、以下の実施例においては、第1実
施例と同一要素には図1と同一符号を付して説明を省略
する。本実施例は、フィルタ7の回転速度と機関回転速
度との速度比を機関運転状態に応じて変化させるために
可変速プ−リ21を設けたものである。
FIG. 4 shows a second embodiment of the invention corresponding to claims 1-3. In the following embodiments, the same elements as in the first embodiment are denoted by the same reference numerals as in FIG. 1, and the explanation thereof will be omitted. In this embodiment, a variable speed pulley 21 is provided to change the speed ratio between the rotational speed of the filter 7 and the engine rotational speed depending on the engine operating state.

【0022】ところで、フィルタ7の回転速度NFと機
関回転速度NEとの速度比NF/NEを変化させると、
排気が吸気通路1側に流入しない所定角度θが変化する
。ところが、排気通路の入口側開口部と出口側開口部と
の取付位置は一定位置に設定されているので、前記所定
角度θが変化すると、フィルタ7を介して排気が所定量
吸気通路1に還流されNOxを低減できる。
By the way, when the speed ratio NF/NE between the rotational speed NF of the filter 7 and the engine rotational speed NE is changed,
The predetermined angle θ at which exhaust gas does not flow into the intake passage 1 side changes. However, since the mounting positions of the inlet-side opening and the outlet-side opening of the exhaust passage are set at fixed positions, when the predetermined angle θ changes, a predetermined amount of exhaust gas is returned to the intake passage 1 via the filter 7. can reduce NOx.

【0023】すなわち、排気はフィルタ7から下流側の
排気通路5に流出するが、フィルタ7の回転速度が速く
なると排気がフィルタ7の出口側に到達する前に吸気通
路1に開口し排気が吸気通路1に還流される。具体的に
は、機関回転速度NEが高まるほど、速度比NF/NE
を増大して排気還流率を高めるように制御する。このよ
うにすると、従来の排気還流方式で排気還流率を高める
と排気微粒子排出量が増大してNOxを低減するのに限
界があるが、本実施例のものでは排気微粒子捕集率が高
まり、さらに燃焼室で排気微粒子を再燃焼させるので排
気微粒子の排出率を低く抑制した状態で排気還流率を大
幅に向上できるためNOx排出量を大幅に低減できる。 また、従来のものでは、排気還流通路か制御弁の大きさ
で排気還流率の上限が抑制され、それよりも還流率を高
めるために吸気通路を絞るようにしているが、このもの
ではポンピングロスが発生して燃費が悪化するのに対し
、本実施例のものでは排気還流通路及び制御弁が不要に
なるので燃費を悪化させることなく排気還流量を大幅に
増大できる。
That is, the exhaust gas flows out from the filter 7 into the exhaust passage 5 on the downstream side, but when the rotational speed of the filter 7 increases, the exhaust gas opens into the intake passage 1 before reaching the outlet side of the filter 7, and the exhaust gas flows into the intake passage 5. It is refluxed to passage 1. Specifically, as the engine rotation speed NE increases, the speed ratio NF/NE increases.
control to increase the exhaust gas recirculation rate. By doing this, when increasing the exhaust gas recirculation rate in the conventional exhaust gas recirculation system, the amount of exhaust particulate emissions increases and there is a limit to reducing NOx, but with this example, the exhaust particulate collection rate increases, Furthermore, since the exhaust particulates are re-burned in the combustion chamber, the exhaust gas recirculation rate can be greatly improved while the emission rate of the exhaust particulates is suppressed to a low level, so that the amount of NOx emissions can be significantly reduced. In addition, with conventional systems, the upper limit of the exhaust recirculation rate is suppressed by the size of the exhaust recirculation passage or the control valve, and the intake passage is narrowed to increase the recirculation rate, but with this system, the pumping loss In contrast, in this embodiment, an exhaust gas recirculation passage and a control valve are not required, so that the amount of exhaust gas recirculation can be significantly increased without deteriorating fuel efficiency.

【0024】尚、排気通路5の入口側開口部と出口側開
口部との取付位置を変化させて図3に示す所定角度θを
変化させるようにしてもよい。図5は本発明の第3実施
例を示す。本実施例は、フィルタ7上流の排気通路5に
酸化触媒装置31を介装し、HCを低減するようにした
ものである。また、フィルタ7上流酸化触媒装置31を
介装するようにしたので、触媒の温度が高められHCの
酸化を大幅に向上できる。
Note that the predetermined angle θ shown in FIG. 3 may be changed by changing the mounting positions of the inlet side opening and the outlet side opening of the exhaust passage 5. FIG. 5 shows a third embodiment of the invention. In this embodiment, an oxidation catalyst device 31 is interposed in the exhaust passage 5 upstream of the filter 7 to reduce HC. Further, since the oxidation catalyst device 31 upstream of the filter 7 is provided, the temperature of the catalyst is increased and oxidation of HC can be greatly improved.

【0025】図6は本発明の第4実施例を示す。本実施
例は、吸気通路1にバイパス通路41をフィルタ7をバ
イパスするように形成すると共に、バイパス通路41に
開閉弁42を介装するようにしたものである。そして、
燃焼室内で排気微粒子を活発に燃焼できる機関運転状態
のときに、開閉弁42を閉弁させて排気微粒子を吸気通
路1を介して燃焼室4に導くようにする。また、排気微
粒子の燃焼が不充分な機関運転状態のときに、開閉弁4
2を開弁させてフィルタ7に導入される吸入空気を減少
させる。これにより、燃焼室4における排気微粒子燃焼
能力に対応させて排気微粒子を燃焼室4に導入し、もっ
て排気微粒子還流系に排気微粒子が必要以上に滞留して
増大するのを未然に防止できるようにした。尚、開閉弁
を中間開度に抑制したり、バイパス通路を複数設けたり
して、より細かい制御をすれば、排気微粒子をより効率
的に再燃焼できる。
FIG. 6 shows a fourth embodiment of the invention. In this embodiment, a bypass passage 41 is formed in the intake passage 1 so as to bypass the filter 7, and an on-off valve 42 is interposed in the bypass passage 41. and,
When the engine is in an operating state in which exhaust particulates can be actively burned in the combustion chamber, an on-off valve 42 is closed to guide the exhaust particulates to the combustion chamber 4 through the intake passage 1. In addition, when the engine is operating in a state where combustion of exhaust particulates is insufficient, the on-off valve 4
The intake air introduced into the filter 7 is reduced by opening the valve 2. This allows exhaust particulates to be introduced into the combustion chamber 4 in accordance with the exhaust particulate combustion capacity of the combustion chamber 4, thereby preventing the exhaust particulates from remaining in the exhaust particulate recirculation system more than necessary and increasing. did. Note that exhaust particulates can be reburned more efficiently by controlling the on-off valve to an intermediate opening degree or by providing a plurality of bypass passages for more detailed control.

【0026】図7は本発明の第5実施例を示す。本実施
例は、排気タ−ボ過給機51のコンプレッサ51Aをフ
ィルタ7上流の吸気通路1に介装すると共に、前記コン
プレッサ51Aを回転駆動するタ−ビン51Bをフィル
タ7下流の吸気通路1に介装するようにしたものである
。これにより、収納部6端面でのシ−ル性を確保できれ
ば、吸気圧力が排気圧力より高くても排気還流を行うこ
とができるのが従来のものに対して最大の特徴点である
FIG. 7 shows a fifth embodiment of the present invention. In this embodiment, a compressor 51A of an exhaust turbo supercharger 51 is installed in the intake passage 1 upstream of the filter 7, and a turbine 51B for rotationally driving the compressor 51A is installed in the intake passage 1 downstream of the filter 7. It was designed to be used as an intervention. This makes it possible to recirculate the exhaust gas even if the intake pressure is higher than the exhaust pressure, as long as the sealing performance at the end face of the storage section 6 can be ensured, which is the most distinctive feature compared to the conventional one.

【0027】図8は本発明の第6実施例を示す。本実施
例は、フィルタ7を支持する支持部材8に直流モ−タ6
1を取付けると共に、直流モ−タ61に該モ−タ61の
回転速度を検出する回転速度センサ62を取付けるよう
にしたものである。そして、制御装置63は、機関回転
速度等の機関運転条件に基づいて直流モ−タ61を駆動
制御することにより、フィルタ7の回転速度を機関運転
状態に応じて変化させて抑制するようにしたものである
。これにより、フィルタ7の回転速度を機関運転状態の
変化に対応させて迅速に制御できる。フィルタ7を機関
のクランクシャフト等に平行に配設する必要がなくなる
ので、レイアウトの自由度を格段に向上できるという効
果を奏する。
FIG. 8 shows a sixth embodiment of the present invention. In this embodiment, a DC motor 6 is attached to a support member 8 that supports a filter 7.
1 is attached to the DC motor 61, and a rotation speed sensor 62 for detecting the rotation speed of the motor 61 is also attached to the DC motor 61. The control device 63 drives and controls the DC motor 61 based on engine operating conditions such as engine rotational speed, thereby changing and suppressing the rotational speed of the filter 7 according to the engine operating condition. It is something. Thereby, the rotational speed of the filter 7 can be quickly controlled in response to changes in engine operating conditions. Since it is no longer necessary to arrange the filter 7 in parallel to the crankshaft of the engine, etc., there is an effect that the degree of freedom in layout can be greatly improved.

【0028】[0028]

【発明の効果】本発明は、以上説明したように、請求項
1においては、排気通路の一部と吸気通路との一部を接
近させてフィルタを排気通路と吸気通路とに跨がるよう
に配設し、フィルタにより捕集された排気微粒子を吸気
通路に導入させた後、燃焼室で燃焼除去するようにした
ので、エンジンから排出された微細な、微粒子が凝集し
ない間に、すぐにエンジン燃焼室内に還流され、容易に
再燃焼することができる。
Effects of the Invention As explained above, in claim 1, the present invention is characterized in that a part of the exhaust passage and a part of the intake passage are brought close to each other so that the filter straddles the exhaust passage and the intake passage. After the exhaust particulates collected by the filter are introduced into the intake passage, they are burned and removed in the combustion chamber. It is refluxed into the engine combustion chamber and can be easily reburned.

【0029】また、請求項2においては、吸気通路上流
側から下流側に向かってメッシュサイズが順次小さくな
るフィルタ本体を複数配設するようにしたので、排気微
粒子を効率良く捕集できると共に、吸気通路においてフ
ィルタ本体から排気微粒子を吸入空気流により良好に除
去でき、さらにフィルタの排気抵抗及び排気抵抗を小さ
くできる。
Further, in the second aspect of the present invention, since a plurality of filter bodies are provided, the mesh size of which decreases sequentially from the upstream side of the intake passage to the downstream side, exhaust particulates can be efficiently collected, and the intake air Exhaust particles can be effectively removed from the filter body in the passage by the intake air flow, and the exhaust resistance and exhaust resistance of the filter can be reduced.

【0030】さらに、請求項3においては、フィルタの
回転速度と機関回転速度との変速比を変化できるように
したので、排気微粒子の捕集及び燃焼除去を行いつつ、
排気還流率を大幅に高めてNOx排出量を大幅に抑制で
きると共に、排気還流制御時の燃費の悪化を防止できる
Furthermore, in claim 3, since the gear ratio between the rotational speed of the filter and the engine rotational speed can be changed, exhaust particulates can be collected and removed by combustion.
It is possible to significantly increase the exhaust gas recirculation rate, significantly suppress NOx emissions, and prevent deterioration of fuel efficiency during exhaust gas recirculation control.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の第1実施例を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】  同上の要部拡大図。[Figure 2] Enlarged view of the main parts of the same as above.

【図3】  図2の断面図。[Figure 3] Cross-sectional view of Figure 2.

【図4】  本発明の第2実施例を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】  本発明の第3実施例を示す構成図。FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】  本発明の第4実施例を示す構成図。FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention.

【図7】  本発明の第5実施例を示す構成図。FIG. 7 is a configuration diagram showing a fifth embodiment of the present invention.

【図8】  本発明の第6実施例を示す構成図。FIG. 8 is a configuration diagram showing a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  吸気通路                  
7D  第1フィルタ本体5  排気通路      
            9,10    プーリ6 
 収納部                    1
1  ベルト7  フィルタ 7B  第1フィルタ本体 7C  第1フィルタ本体
1 Intake passage
7D First filter body 5 Exhaust passage
9,10 Pulley 6
Storage part 1
1 Belt 7 Filter 7B First filter body 7C First filter body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  機関の燃焼室に吸入空気を導く吸気通
路の一部と燃焼室から排気を外方に排出する排気通路の
一部とを、略平行でかつ吸入空気と排気との流通方向が
反対方向になるように接近させ、前記平行部に円筒状の
収納部を、該収納部の一側部に前記排気通路上流側と吸
気通路下流側とを連通させる一方収納部の他側部に前記
排気通路下流部側と吸気通路上流側とを連通させて、形
成し、前記収納部に排気中の排気微粒子を捕集する円筒
状のフィルタを前記排気通路と吸気通路とに跨がらせて
収納し、かつ前記フィルタを該フィルタの円筒軸を略回
動軸として機関回転に同期して回動させる回動装置を設
けたことを特徴とする内燃機関の排気後処理装置。
Claim 1: A part of the intake passage that guides intake air into the combustion chamber of the engine and a part of the exhaust passage that discharges exhaust gas outward from the combustion chamber are substantially parallel to each other and in the direction of flow of the intake air and exhaust gas. a cylindrical storage part in the parallel part, and one side of the storage part communicating with the upstream side of the exhaust passage and the downstream side of the intake passage, and the other side of the storage part. The downstream side of the exhaust passage and the upstream side of the intake passage are formed in communication with each other, and a cylindrical filter for collecting exhaust particulates in the exhaust gas is placed in the storage part and extends between the exhaust passage and the intake passage. 1. An exhaust after-treatment device for an internal combustion engine, characterized in that the filter is housed in a cylindrical shaft, and is provided with a rotation device that rotates the filter in synchronization with engine rotation using a cylindrical shaft of the filter as a substantially rotation axis.
【請求項2】  フィルタはメッシュサイズが夫々異な
る複数のフィルタ本体から構成され、フィルタ本体は排
気通路の上流側から下流側に向かって、メッシュサイズ
が順次小さくなるように配設したことを特徴とする請求
項1記載の内燃機関の排気後処理装置。
2. The filter is composed of a plurality of filter bodies each having a different mesh size, and the filter bodies are arranged so that the mesh size gradually decreases from the upstream side to the downstream side of the exhaust passage. The exhaust aftertreatment device for an internal combustion engine according to claim 1.
【請求項3】  回動装置は、フィルタの回転速度と機
関回転速度との変速比を変化させる変速装置を、備えた
ことを特徴とする内燃機関の排気後処理装置。
3. An exhaust gas after-treatment device for an internal combustion engine, wherein the rotating device includes a transmission device that changes a gear ratio between the rotational speed of the filter and the rotational speed of the engine.
JP3147496A 1991-06-19 1991-06-19 Exhaust gas post-processing device for internal combustion engine Pending JPH04370310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147496A JPH04370310A (en) 1991-06-19 1991-06-19 Exhaust gas post-processing device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147496A JPH04370310A (en) 1991-06-19 1991-06-19 Exhaust gas post-processing device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04370310A true JPH04370310A (en) 1992-12-22

Family

ID=15431702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147496A Pending JPH04370310A (en) 1991-06-19 1991-06-19 Exhaust gas post-processing device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04370310A (en)

Similar Documents

Publication Publication Date Title
JP4089396B2 (en) EGR system for internal combustion engine with turbocharger
KR100511699B1 (en) Exhaust emission control device
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
JP4844467B2 (en) Exhaust gas purification device for internal combustion engine
JP4103720B2 (en) ENGINE EXHAUST PURIFYING APPARATUS AND PARTICLE DEPOSITION STATE JUDGMENT METHOD
JP2002276405A (en) Exhaust emission control device of diesel engine
JP2002349241A (en) Exhaust emission control device for diesel engine
US20080155964A1 (en) Engine control system based on soot loading
WO2007004471A1 (en) Control device for diesel engine
JP4161575B2 (en) Exhaust gas purification device for internal combustion engine
JP2005030231A (en) Exhaust emission control device for internal combustion engine
JPH0431614A (en) Exhaust gas treatment system
JP2007016612A (en) Exhaust gas pressure controller of internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JPH0988569A (en) Exhaust emission control system for internal combustion engine
JPH1068315A (en) Emission control device for internal combustion engine
JP2002276340A (en) Exhaust emission control device and exhaust emission control method
JP2005299628A (en) Filter regeneration control device for diesel engine
JP6073644B2 (en) Control device for exhaust pressure adjustment valve
JPH04370310A (en) Exhaust gas post-processing device for internal combustion engine
JP2003120302A (en) Turbo charger with variable nozzle
JP4032773B2 (en) Internal combustion engine
JP3374779B2 (en) Exhaust gas purification device for internal combustion engine
JPS6079114A (en) Device for processing microparticles in exhaust gas of internal-combustion engine
JP2006214311A (en) Exhaust emission control device of internal combustion engine