JP2004162552A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2004162552A
JP2004162552A JP2002327204A JP2002327204A JP2004162552A JP 2004162552 A JP2004162552 A JP 2004162552A JP 2002327204 A JP2002327204 A JP 2002327204A JP 2002327204 A JP2002327204 A JP 2002327204A JP 2004162552 A JP2004162552 A JP 2004162552A
Authority
JP
Japan
Prior art keywords
egr
photocatalyst
passage
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002327204A
Other languages
Japanese (ja)
Inventor
Eiichi Hiruma
栄一 昼間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002327204A priority Critical patent/JP2004162552A/en
Publication of JP2004162552A publication Critical patent/JP2004162552A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine for removing a polluting component and moisture included in EGR gas passing through an exhaust gas postprocessing system. <P>SOLUTION: This exhaust emission control device 1 is arranged in the middle of an EGR passage. The exhaust emission control device 1 has a first cylindrical part 45 and a second cylindrical part 50 formed of heat resistant glass inside an outer wall part 42 for forming an introducing port 43 and an exhaust port 44. A first passage part 46a is formed inside the first cylindrical part 45. A second passage part 46b is formed between the first cylindrical part 45 and the second cylindrical part 50. A third passage part 46c is formed on the outer peripheral side of the second cylindrical part 50. An irradiating part 55 is arranged inside the outer wall part 42. The irradiating part 55 irradiates a photocatalyst 53 with the light for decomposing the polluting component in the EGR gas sticking to the photocatalyst 53. The photocatalyst 53 is filled in the second and third passage parts 46b and 46c. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排出ガス還流装置(Exhaust Gas Recirculation system、以下EGR)を備えた内燃機関の排出ガス浄化装置に関する。
【0002】
【従来の技術】
内燃機関の排出ガスの浄化手段として、EGRが知られている。例えばディーゼルエンジンにおいて、PM(固形微粒子)や黒鉛などの汚染成分を除去する排気後処理装置を通過した排出ガスを、EGRガスとして再び吸気系へ戻すことが行われている。また、ターボチャージャのタービンを通過した排出ガスの一部を、EGRガスとしてターボチャージャのコンプレッサの上流側に戻すLPL(ow ressure oop)−EGRも知られている。
【0003】
また従来、排気後処理装置として、排気通路に排出ガス中の有害成分を浄化する触媒と、その上流に排ガス中の水分を処理する水分処理手段を設けた排ガス浄化装置も提案されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平10−77831号公報(第1図)
【0005】
【発明が解決しようとする課題】
しかし、排気後処理装置では汚染成分は完全には除去しきれず、EGRガス内には汚染成分が含まれる。EGRガス中の汚染成分は、EGR通路やEGR通路に設けられる内燃機関の構成要素と、吸気通路や吸気通路の各部の構成要素などに付着して汚損をまねく恐れがある。また、EGRクーラやインタクーラにおいて、冷却媒体の低温時では、EGRガス中の水分が結露し、腐食の原因となる。
【0006】
従って、本発明の目的は、排気後処理装置を通過したEGRガスに含まれる汚染成分を除去し、同時に水分の結露を防ぐことができる内燃機関の排出ガス浄化装置を提供する。
【0007】
【課題を解決するための手段】
請求項1に記載の内燃機関の排出ガス浄化装置では、排気後処理装置によって浄化された排出ガスの一部を該排気後処理装置の下流から吸気系に戻すEGR通路と、前記EGR通路に設けられ前記EGRガス中の汚染成分を分解可能な光触媒と、前記光触媒を活性化する光を該光触媒に照射する光照射手段と、を具備している。この発明でいう光は、可視光だけでなく、紫外線などの可視光以外の電磁波を含む概念である。
【0008】
このように構成される内燃機関の排出ガス浄化装置では、前記EGRガス内の汚染成分が光触媒によって分解され、その光触媒反応の際に水分が消費されることにより、下流側での水分の結露が防止される。
【0009】
この発明の好ましい形態では、前記光触媒は前記EGRガスが導入されるケーシングに収容され、前記EGRガスの流路を延長するように形成する壁部のうち前記光照射手段と前記光触媒との間に位置する壁部が、前記光照射手段から照射される光を透過する部材で形成される。このように構成される前記内燃機関の排出ガス浄化装置では、前記光照射手段から照射される光が壁部によって遮られることなく効率良く前記光触媒に照射される。
【0010】
さらに、この発明の好ましい形態では、前記EGR通路の前記光触媒の下流にEGRクーラが設けられていることにより、EGRガスの温度が調節され且つEGRクーラの汚損及び結露を防止できる。
【0011】
さらに、この発明の好ましい形態では、前記吸気系にターボチャージャのコンプレッサと、該コンプレッサ下流にインタクーラとを設けてもよい。この場合、前記コンプレッサの上流側に前記EGR通路が接続されることによってLPL−EGRが構成され、大量EGRが可能となると共に比較的温度の低い排出ガスを還流することができる。
【0012】
【発明の実施の形態】
以下に、本発明の実施の形態について図1と図2を参照して説明する。
この実施の形態で用いられる内燃機関は、例えば自動車に用いられるディーゼルエンジンである。
【0013】
図1中、吸気通路10の上流側には、吸入空気内の埃を除去するエアクリーナ12が設けられている。エアクリーナ12の下流側に吸気絞りバルブ13が設けられている。吸気絞りバルブ13は前記吸入空気の流量を制御する。吸気絞りバルブ13の下流側には、排出ガスを吸気系へ戻すEGR通路14の戻り側開口部14aが接続され、合流部15を形成している。
【0014】
合流部15では、前記吸入空気とEGR通路14から導入されるEGRガスとが混合される。合流部15の下流側にはターボチャージャ16のコンプレッサ20が設けられており、コンプレッサ20に前記吸入空気とEGRガスとの混合気が流入するようになっている。ターボチャージャ16は前記混合気を圧縮するコンプレッサ20と、排出ガスのエネルギを受けて動力を発生するタービン21と、タービン21で得られた動力をコンプレッサ20へ伝える軸部22とから構成される。
【0015】
ターボチャージャ16のコンプレッサ20の下流側には、吸気通路10に連通してインタクーラ23が設けられている。インタクーラ23は、例えば冷却媒体として冷却水を用いており、コンプレッサ20で圧縮され高温になった前記混合気を冷却する。インタクーラ23の下流側にエンジン24の吸気マニホールド25が設けられている。吸気マニホールド25を経た前記混合気は、吸気枝管25a,25b,25c,25dを介して、気筒26a,26b,26c,26dに導入される。エンジン24の排気側に排気マニホールド30が設けられており、気筒26a,26b,26c,26dの内部の排出ガスが排気枝管30a,30b,30c,30dへ排出される。排気マニホールド30の下流側は、ターボチャージャ16のタービン21を介して、排気通路32が連通している。
【0016】
タービン21の下流側に排気絞りバルブ33が設けられている。排気絞りバルブ33は、後述する排気後処理装置40に流入する排気流量の調節を行う。排気絞りバルブ33の下流側に、例えば排出ガスに含まれるPMや黒鉛などの汚染成分を除去する排気後処理装置40が設けられている。排気後処理装置40の一例は、例えばヒータ34とフィルタ35より構成されるDPFであり、汚染成分をフィルタ35で捕らえ、ヒータ34で焼却除去するようになっている。
【0017】
排気後処理装置40の下流側には、排気通路32から分岐してEGR通路14の排出ガス取り出し口14bが接続されている。EGR通路14には上流側から排出ガス浄化装置1と下記EGRクーラ61とが介装されている。
【0018】
図2に拡大して示すように、排出ガス浄化装置1は、ケーシングとして機能する例えば円筒状の外壁部42を有している。外壁部42の一端側に、EGRガスを導入可能な導入口43が形成されている。外壁部42の他端側には、EGR通路14に接続される排出口44が設けられている。導入口43と排出口44は、EGR通路14と連通している。
【0019】
外壁部42の内部には、外壁部42と略同心に第1の円筒部45が設けられている。第1の円筒部45は両端が開口しており、上流側の開口部が導入口43に接続されている。第1の円筒部45の他端側の開口部45aと、後述する第2の円筒部50の端壁50aとの間に、充分な隙間が形成されている。また、第1の円筒部45の周面と第2の円筒部50との間にも充分な隙間が形成されている。第1の円筒部45の内部が第1の通路部46aとして使われる。
【0020】
また、第1の円筒部45を覆うように、外壁部42と略同心に第2の円筒部50が設けられている。第2の円筒部50の一端側は開口し、他端側が閉塞されている。第2の円筒部50は外壁部42および第1の円筒部45と接触しないように隙間をあけて配されており、例えば図示しない支持材によって所定位置に固定されている。ただし、この支持材はEGRガスの流動を妨げないものとする。第1の円筒部45と第2の円筒部50との間の隙間は、第2の通路部46bとして使用される。
【0021】
外壁部42の内部に、光触媒53が収容されている。光触媒53は、例えば吸着能に優れた球状のシリカゲルと、このシリカゲルにコーティングされた分解能に優れる二酸化チタンの透明薄膜によって構成される。二酸化チタンは紫外線が照射されたときに、正孔と電子を発生する。この正孔と電子は非常に強い還元力、酸化力を持っており、水分などとの反応により活性酸素を生じる。この活性酸素は付着した汚染成分を分解する作用を持つ。
【0022】
図2に示すように、光触媒53は第2の通路部46bと、後述する第3の通路部46cとに充填される。
また、外壁部42の内部に光触媒53に付着した、汚染成分の分解作用を活性化するための光を照射する照射部55が収容されている。照射部55は、例えば紫外線を照射するブラックライト蛍光灯と、紫外線の照射のオン、オフを切り替えるためのスイッチ部(図示せず)から構成されている。照射部55は外壁部42の内側の側面に複数設けられている。照射部55と第2の円筒部50との間の隙間が第3の通路部46cとして使われる。
【0023】
少なくとも第2の円筒部50(壁部)は、照射部55から照射される紫外線が、内部に充填されている光触媒53にも照射されるように、紫外線を透過する材料によって形成されている。紫外線を透過する材料の一例は耐熱ガラスである。
【0024】
尚、第1の円筒部45は第2の円筒部50と同様に紫外線を透過する材料によって形成することによって、照射部55の数を減らすことができるメリットがある。
【0025】
照射部55は、例えばECU60(図1に示す)により制御される。ECU60は、例えば図示しないイグニションスイッチに接続されている。このイグニションスイッチがオンされ、エンジン24が運転を開始した状態から、所定時間紫外線を照射するよう照射部55を制御する。ECU60には、例えばインタクーラ23の温度を測定する温度センサ62aと、後述するEGRクーラ61の温度を測定する温度センサ62bが接続されている。温度センサ62a,62bは、それぞれインタクーラ23の下流の吸入空気(或いは前記混合気)温度、冷却水温度を計測する。そして吸入空気(或いは前記混合気)温度が所定温度以下、又は冷却水低温時に前記紫外線を所定時間照射するよう照射部55を制御する。
【0026】
排出ガス浄化装置1の下流側にEGRクーラ61が設けられている。EGRクーラ61は、例えば冷却媒体として冷却水を用いてEGRガスを冷却する。EGRクーラ61の下流側で合流部15付近にEGRバルブ63が設けられている。EGRバルブ63は、吸気通路10に流入するEGRガスの流量を調節する。
【0027】
このように本実施の形態では、ターボチャージャ16のタービン21を通過した排出ガスを、EGR通路14を用いてターボチャージャ16のコンプレッサ20の上流側に戻す、LPL−EGRを構成している。
【0028】
次に、本実施の形態の作用について説明する。
エンジン24の運転時、エンジン24から排出される排出ガスは、排気後処理装置(DPF)40にてほとんどの汚染成分が除去される。排気後処理装置40の下流側において、排出ガスの一部がEGRガスとしてEGR通路14へ流入し、排出ガス浄化装置1に流入する。
【0029】
図2に矢印で示すように、内燃機関の排出ガス浄化装置1の内部では、EGRガスが第1の通路部46aを流動し、第2の通路部46bを通って第3の通路部46cに入り、第3の通路部46cを流動したのち、外壁部42の排出口44から出てゆく。こうしてEGRガスが第2の通路部46b、第3の通路部46cを流動する間に、EGRガスは光触媒53の間を流動する。そのため、EGRガスに含まれる汚染成分が光触媒53に吸着される。
【0030】
イグニションスイッチがオンされ、エンジン24が運転を開始してから所定時間(或いは、低負荷時)は、ECU60の制御により、照射部55は光触媒53に紫外線を照射する。光触媒53は汚染成分を吸着保持しており、紫外線を照射されると二酸化チタンの作用により、水分を消費しながら汚染成分を分解する。従ってこの汚染成分の分解に伴いEGRガス中の水分が使用され、水分も除去される。
【0031】
インタクーラ23の下流の吸入空気(或いは前記混合気)温度が所定温度以下、又は冷却水が低温の時も、ECU60の制御により照射部55から紫外線が照射され、光触媒53に吸着された汚染成分の分解作用に伴い、EGRガス中の水分が除去される。尚、PMを含む汚染成分の発生しやすい低排出ガス温度時、例えば低負荷、低吸気温度、及び低冷却水温度時に紫外線を照射することによって効果的に光触媒53の汚染成分を分解することができる。
【0032】
また、光触媒53は熱触媒としての性質も持っており、エンジン24の運転中に汚染成分の吸着と同時に、EGRガスの熱により汚染成分を分解することも行う。
【0033】
このように、排出ガス浄化装置1に光触媒53を用いるので、EGRガス内の汚染成分が光触媒53に吸着され、エンジン24の始動時やインタクーラ23およびEGRクーラ61の冷却水低温時に紫外線が照射され、二酸化チタンの汚染成分分解作用に伴いEGRガス中の水分が除去される。
【0034】
このため、汚染成分の吸着能と分解能が高まり、EGRクーラ61、EGRバルブ63、吸気絞りバルブ13、コンプレッサ20、インタクーラ23の汚損を防止することができる。汚染成分の付着が防止されるため、EGRバルブ63や吸気絞りバルブ13において、流路断面積が汚染成分によって変化することが回避され、流量制御の精度を維持することもできる。インタクーラ23やEGRクーラ61においては、EGRガス内の水分の結露による腐食を防ぐことができる。
【0035】
さらに、光触媒53の熱触媒としての作用により、汚染成分を分解することもできる。さらに、外壁部42の内部に第1,第2の円筒部45,50を設けることにより、EGRガスがこれら円筒部45,50によって形成される第2の通路部46bと第3の通路部46cを通るようにしたため、EGRガスの流路が長く形成される。このため、EGRガスが光触媒53に接触する時間が長くなり、汚染成分の吸着能が高まる。
【0036】
尚、EGRガスの流路を長く形成する手法としては、上述のものに限らず、種々変更可能である。例えば、図3に示すように、壁部57を設けて通路部47a,47bを形成しても良い。又図4に示すように、壁部58a,58bを設けて、通路部48a,48b,48cを形成し、EGR通路長を延長しても良い。尚この場合に、壁部57,58a,58bは紫外線を透過する材料で形成される。
【0037】
さらに、少なくとも第2の円筒部50は耐熱ガラスで形成される。このため、照射部55から照射される紫外線が、効率良く第2,3の通路部46b,46cの内部に位置する光触媒53にも照射されるとともに、高温のEGRガスに対して充分な耐熱性を有している。
【0038】
なお、本実施の形態では、光源にブラックライト蛍光灯を用いているが、紫外線発光ダイオードやプラズマ発生装置を用いてもよい。また、光触媒53は、本実施の形態のようにシリカゲルの表面と細孔の内壁とに二酸化チタンの透明薄膜をコーティングしてもよいし、あるいは表面近傍の細孔内に二酸化チタンを高濃度に分布するようにしてもよい。
【0039】
これらをはじめとして、本発明を実施するに当たって、本発明を構成する要素は、発明の要旨を逸脱しない範囲で適宜に変換して実施できることは言うまでもない。
【0040】
【発明の効果】
請求項1に記載の発明によれば、EGRガスに含まれる汚染成分が光触媒によって分解されるため、EGRガスによる汚損を防ぐことができるとともに、光触媒が汚染成分を分解する際に水分が消費されるため、EGRガスに含まれる水分を除去することができる。このため吸気系における結露が防止され、結露に伴う腐食を防ぐことができる。
【0041】
請求項2に記載の発明によれば、照射光がケーシング内部の壁部によって遮られることを防止でき、照射光が効率よく光触媒に照射される。
【0042】
請求項3に記載の発明によれば、EGRクーラの汚損を防止して効果的にEGRガスを冷却することができるとともに、EGRクーラが結露による腐食等の不具合を生じることを防止することができる。
【0043】
請求項4に記載の発明によれば、LPL(ow ressure oop)−EGRが構成され、比較的温度の低い排出ガスが還流されると共に、特にEGRクーラやインタクーラで結露が生じ易い排出ガス温度が低いエンジン運転条件でもEGRガス中の水分が前記光触媒の汚染成分の分解に伴って除去されているため、EGRクーラ及び更に下流のインタクーラが結露による腐食等の不具合を生じることを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における内燃機関の排出ガス浄化装置を模式的に示す断面図
【図2】図1に示された排出ガス浄化装置を拡大して示す断面図
【図3】図1に示された排出ガス浄化装置の変形例を示す断面図
【図4】図1に示された排出ガス浄化装置の変形例を示す断面図。
【符号の説明】
1…排出ガス浄化装置
14…EGR通路
14a…戻り側開口部
16…ターボチャージャ
20…コンプレッサ
23…インタクーラ
42…外壁部(ケーシング)
43…導入口
44…排出口
45…第1の円筒部(EGRガスの通路を形成する壁部)
50…第2の円筒部(EGRガスの通路を形成する壁部)
53…光触媒
55…照射部(光照射手段)
57…壁部(EGRガスの流路を形成する壁部)
58a…壁部(EGRガスの流路を形成する壁部)
58b…壁部(EGRガスの流路を形成する壁部)
61…EGRクーラ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying device for an internal combustion engine including an exhaust gas recirculation device (Exhaust Gas Recirculation system, hereinafter referred to as EGR).
[0002]
[Prior art]
EGR is known as a means for purifying exhaust gas of an internal combustion engine. For example, in a diesel engine, exhaust gas that has passed through an exhaust after-treatment device that removes polluting components such as PM (solid fine particles) and graphite is returned to an intake system as EGR gas. Further, part of the exhaust gas passing through the turbine of the turbocharger, also known LPL (L ow P ressure L oop ) -EGR back to the upstream side of the compressor of the turbocharger as EGR gas.
[0003]
Conventionally, as an exhaust aftertreatment device, an exhaust gas purification device provided with a catalyst for purifying harmful components in exhaust gas in an exhaust passage and a moisture treatment means for treating moisture in exhaust gas upstream thereof has also been proposed (for example, And Patent Document 1.).
[0004]
[Patent Document 1]
JP-A-10-77831 (FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the exhaust post-treatment device cannot completely remove the pollutant, and the EGR gas contains the pollutant. Contamination components in the EGR gas may adhere to the EGR passage, components of the internal combustion engine provided in the EGR passage, and components of the intake passage and each part of the intake passage, thereby causing contamination. Further, in the EGR cooler and the intercooler, when the temperature of the cooling medium is low, the moisture in the EGR gas is condensed and causes corrosion.
[0006]
Accordingly, an object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can remove contaminants contained in EGR gas that has passed through an exhaust after-treatment device and at the same time prevent dew condensation of moisture.
[0007]
[Means for Solving the Problems]
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 1, a part of the exhaust gas purified by the exhaust after-treatment device is provided in the EGR passage for returning the exhaust gas from the downstream of the exhaust after-treatment device to the intake system and the EGR passage. A photocatalyst capable of decomposing contaminant components in the EGR gas, and light irradiating means for irradiating the photocatalyst with light for activating the photocatalyst. The light in the present invention is a concept including not only visible light but also electromagnetic waves other than visible light such as ultraviolet light.
[0008]
In the exhaust gas purifying apparatus for an internal combustion engine configured as described above, the contaminant component in the EGR gas is decomposed by the photocatalyst, and the water is consumed during the photocatalytic reaction. Is prevented.
[0009]
In a preferred aspect of the present invention, the photocatalyst is housed in a casing into which the EGR gas is introduced, and is provided between the light irradiation unit and the photocatalyst in a wall formed to extend a flow path of the EGR gas. The wall portion located is formed of a member that transmits light emitted from the light emitting means. In the exhaust gas purifying apparatus for an internal combustion engine configured as described above, the light irradiated from the light irradiation unit is efficiently irradiated to the photocatalyst without being blocked by the wall.
[0010]
Further, in a preferred embodiment of the present invention, the EGR cooler is provided downstream of the photocatalyst in the EGR passage, so that the temperature of the EGR gas is adjusted and the EGR cooler can be prevented from being soiled and dewed.
[0011]
Further, in a preferred embodiment of the present invention, a turbocharger compressor and an intercooler may be provided downstream of the compressor in the intake system. In this case, the EPL passage is connected to the upstream side of the compressor to form an LPL-EGR, which enables a large amount of EGR and recirculates exhaust gas having a relatively low temperature.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
The internal combustion engine used in this embodiment is, for example, a diesel engine used in an automobile.
[0013]
In FIG. 1, an air cleaner 12 for removing dust in the intake air is provided upstream of the intake passage 10. An intake throttle valve 13 is provided downstream of the air cleaner 12. The intake throttle valve 13 controls the flow rate of the intake air. A return opening 14 a of an EGR passage 14 for returning exhaust gas to the intake system is connected downstream of the intake throttle valve 13 to form a junction 15.
[0014]
In the junction 15, the intake air and EGR gas introduced from the EGR passage 14 are mixed. A compressor 20 of the turbocharger 16 is provided downstream of the junction 15, and a mixture of the intake air and the EGR gas flows into the compressor 20. The turbocharger 16 includes a compressor 20 that compresses the air-fuel mixture, a turbine 21 that generates power by receiving the energy of exhaust gas, and a shaft portion 22 that transmits the power obtained by the turbine 21 to the compressor 20.
[0015]
An intercooler 23 is provided downstream of the compressor 20 of the turbocharger 16 so as to communicate with the intake passage 10. The intercooler 23 uses, for example, cooling water as a cooling medium, and cools the air-fuel mixture compressed by the compressor 20 and having a high temperature. An intake manifold 25 for an engine 24 is provided downstream of the intercooler 23. The air-fuel mixture that has passed through the intake manifold 25 is introduced into the cylinders 26a, 26b, 26c, and 26d through the intake branch pipes 25a, 25b, 25c, and 25d. An exhaust manifold 30 is provided on the exhaust side of the engine 24, and exhaust gas inside the cylinders 26a, 26b, 26c, 26d is exhausted to exhaust branch pipes 30a, 30b, 30c, 30d. An exhaust passage 32 communicates downstream of the exhaust manifold 30 via a turbine 21 of the turbocharger 16.
[0016]
An exhaust throttle valve 33 is provided downstream of the turbine 21. The exhaust throttle valve 33 adjusts the flow rate of exhaust gas flowing into an exhaust after-treatment device 40 described later. On the downstream side of the exhaust throttle valve 33, an exhaust post-processing device 40 for removing polluting components such as PM and graphite contained in the exhaust gas is provided. An example of the exhaust after-treatment device 40 is a DPF including, for example, a heater 34 and a filter 35, which captures contaminated components with the filter 35 and incinerates and removes the contaminated components with the heater 34.
[0017]
An exhaust gas outlet 14 b of the EGR passage 14 diverging from the exhaust passage 32 is connected to the downstream side of the exhaust aftertreatment device 40. The exhaust gas purifying device 1 and an EGR cooler 61 described below are interposed in the EGR passage 14 from the upstream side.
[0018]
As shown in FIG. 2 in an enlarged manner, the exhaust gas purifying device 1 has, for example, a cylindrical outer wall portion 42 functioning as a casing. An introduction port 43 through which EGR gas can be introduced is formed at one end of the outer wall portion 42. The other end of the outer wall portion 42 is provided with a discharge port 44 connected to the EGR passage 14. The inlet 43 and the outlet 44 communicate with the EGR passage 14.
[0019]
Inside the outer wall portion 42, a first cylindrical portion 45 is provided substantially concentrically with the outer wall portion 42. Both ends of the first cylindrical portion 45 are open, and an opening on the upstream side is connected to the inlet 43. A sufficient gap is formed between an opening 45a on the other end side of the first cylindrical portion 45 and an end wall 50a of a second cylindrical portion 50 described later. A sufficient gap is also formed between the peripheral surface of the first cylindrical portion 45 and the second cylindrical portion 50. The inside of the first cylindrical portion 45 is used as a first passage portion 46a.
[0020]
Further, a second cylindrical portion 50 is provided substantially concentrically with the outer wall portion 42 so as to cover the first cylindrical portion 45. One end of the second cylindrical portion 50 is open, and the other end is closed. The second cylindrical portion 50 is arranged with a gap so as not to contact the outer wall portion 42 and the first cylindrical portion 45, and is fixed at a predetermined position by, for example, a support member (not shown). However, it is assumed that this support does not hinder the flow of the EGR gas. The gap between the first cylindrical portion 45 and the second cylindrical portion 50 is used as a second passage 46b.
[0021]
The photocatalyst 53 is housed inside the outer wall portion 42. The photocatalyst 53 is composed of, for example, spherical silica gel having excellent adsorption ability and a transparent thin film of titanium dioxide coated on the silica gel and having excellent resolution. Titanium dioxide generates holes and electrons when irradiated with ultraviolet light. These holes and electrons have very strong reducing power and oxidizing power, and generate active oxygen by a reaction with moisture and the like. This active oxygen has a function of decomposing the attached contaminant components.
[0022]
As shown in FIG. 2, the photocatalyst 53 is filled in the second passage 46b and a third passage 46c described later.
Further, an irradiating section 55 for irradiating light for activating the decomposition action of the contaminant component, which is attached to the photocatalyst 53, is housed inside the outer wall section 42. The irradiation unit 55 includes, for example, a black light fluorescent lamp that irradiates ultraviolet rays, and a switch unit (not shown) for turning on and off the irradiation of ultraviolet rays. A plurality of irradiation units 55 are provided on the inner side surface of the outer wall portion 42. The gap between the irradiation part 55 and the second cylindrical part 50 is used as the third passage part 46c.
[0023]
At least the second cylindrical portion 50 (wall portion) is formed of a material that transmits ultraviolet light so that the ultraviolet light emitted from the irradiation portion 55 is also applied to the photocatalyst 53 filled therein. One example of a material that transmits ultraviolet light is heat-resistant glass.
[0024]
The first cylindrical portion 45 is formed of a material that transmits ultraviolet light similarly to the second cylindrical portion 50, so that there is an advantage that the number of irradiation portions 55 can be reduced.
[0025]
The irradiation unit 55 is controlled by, for example, the ECU 60 (shown in FIG. 1). The ECU 60 is connected to, for example, an ignition switch (not shown). When the ignition switch is turned on and the engine 24 starts operating, the irradiation unit 55 is controlled to emit ultraviolet light for a predetermined time. For example, a temperature sensor 62a for measuring the temperature of the intercooler 23 and a temperature sensor 62b for measuring the temperature of an EGR cooler 61 described later are connected to the ECU 60. The temperature sensors 62a and 62b measure the temperature of the intake air (or the air-fuel mixture) downstream of the intercooler 23 and the temperature of the cooling water, respectively. The irradiation unit 55 is controlled so as to irradiate the ultraviolet rays for a predetermined time when the temperature of the intake air (or the air-fuel mixture) is equal to or lower than a predetermined temperature or when the cooling water is low.
[0026]
An EGR cooler 61 is provided downstream of the exhaust gas purification device 1. The EGR cooler 61 cools the EGR gas using, for example, cooling water as a cooling medium. An EGR valve 63 is provided downstream of the EGR cooler 61 and near the junction 15. The EGR valve 63 adjusts the flow rate of EGR gas flowing into the intake passage 10.
[0027]
As described above, in the present embodiment, an LPL-EGR is configured to return the exhaust gas that has passed through the turbine 21 of the turbocharger 16 to the upstream side of the compressor 20 of the turbocharger 16 using the EGR passage 14.
[0028]
Next, the operation of the present embodiment will be described.
During operation of the engine 24, most of the exhaust gas discharged from the engine 24 is removed by an exhaust after-treatment device (DPF) 40. On the downstream side of the exhaust aftertreatment device 40, part of the exhaust gas flows into the EGR passage 14 as EGR gas and flows into the exhaust gas purification device 1.
[0029]
As shown by an arrow in FIG. 2, inside the exhaust gas purifying apparatus 1 for the internal combustion engine, the EGR gas flows through the first passage portion 46a, passes through the second passage portion 46b, and enters the third passage portion 46c. After entering and flowing through the third passage portion 46c, it exits through the outlet 44 of the outer wall portion 42. Thus, while the EGR gas flows through the second passage portion 46b and the third passage portion 46c, the EGR gas flows between the photocatalysts 53. Therefore, the contaminant component contained in the EGR gas is adsorbed on the photocatalyst 53.
[0030]
The irradiation unit 55 irradiates the photocatalyst 53 with ultraviolet rays under the control of the ECU 60 for a predetermined time (or at a low load) after the ignition switch is turned on and the engine 24 starts operating. The photocatalyst 53 adsorbs and holds the pollutant, and when irradiated with ultraviolet rays, decomposes the pollutant while consuming water by the action of titanium dioxide. Therefore, the water in the EGR gas is used and the water is removed along with the decomposition of the pollutant.
[0031]
Even when the temperature of the intake air (or the air-fuel mixture) downstream of the intercooler 23 is equal to or lower than a predetermined temperature or the temperature of the cooling water is low, the ultraviolet rays are irradiated from the irradiation unit 55 under the control of the ECU 60, and the contamination components adsorbed on the photocatalyst 53 are removed. With the decomposition action, the water in the EGR gas is removed. It is to be noted that the irradiation of ultraviolet rays at low exhaust gas temperatures at which pollutants including PM are likely to occur, such as low load, low intake air temperature, and low cooling water temperature, can effectively decompose the pollutants of the photocatalyst 53. it can.
[0032]
In addition, the photocatalyst 53 also has a property as a thermal catalyst, and during the operation of the engine 24, simultaneously with the adsorption of the pollutant, the pollutant is decomposed by the heat of the EGR gas.
[0033]
As described above, since the photocatalyst 53 is used in the exhaust gas purifying device 1, the pollutant component in the EGR gas is adsorbed by the photocatalyst 53, and is irradiated with ultraviolet rays when the engine 24 is started or when the cooling water of the intercooler 23 and the EGR cooler 61 is low. In addition, the moisture in the EGR gas is removed due to the action of decomposing titanium dioxide as a contaminant.
[0034]
For this reason, the adsorption ability and resolution of the pollutant component are enhanced, and the EGR cooler 61, the EGR valve 63, the intake throttle valve 13, the compressor 20, and the intercooler 23 can be prevented from being stained. Since the attachment of the contaminant is prevented, the EGR valve 63 and the intake throttle valve 13 are prevented from changing the cross-sectional area of the flow path due to the contaminant, and the accuracy of the flow control can be maintained. In the intercooler 23 and the EGR cooler 61, corrosion due to dew condensation of the water in the EGR gas can be prevented.
[0035]
Furthermore, the action of the photocatalyst 53 as a thermal catalyst can also decompose contaminant components. Further, by providing the first and second cylindrical portions 45 and 50 inside the outer wall portion 42, the EGR gas is supplied to the second passage portion 46b and the third passage portion 46c formed by the cylindrical portions 45 and 50. Therefore, the flow path of the EGR gas is formed long. For this reason, the contact time of the EGR gas with the photocatalyst 53 is prolonged, and the ability to adsorb contaminant components is enhanced.
[0036]
The method for forming the EGR gas flow path to be long is not limited to the above-described method, and various changes can be made. For example, as shown in FIG. 3, a wall portion 57 may be provided to form the passage portions 47a and 47b. Further, as shown in FIG. 4, the wall portions 58a, 58b may be provided to form the passage portions 48a, 48b, 48c to extend the EGR passage length. In this case, the walls 57, 58a, 58b are formed of a material that transmits ultraviolet light.
[0037]
Further, at least the second cylindrical portion 50 is formed of heat-resistant glass. For this reason, the ultraviolet rays irradiated from the irradiation unit 55 efficiently irradiate the photocatalyst 53 located inside the second and third passages 46b and 46c, and have sufficient heat resistance against the high-temperature EGR gas. have.
[0038]
In this embodiment, a black light fluorescent lamp is used as a light source, but an ultraviolet light emitting diode or a plasma generator may be used. Further, the photocatalyst 53 may coat a transparent thin film of titanium dioxide on the surface of the silica gel and the inner wall of the pores as in this embodiment, or a high concentration of titanium dioxide in the pores near the surface. It may be distributed.
[0039]
In carrying out the present invention including these, it goes without saying that the elements constituting the present invention can be appropriately converted and carried out without departing from the gist of the invention.
[0040]
【The invention's effect】
According to the first aspect of the present invention, since the contaminant contained in the EGR gas is decomposed by the photocatalyst, the contamination by the EGR gas can be prevented, and water is consumed when the photocatalyst decomposes the contaminant. Therefore, moisture contained in the EGR gas can be removed. For this reason, dew condensation in the intake system is prevented, and corrosion accompanying dew condensation can be prevented.
[0041]
According to the invention described in claim 2, the irradiation light can be prevented from being blocked by the wall inside the casing, and the irradiation light can be efficiently irradiated to the photocatalyst.
[0042]
According to the third aspect of the present invention, the EGR cooler can be effectively cooled by preventing the EGR cooler from being contaminated, and the EGR cooler can be prevented from causing problems such as corrosion due to dew condensation. .
[0043]
According to the invention of claim 4, LPL (L ow P ressure L oop) -EGR is configured, relatively with lower temperature exhaust gas with is recirculated, especially condensation occurs easily discharged EGR cooler and an intercooler Even in an engine operating condition at a low gas temperature, the moisture in the EGR gas is removed along with the decomposition of the pollutant component of the photocatalyst, thereby preventing the EGR cooler and the intercooler further downstream from causing problems such as corrosion due to condensation. be able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an exhaust gas purifying apparatus for an internal combustion engine according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view showing the exhaust gas purifying apparatus shown in FIG. FIG. 4 is a sectional view showing a modified example of the exhaust gas purifying apparatus shown in FIG. 1; FIG. 4 is a sectional view showing a modified example of the exhaust gas purifying apparatus shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification apparatus 14 ... EGR passage 14a ... Return side opening 16 ... Turbocharger 20 ... Compressor 23 ... Intercooler 42 ... Outer wall part (casing)
43 ... inlet 44 ... outlet 45 ... 1st cylindrical part (wall which forms the passage of EGR gas)
50: second cylindrical portion (wall portion forming passage for EGR gas)
53 photocatalyst 55 irradiation part (light irradiation means)
57: Wall (wall forming EGR gas flow path)
58a: Wall (wall forming EGR gas flow path)
58b: Wall (wall forming EGR gas flow path)
61 ... EGR cooler.

Claims (4)

排気後処理装置によって浄化された排出ガスの一部を排気後処理装置の下流から吸気系へ戻すEGR通路と、
前記EGR通路に設けられ、前記EGRガス中の汚染成分を分解可能な光触媒と、
前記光触媒を活性化する光を該光触媒に照射する光照射手段と、
を具備したことを特徴とする内燃機関の排出ガス浄化装置。
An EGR passage for returning a part of the exhaust gas purified by the exhaust aftertreatment device from a downstream side of the exhaust aftertreatment device to the intake system;
A photocatalyst provided in the EGR passage and capable of decomposing pollutants in the EGR gas;
Light irradiation means for irradiating the photocatalyst with light for activating the photocatalyst,
An exhaust gas purifying apparatus for an internal combustion engine, comprising:
前記EGRガスを導入可能な導入口と、該EGRガスを排出可能な排出口とを有するケーシングの内部に前記光触媒が収容され、該ケーシングの内部には、前記EGRガスの通路を延長するように形成するための壁部が設けられ、該壁部のうち、前記光照射手段と前記光触媒との間に位置する壁部が、前記光照射手段から照射される光を透過する部材で形成されることを特徴とする請求項1に記載の内燃機関の排出ガス浄化装置。The photocatalyst is housed inside a casing having an inlet through which the EGR gas can be introduced and an outlet through which the EGR gas can be discharged, and the inside of the casing extends the passage of the EGR gas. A wall portion for forming is provided, and among the wall portions, a wall portion located between the light irradiation unit and the photocatalyst is formed of a member that transmits light irradiated from the light irradiation unit. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein: 前記EGR通路の前記光触媒の下流にEGRクーラが設けられていることを特徴とする請求項1に記載の内燃機関の排出ガス浄化装置。The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein an EGR cooler is provided downstream of the photocatalyst in the EGR passage. 前記吸気系にターボチャージャのコンプレッサと、該コンプレッサ下流にインタクーラとが設けられ、該コンプレッサの上流側に前記EGR通路の戻り側開口部が接続されていることを特徴とする請求項1に記載の内燃機関の排出ガス浄化装置。The compressor according to claim 1, wherein a compressor of a turbocharger is provided in the intake system, and an intercooler is provided downstream of the compressor, and a return opening of the EGR passage is connected to an upstream side of the compressor. Exhaust gas purification device for internal combustion engine.
JP2002327204A 2002-11-11 2002-11-11 Exhaust emission control device of internal combustion engine Withdrawn JP2004162552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327204A JP2004162552A (en) 2002-11-11 2002-11-11 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327204A JP2004162552A (en) 2002-11-11 2002-11-11 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004162552A true JP2004162552A (en) 2004-06-10

Family

ID=32805917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327204A Withdrawn JP2004162552A (en) 2002-11-11 2002-11-11 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004162552A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351245A (en) * 2004-06-14 2005-12-22 Toyota Motor Corp Device for adding reducing agent
JP2007139406A (en) * 2005-11-17 2007-06-07 Hamilton Sundstrand Corp Heat exchanger core assembly
WO2007123011A1 (en) * 2006-04-10 2007-11-01 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
WO2007136142A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine
JP2010185413A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Foreign matter collecting device with cooler
JP2011523691A (en) * 2008-06-09 2011-08-18 スカニア シーブイ アクチボラグ Equipment for supercharged combustion engines
JP2011179440A (en) * 2010-03-02 2011-09-15 Isuzu Motors Ltd Exhaust emission purifying control equipment
WO2012063801A1 (en) 2010-11-10 2012-05-18 株式会社Ihi Low-pressure loop egr devices
WO2012066979A1 (en) 2010-11-16 2012-05-24 株式会社Ihi Low-pressure loop egr device
FR3033367A1 (en) * 2015-07-17 2016-09-09 Continental Automotive France EXHAUST GAS LINE DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2017137769A (en) * 2016-02-01 2017-08-10 株式会社デンソー Exhaust gas recirculation system
JP2018083171A (en) * 2016-11-25 2018-05-31 株式会社Ihi Catalytic device
CN112302838A (en) * 2019-08-02 2021-02-02 广州汽车集团股份有限公司 EGR exhaust gas recirculation system and automobile
JP2021124063A (en) * 2020-02-05 2021-08-30 株式会社アルテミス Internal combustion engine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506297B2 (en) * 2004-06-14 2010-07-21 トヨタ自動車株式会社 Reducing agent addition device
JP2005351245A (en) * 2004-06-14 2005-12-22 Toyota Motor Corp Device for adding reducing agent
JP2007139406A (en) * 2005-11-17 2007-06-07 Hamilton Sundstrand Corp Heat exchanger core assembly
JP4511507B2 (en) * 2005-11-17 2010-07-28 ハミルトン・サンドストランド・コーポレイション Heat exchanger core assembly
US8276654B2 (en) 2005-11-17 2012-10-02 Hamilton Sundstrand Corporation Core assembly with deformation preventing features
US8056321B2 (en) 2006-04-10 2011-11-15 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
WO2007123011A1 (en) * 2006-04-10 2007-11-01 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
CN101410601B (en) * 2006-04-10 2013-03-13 五十铃自动车株式会社 Exhaust gas purification method and exhaust gas purification system
EP2006504A4 (en) * 2006-04-10 2017-06-28 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
WO2007136142A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine
JP2011523691A (en) * 2008-06-09 2011-08-18 スカニア シーブイ アクチボラグ Equipment for supercharged combustion engines
JP2010185413A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Foreign matter collecting device with cooler
JP2011179440A (en) * 2010-03-02 2011-09-15 Isuzu Motors Ltd Exhaust emission purifying control equipment
WO2012063801A1 (en) 2010-11-10 2012-05-18 株式会社Ihi Low-pressure loop egr devices
US9163587B2 (en) 2010-11-10 2015-10-20 Ihi Corporation Low-pressure loop EGR device
WO2012066979A1 (en) 2010-11-16 2012-05-24 株式会社Ihi Low-pressure loop egr device
FR3033367A1 (en) * 2015-07-17 2016-09-09 Continental Automotive France EXHAUST GAS LINE DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2017137769A (en) * 2016-02-01 2017-08-10 株式会社デンソー Exhaust gas recirculation system
JP2018083171A (en) * 2016-11-25 2018-05-31 株式会社Ihi Catalytic device
JP7047246B2 (en) 2016-11-25 2022-04-05 株式会社Ihi Catalyst device
CN112302838A (en) * 2019-08-02 2021-02-02 广州汽车集团股份有限公司 EGR exhaust gas recirculation system and automobile
CN112302838B (en) * 2019-08-02 2022-04-01 广州汽车集团股份有限公司 EGR exhaust gas recirculation system and automobile
JP2021124063A (en) * 2020-02-05 2021-08-30 株式会社アルテミス Internal combustion engine

Similar Documents

Publication Publication Date Title
KR100637641B1 (en) Filter for egr system heated by an enclosing catalyst
JP2004162552A (en) Exhaust emission control device of internal combustion engine
US7521031B2 (en) Method and apparatus for treating exhaust gas
RU121371U1 (en) EXHAUST GAS SAMPLER (OPTIONS)
JP4450257B2 (en) Exhaust purification device
US6626983B1 (en) Method and apparatus for removing particulates
JP2009243470A (en) Exhaust emission control device
JP2011012563A (en) Exhaust gas purification system
JP2011033000A (en) Exhaust emission control device
JP2008128046A (en) Exhaust gas purification device
KR20110025133A (en) Exhaust gas purification apparatus
JP2008128048A (en) Exhaust gas purification device
JP2010242515A (en) Exhaust emission control system and exhaust emission control method
JP2006336588A (en) Exhaust emission control device of internal combustion engine
JP2020045860A (en) Exhaust emission control device
JP4672180B2 (en) Engine exhaust gas treatment method and apparatus
KR101802656B1 (en) A Device That Removing Harmful gas and Fine dust
JP2008128045A (en) Exhaust emission control device
JP4844766B2 (en) Exhaust purification device
JP2012092746A (en) Exhaust emission control device
JP2002256844A (en) Purifying device for automobile exhaust gas
JP2006207394A (en) NOx PURIFYING DEVICE
CN115013196B (en) Purifying device and purifying method for high-pressure hot-end EGR system of diesel engine
JP4411799B2 (en) Exhaust gas purification system
JP4344565B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061002