JP2005009406A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2005009406A
JP2005009406A JP2003174643A JP2003174643A JP2005009406A JP 2005009406 A JP2005009406 A JP 2005009406A JP 2003174643 A JP2003174643 A JP 2003174643A JP 2003174643 A JP2003174643 A JP 2003174643A JP 2005009406 A JP2005009406 A JP 2005009406A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
internal combustion
exhaust manifold
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003174643A
Other languages
Japanese (ja)
Inventor
Noboru Uchida
登 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003174643A priority Critical patent/JP2005009406A/en
Publication of JP2005009406A publication Critical patent/JP2005009406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger to obtain utility of EGR in all regions of the number of revolutions. <P>SOLUTION: By limiting going and coming of exhaust gas G, flowing from three cylinders situated closer to the front end of an engine 1 toward a turbine 3 and exhaust gas flowing from three cylinders situated closer to the rear end of the engine 1 toward the turbine 3, a pulsation influence on an EGR line 18 is reduced. Further, exhaust gas taking-out parts 19 and 20 gradually decreased in a flow passage section toward the downstream side in the advancing direction of the exhaust gas G increase current velocity of the exhaust gas G delivered from a part situated closer to one end and a part situated closer to the other end in an exhaust manifold 6 and decrease a static pressure, and a difference between static pressures in the exhaust gas taking-out parts 19 and 20 is dissolved. Further, an exhaust gas confluence part 21 gradually increased in a flow passage section toward the downstream side in an advancing direction of the exhaust gas G decreases a current velocity of the exhaust gas G to restore a static pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はEGR装置を装備した過給機付内燃機関に関するものである。
【0002】
【従来の技術】
従来、エンジン排気経路から分流した排気をエンジン吸気経路へ送給することにより、気筒内での燃料の燃焼を抑制して燃焼温度の低下を図り、NOxの発生を低減する、排気ガス再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関が提案されている(例えば、特許文献1参照)。
この過給機付内燃機関は図3に示すように、直列6気筒のエンジン1とターボチャージャ2を備え、当該ターボチャージャ2は、タービン3、コンプレッサ4、及びタービン翼車をコンプレッサ翼車に連結する伝達軸5で構成されている。
【0003】
タービン3は、排気導入口がエンジン1の排気マニホールド6に連通し、排気送出口が排気管7を介してマフラ8に接続されている。
また、コンプレッサ4は、吸気導入口が吸気管9を介してエアクリーナ10に接続され、吸気送出口がインタクーラ11を有する吸気管12を介してエンジン1の吸気マニホールド13に接続されている。
更に、EGRクーラ14とEGRバルブ15を有するEGR管路16の上流端を、排気マニホールド6に接続し、当該EGR管路16の下流端を、吸気管12のインタクーラ11よりも下流側個所に接続している。
【0004】
図3に示す過給機付内燃機関では、エンジン1の稼働時に排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。
また、エアクリーナ10及び吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、吸気管12やインタクーラ11を通って吸気マニホールド13へ送給され、同時に排気Gの一部が、排気マニホールド6からEGR管路16へ流入し、EGRクーラ14で冷却され且つEGRバルブ15によって流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。
これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、その結果、NOxの発生が低減することになる。
【0005】
【特許文献1】
特開平9−256915号公報
【0006】
【発明が解決しようとする課題】
しかしながら、エンジン1が低回転数領域で運転されている場合、各気筒から順に送出される排気Gの脈動が大きく、EGR管路16と吸気管12の圧力差も要因となって、吸気管12を流通する吸気Aに対して排気Gを混ぜ合わせることが困難になる。
【0007】
そこで例えば、気筒の着火順序が1−4−2−6−3−5である直列6気筒のエンジン1では、エンジン1の前端寄りの3気筒から吸気管12に連なる再循環経路と、エンジン1の後端寄りの3気筒から吸気管12に連なる再循環経路とを別個に設置し、排気Gの脈動の影響を抑制することが考えられるが、このような構成を採用するとなると、各再循環経路のそれぞれにEGRクーラ14やEGRバルブ15が必要になる。
【0008】
本発明は上述した実情に鑑みてなしたもので、1つの再循環経路により全ての回転数領域でEGRの効用が得られる過給機付内燃機関を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、排気マニホールドからターボチャージャのタービンへ排気を導き且つターボチャージャのコンプレッサが圧縮した吸気を吸気経路へ送給し、排気マニホールドが送出される排気の一部を、EGR管路により吸気経路へ戻すようにした過給機付内燃機関において、上流端が排気マニホールド内の一端寄り部分に連通し且つ排気進行方向に向けて流路断面が漸減する一方の排気取出部、上流端が排気マニホールド内の他端寄り部分に連通し且つ排気進行方向に向けて流路断面が漸減する他方の排気取出部、並びに上流端が両排気取出部の下流端に連通し且つ排気進行方向に向けて流路断面が漸増し、下流端が吸気経路に連なる排気合流部によりEGR管路を構成している。
【0010】
請求項2に記載の発明は、排気マニホールド内からタービン翼車に至る排気の流通経路を、排気マニホールド一端寄り部分と他端寄り部分とに区分する隔壁を設けている。
【0011】
請求項1に記載の発明では、排気進行方向に向けて流路断面が漸減する各排気取出部が、排気マニホールド内の一端寄り部分及び他端寄り部分から送出される排気の流速を高めて静圧を減少させ、両排気取出部内の静圧差を解消する。
【0012】
更に、排気進行方向に向けて流路断面が漸増する排気合流部が、各排気取出部を通過した排気の流速を低めて静圧の回復を図り、EGRクーラから吸気流路へ送給する。
【0013】
請求項2に記載の発明では、排気マニホールド一端寄り部分からタービン翼車へ向かう排気と、排気マニホールド他端寄り部分からタービン翼車へ向かう排気との行き来を隔壁で制限し、EGR管路に対する脈動影響の低減を図る。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を、図示例とともに説明する。
図1及び図2は本発明の過給機付内燃機関の実施の形態の一例を示すもので、図中、図3と同一の符号を付した部分は同一物を表わしている。
【0015】
この過給機付内燃機関では、排気マニホールド6及びタービン3のケーシングに、エンジン1からタービン翼車に送給すべき排気Gの流通経路を、エンジン1前端寄りの3気筒から排気導入口へ連なるものと、エンジン1後端寄りの3気筒から排気導入口へ連なるものとに区分する隔壁17を設置している。
【0016】
また、先に述べたEGR管路16(図3参照)に代わりに、EGRクーラ14とEGRバルブ15を有するEGR管路18の上流端を、排気マニホールド6に接続し、当該EGR管路18の下流端を、吸気管12のインタクーラ11よりも下流側個所に接続している。
【0017】
EGR管路18は、上流端が排気マニホールド6内の一端寄り部分(エンジン1前端寄りの3気筒から排気Gが送給される空間)に連通し且つ下流側に向けて流路断面が漸減する一方の排気取出部19と、上流端が排気マニホールド6内の他端寄り部分(エンジン1後端寄りの3気筒から排気が挿入される空間)に連通し且つ下流側に向けて流路断面が漸減する他方の排気取出部20と、これら排気取出部19,20の双方の下流端に上流端が連なり且つ下流側へ向けて流路断面が漸増する排気合流部21とを有し、該排気合流部21の下流端がEGRクーラ14の排気導入口に連通している。
【0018】
すなわち、EGR管路18では、排気取出部19,20と排気合流部21とが連なる部分が、最も流路断面が狭まるスロート22になっている。
【0019】
図1及び図2に示す過給機付内燃機関では、エンジン1前端寄りの3気筒からタービン3の排気導入口へ向かって進む排気Gと、エンジン1後端寄りの3気筒からタービン3の排気導入口へ向かって進む排気Gが互いに行き来することが、隔壁17により制限され、EGR管路18に対する脈動影響の低減を図れる。
【0020】
また、排気Gの進行方向下流側に向けて流路断面が漸減する排気取出部19,20のそれぞれが、排気マニホールド6内の一端寄り部分及び他端寄り部分から送出される排気Gの流速を高めて静圧を減少させ、両排気取出部19,20内の静圧差を解消する。
【0021】
更に、排気Gの進行方向下流側に向けて流路断面が漸増する排気合流部21が、排気Gの流速を低めて静圧の回復を図るので、エンジン1の全ての回転数領域でEGRの効用を得ることが可能になる。
【0022】
なお、本発明の過給機付内燃機関は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。
【0023】
【発明の効果】
以上述べたように、本発明の過給機付内燃機関によれば、下記のような種々の優れた効果を奏し得る。
【0024】
(1)請求項1に記載の発明では、各排気取出部により、排気マニホールド内の一端寄り部分及び他端寄り部分から送出される排気の流速を高めて静圧を減少させ、両排気取出部内の静圧差を解消した後、排気合流部により、各排気取出部を通過した排気の流速を低めて静圧の回復を図り、EGRクーラから吸気流路へ送給するので、全ての回転数領域でEGRの効用を得ることが可能になる。
【0025】
(2)請求項2に記載の発明では、排気マニホールド一端寄り部分、及び排気マニホールド他端寄り部分のそれぞれからタービン翼車へ向かう排気の行き来を隔壁で制限するので、EGR管路に対する脈動影響の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の過給機付内燃機関の実施の形態の一例を示す概念図である。
【図2】図1に関連する排気取出部と排気合流部の形状を示す概念図である。
【図3】従来の過給機付内燃機関の一例を示す概念図である。
【符号の説明】
2 ターボチャージャ
3 タービン
4 コンプレッサ
6 排気マニホールド
12 吸気管(吸気経路)
17 隔壁
18 EGR管路
19 排気取出部
20 排気取出部
21 排気合流部
A 吸気
G 排気
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a supercharged internal combustion engine equipped with an EGR device.
[0002]
[Prior art]
Conventionally, exhaust gas recirculation (which reduces NOx generation by suppressing combustion of fuel in a cylinder by reducing the combustion temperature of the cylinder by sending exhaust gas diverted from the engine exhaust path to the engine intake path) An internal combustion engine with a supercharger to which EGR (Exhaust Gas Recirculation) is applied has been proposed (for example, see Patent Document 1).
As shown in FIG. 3, this supercharged internal combustion engine includes an in-line 6-cylinder engine 1 and a turbocharger 2. The turbocharger 2 connects the turbine 3, the compressor 4, and the turbine impeller to the compressor impeller. It is comprised by the transmission shaft 5 to do.
[0003]
The turbine 3 has an exhaust introduction port communicating with an exhaust manifold 6 of the engine 1 and an exhaust delivery port connected to a muffler 8 via an exhaust pipe 7.
The compressor 4 has an intake inlet connected to an air cleaner 10 via an intake pipe 9 and an intake outlet connected to an intake manifold 13 of the engine 1 via an intake pipe 12 having an intercooler 11.
Further, the upstream end of the EGR pipe line 16 having the EGR cooler 14 and the EGR valve 15 is connected to the exhaust manifold 6, and the downstream end of the EGR pipe line 16 is connected to a location downstream of the intercooler 11 of the intake pipe 12. is doing.
[0004]
In the supercharger-equipped internal combustion engine shown in FIG. 3, most of the exhaust G flows from the exhaust manifold 6 to the turbine 3 to drive the compressor 4 when the engine 1 is in operation, and passes through the exhaust pipe 7 and the muffler 8 to the atmosphere. Released into.
In addition, the compressed air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is supplied to the intake manifold 13 through the intake pipe 12 and the intercooler 11, and at the same time, a part of the exhaust G is exhausted to the exhaust manifold. 6, the exhaust gas G flowing into the EGR pipe line 16, cooled by the EGR cooler 14, and adjusted in flow rate by the EGR valve 15 is sent to the intake manifold 13 together with the intake air A.
As a result, the oxygen concentration in the cylinder of the engine 1 is suppressed and the combustion temperature is lowered, and as a result, the generation of NOx is reduced.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-256915 [0006]
[Problems to be solved by the invention]
However, when the engine 1 is operated in the low rotation speed region, the pulsation of the exhaust G that is sent out sequentially from each cylinder is large, and the intake pipe 12 is caused by the pressure difference between the EGR pipe 16 and the intake pipe 12. It becomes difficult to mix the exhaust gas G with the intake air A flowing through the air.
[0007]
Therefore, for example, in an in-line 6-cylinder engine 1 in which the firing order of cylinders is 1-4-2-6-3-5, a recirculation path that extends from the three cylinders near the front end of the engine 1 to the intake pipe 12, and the engine 1 It is conceivable to separately install a recirculation path connected to the intake pipe 12 from the three cylinders close to the rear end to suppress the influence of the pulsation of the exhaust G. An EGR cooler 14 and an EGR valve 15 are required for each path.
[0008]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a supercharged internal combustion engine in which the effect of EGR can be obtained in all rotation speed regions by one recirculation path.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the exhaust manifold is led from the exhaust manifold to the turbine of the turbocharger, and the intake air compressed by the compressor of the turbocharger is supplied to the intake passage, and the exhaust manifold is sent out. In an internal combustion engine with a supercharger in which a part of the exhaust is returned to the intake path by an EGR pipe, the upstream end communicates with a portion near one end in the exhaust manifold and the cross section of the flow path gradually decreases toward the exhaust traveling direction. One exhaust take-out part, the upstream end communicates with a portion near the other end in the exhaust manifold, and the other exhaust take-out part whose flow passage cross section gradually decreases in the exhaust traveling direction, and the upstream end is downstream of both exhaust take-out parts. The cross section of the flow path gradually increases in the exhaust traveling direction and communicates with the end, and an EGR pipe line is configured by an exhaust confluence portion whose downstream end is continuous with the intake path.
[0010]
According to a second aspect of the present invention, there is provided a partition that divides an exhaust flow path from the exhaust manifold to the turbine impeller into a portion near one end of the exhaust manifold and a portion near the other end.
[0011]
In the first aspect of the present invention, each exhaust take-out portion whose flow passage cross-section gradually decreases in the exhaust traveling direction increases the flow rate of the exhaust sent from one end portion and the other end portion in the exhaust manifold, and is static. Reduce the pressure and eliminate the static pressure difference in both exhaust outlets.
[0012]
Further, the exhaust merging section whose flow path cross section gradually increases in the exhaust traveling direction lowers the flow velocity of the exhaust gas that has passed through each exhaust extraction section to restore the static pressure, and feeds it from the EGR cooler to the intake flow path.
[0013]
In the invention according to claim 2, the passage between the exhaust gas from the portion near the exhaust manifold to the turbine impeller and the exhaust gas from the portion near the other end of the exhaust manifold to the turbine impeller is restricted by the partition wall, and the pulsation with respect to the EGR pipe line Reduce the impact.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 and FIG. 2 show an example of an embodiment of an internal combustion engine with a supercharger according to the present invention. In the figure, the same reference numerals as those in FIG. 3 denote the same parts.
[0015]
In this supercharged internal combustion engine, the exhaust manifold 6 and the casing of the turbine 3 are connected to the exhaust passage through which the exhaust G is to be supplied from the engine 1 to the turbine impeller from the three cylinders near the front end of the engine 1 to the exhaust inlet. A partition wall 17 is provided which is divided into a cylinder and a cylinder connected from the three cylinders near the rear end of the engine 1 to the exhaust inlet.
[0016]
Further, instead of the EGR pipe line 16 (see FIG. 3) described above, the upstream end of the EGR pipe line 18 having the EGR cooler 14 and the EGR valve 15 is connected to the exhaust manifold 6, and the EGR pipe line 18 The downstream end is connected to a location downstream of the intercooler 11 of the intake pipe 12.
[0017]
The EGR pipe line 18 has an upstream end communicating with a portion near one end in the exhaust manifold 6 (a space in which exhaust G is fed from the three cylinders near the front end of the engine 1) and the flow passage cross section gradually decreases toward the downstream side. One exhaust take-out portion 19 and the upstream end communicate with a portion near the other end in the exhaust manifold 6 (a space in which exhaust is inserted from the three cylinders near the rear end of the engine 1), and a cross-section of the flow path toward the downstream side. The other exhaust extraction portion 20 that gradually decreases, and an exhaust confluence portion 21 that has an upstream end connected to the downstream ends of both of the exhaust extraction portions 19 and 20 and whose flow passage cross section gradually increases toward the downstream side. The downstream end of the merging portion 21 communicates with the exhaust inlet of the EGR cooler 14.
[0018]
That is, in the EGR pipe 18, the portion where the exhaust extraction portions 19, 20 and the exhaust confluence portion 21 are continuous is the throat 22 where the flow path cross section is the narrowest.
[0019]
In the internal combustion engine with a supercharger shown in FIGS. 1 and 2, the exhaust G traveling from the three cylinders near the front end of the engine 1 toward the exhaust inlet of the turbine 3 and the exhaust of the turbine 3 from the three cylinders near the rear end of the engine 1. It is restricted by the partition wall 17 that the exhaust gas G traveling toward the introduction port goes back and forth, and the pulsation effect on the EGR pipe line 18 can be reduced.
[0020]
Further, each of the exhaust extraction portions 19 and 20 whose flow path cross-section gradually decreases toward the downstream side in the traveling direction of the exhaust G has a flow rate of the exhaust G sent from the one end portion and the other end portion in the exhaust manifold 6. The static pressure is increased to increase the static pressure difference between the exhaust outlets 19 and 20.
[0021]
Further, the exhaust gas merging portion 21 whose flow path cross section gradually increases toward the downstream side in the traveling direction of the exhaust G lowers the flow velocity of the exhaust G and restores the static pressure. The utility can be obtained.
[0022]
Note that the supercharged internal combustion engine of the present invention is not limited to the above-described embodiment, and it is needless to say that changes can be made without departing from the scope of the present invention.
[0023]
【The invention's effect】
As described above, according to the supercharged internal combustion engine of the present invention, the following various excellent effects can be obtained.
[0024]
(1) In the first aspect of the invention, each exhaust take-out portion increases the flow rate of the exhaust gas sent from one end portion and the other end portion in the exhaust manifold to reduce the static pressure. After the static pressure difference is eliminated, the exhaust confluence portion lowers the flow velocity of the exhaust gas that has passed through each exhaust extraction portion to restore the static pressure and feed it from the EGR cooler to the intake flow path. It becomes possible to obtain the utility of EGR.
[0025]
(2) In the invention according to the second aspect, since the passage of the exhaust toward the turbine impeller from each of the portion near the one end of the exhaust manifold and the portion near the other end of the exhaust manifold is restricted by the partition wall, the pulsation effect on the EGR pipe line is suppressed. Reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an embodiment of an internal combustion engine with a supercharger according to the present invention.
FIG. 2 is a conceptual diagram showing shapes of an exhaust extraction portion and an exhaust confluence portion related to FIG.
FIG. 3 is a conceptual diagram showing an example of a conventional supercharged internal combustion engine.
[Explanation of symbols]
2 Turbocharger 3 Turbine 4 Compressor 6 Exhaust manifold 12 Intake pipe (intake path)
17 Bulkhead 18 EGR line 19 Exhaust outlet 20 Exhaust outlet 21 Exhaust junction A Intake G Exhaust

Claims (2)

排気マニホールドからターボチャージャのタービンへ排気を導き且つターボチャージャのコンプレッサが圧縮した吸気を吸気経路へ送給し、排気マニホールドが送出される排気の一部を、EGR管路により吸気経路へ戻すようにした過給機付内燃機関において、上流端が排気マニホールド内の一端寄り部分に連通し且つ排気進行方向に向けて流路断面が漸減する一方の排気取出部、上流端が排気マニホールド内の他端寄り部分に連通し且つ排気進行方向に向けて流路断面が漸減する他方の排気取出部、並びに上流端が両排気取出部の下流端に連通し且つ排気進行方向に向けて流路断面が漸増し、下流端が吸気経路に連なる排気合流部によりEGR管路を構成したことを特徴とする過給機付内燃機関。The exhaust manifold is guided from the exhaust manifold to the turbine of the turbocharger, the intake air compressed by the compressor of the turbocharger is sent to the intake passage, and a part of the exhaust sent by the exhaust manifold is returned to the intake passage by the EGR pipe. In the internal combustion engine with a supercharger, the upstream end communicates with a portion near one end in the exhaust manifold and the flow passage cross section gradually decreases in the exhaust traveling direction, and the upstream end is the other end in the exhaust manifold. The other exhaust extraction portion that communicates with the close portion and the flow passage cross section gradually decreases toward the exhaust traveling direction, and the upstream end communicates with the downstream ends of both exhaust extraction portions and the flow passage cross section gradually increases toward the exhaust traveling direction. The supercharger-equipped internal combustion engine is characterized in that an EGR pipe line is constituted by an exhaust merging portion whose downstream end is connected to an intake passage. 排気マニホールド内からタービン翼車に至る排気の流通経路を、排気マニホールド一端寄り部分と他端寄り部分とに区分する隔壁を設けた請求項1に記載の過給機付内燃機関。The supercharged internal combustion engine according to claim 1, further comprising a partition that divides an exhaust flow path from the exhaust manifold to the turbine impeller into a portion near one end of the exhaust manifold and a portion near the other end.
JP2003174643A 2003-06-19 2003-06-19 Internal combustion engine with supercharger Pending JP2005009406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174643A JP2005009406A (en) 2003-06-19 2003-06-19 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174643A JP2005009406A (en) 2003-06-19 2003-06-19 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2005009406A true JP2005009406A (en) 2005-01-13

Family

ID=34098076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174643A Pending JP2005009406A (en) 2003-06-19 2003-06-19 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP2005009406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029322A1 (en) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Exhaust gas recycling and cooling device for engine has first and second exhaust gas heat exchangers combined in structural unit to form module
JP2011106361A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029322A1 (en) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Exhaust gas recycling and cooling device for engine has first and second exhaust gas heat exchangers combined in structural unit to form module
US8061334B2 (en) 2005-06-24 2011-11-22 Behr Gmbh & Co. Kg Device for recycling and cooling exhaust gas for an internal combustion engine
JP2011106361A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5089603B2 (en) Exhaust gas recirculation mixer for internal combustion engine with turbocharge
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
US7448368B2 (en) Exhaust gas recirculation system for an internal combustion engine
JP2005147011A (en) Exhaust gas recirculation system for turbo supercharged engine
JP2005147010A (en) Exhaust gas reflux device for turbosupercharging engine
JP2005299615A (en) Egr system for turbocharged engine
JP2007077900A (en) Two-stage supercharging system
JP2007071179A (en) Two stage supercharging system
JP4713406B2 (en) Multi-cylinder engine
JP2007127070A (en) Internal combustion engine with supercharger
JP2008232091A (en) Exhaust gas recirculation device for internal combustion engine with supercharger
JP2008286069A (en) Intake manifold for internal combustion engine
KR100786297B1 (en) Engine inhalation device
US6851415B2 (en) System for exhaust/crankcase gas recirculation
JP2005009406A (en) Internal combustion engine with supercharger
JP2007315345A (en) Intake structure for internal combustion chamber
JP2005054620A (en) Internal combustion engine with supercharger
JP2004245117A (en) Internal combustion engine with supercharger
WO2009151080A1 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engine
JPS6060218A (en) Exhaust apparatus for engine with turbocharger
KR20190010942A (en) Exhaust gas recirculation system for engine
JP2005090349A (en) Internal combustion engine with supercharger
KR20110129130A (en) Internal combustion engine
JP2005009404A (en) Egr system
JP2008190409A (en) Multiple cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217