JP2005090349A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2005090349A
JP2005090349A JP2003324581A JP2003324581A JP2005090349A JP 2005090349 A JP2005090349 A JP 2005090349A JP 2003324581 A JP2003324581 A JP 2003324581A JP 2003324581 A JP2003324581 A JP 2003324581A JP 2005090349 A JP2005090349 A JP 2005090349A
Authority
JP
Japan
Prior art keywords
engine
intercooler
internal combustion
exhaust
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324581A
Other languages
Japanese (ja)
Inventor
Masaru Nakajima
大 中島
Yusuke Adachi
祐輔 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003324581A priority Critical patent/JP2005090349A/en
Publication of JP2005090349A publication Critical patent/JP2005090349A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger capable of reducing heat load of an intercooler. <P>SOLUTION: A turbine 3 of a turbocharger 2 is operated by exhaust gas G of the engine 1, and sucked air A compressed by a compressor 4 of the turbocharger 2 is fed into the engine 1 through the intercooler 11 in this internal combustion engine with the supercharger. An exhaust manifold 6 of the engine 1 and the downstream side of the intercooler 11 are mutually connected by an EGR pipe passage 16. Heat of the sucked air A fed from the compressor 4 by a liquid cooled heat exchanger 21 assembled on the upstream side more than the intercooler 11 in an intake passage 12 is robbed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はEGR装置を装備した過給機付内燃機関に関するものである。   The present invention relates to a supercharged internal combustion engine equipped with an EGR device.

従来、排気ガス再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関では、エンジン排気経路から分流した排気をエンジン吸気経路へ送給し、シリンダ内における燃料の燃焼を抑制して燃焼温度の低下を図り、NOxの発生を低減させるようにしている(例えば、特許文献1参照)。   Conventionally, in an internal combustion engine with a supercharger to which exhaust gas recirculation (EGR) is applied, exhaust gas diverted from the engine exhaust path is sent to the engine intake path to suppress the combustion of fuel in the cylinder. The combustion temperature is lowered to reduce the generation of NOx (see, for example, Patent Document 1).

この過給機付内燃機関は図2に示すように、エンジン1とターボチャージャ2を備え、当該ターボチャージャ2は、タービン3、コンプレッサ4、タービン翼車をコンプレッサ翼車に連結する伝達軸5などで構成されている。   As shown in FIG. 2, the internal combustion engine with a supercharger includes an engine 1 and a turbocharger 2. The turbocharger 2 includes a turbine 3, a compressor 4, a transmission shaft 5 for connecting the turbine impeller to the compressor impeller, and the like. It consists of

タービン3は、排気導入口がエンジン1の排気マニホールド6に接続され、排気送出口が排気管7によりマフラ8に連通し、排気導入口には、流路断面調整機構(図示せず)が設けられている。
また、コンプレッサ4は、吸気導入口が吸気管9によりエアクリーナ10に接続され、吸気送出口が吸気経路12を介してエンジン1の吸気マニホールド13に連通している。
The turbine 3 has an exhaust introduction port connected to the exhaust manifold 6 of the engine 1, an exhaust delivery port communicates with the muffler 8 through an exhaust pipe 7, and a flow path cross-sectional adjustment mechanism (not shown) is provided at the exhaust introduction port. It has been.
The compressor 4 has an intake inlet connected to an air cleaner 10 via an intake pipe 9 and an intake outlet connected to an intake manifold 13 of the engine 1 via an intake path 12.

吸気経路12は、コンプレッサ4の吸気送出口に上流端を接続した金属パイプ17と、該金属パイプ17の下流端をインタクーラ11の吸気入口に接続するゴムホース18と、インタクーラ11の吸気出口に上流端を接続したゴムホース19と、上流端がゴムホース19の下流端に接続され且つ下流端をエンジン1の吸気マニホールド13に接続した金属パイプ20とで構成され、エンジン1とインタクーラ11の振動特性の相違をゴムホース18,19で吸収している。   The intake passage 12 includes a metal pipe 17 having an upstream end connected to the intake / outlet of the compressor 4, a rubber hose 18 connecting the downstream end of the metal pipe 17 to the intake inlet of the intercooler 11, and an upstream end to the intake outlet of the intercooler 11. And a metal pipe 20 having an upstream end connected to the downstream end of the rubber hose 19 and a downstream end connected to the intake manifold 13 of the engine 1, and the difference in vibration characteristics between the engine 1 and the intercooler 11. Absorbed by rubber hoses 18 and 19.

これに加えて、排気マニホールド6に、EGRクーラ14とEGRバルブ15とを直列に組み込んだEGR管路16の上流端を接続し、吸気経路12のインタクーラ11よりも下流側個所(金属パイプ20)に、EGR管路16の下流端を接続している。
上記のインタクーラ11には、空冷方式のフィン形熱交換器が用いられ、EGRクーラ14には、液冷方式の管形熱交換器が用いられている。
In addition to this, an upstream end of an EGR pipe line 16 in which an EGR cooler 14 and an EGR valve 15 are incorporated in series is connected to the exhaust manifold 6, and a location downstream from the intercooler 11 in the intake path 12 (metal pipe 20). Further, the downstream end of the EGR pipe line 16 is connected.
The intercooler 11 is an air-cooled fin-type heat exchanger, and the EGR cooler 14 is a liquid-cooled tubular heat exchanger.

図2に示す過給機付内燃機関では、エンジン1が稼働状態であるとき、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8を経て大気中に放出される。
また、エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、吸気経路12やインタクーラ11を通って吸気マニホールド13へ送給され、同時に排気Gの一部が排気マニホールド6からEGR管路16へ流入して、EGRクーラ14で冷却され且つEGRバルブ15により流量調整が行なわれた排気Gが、吸気Aとともに吸気マニホールド13へ送給される。
In the supercharged internal combustion engine shown in FIG. 2, when the engine 1 is in an operating state, most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4, and the exhaust pipe 7 and the muffler 8. And then released into the atmosphere.
The compressed air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is supplied to the intake manifold 13 through the intake path 12 and the intercooler 11, and at the same time, a part of the exhaust G is exhausted to the exhaust manifold 6. Then, the exhaust gas G which flows into the EGR pipe line 16 and is cooled by the EGR cooler 14 and whose flow rate is adjusted by the EGR valve 15 is supplied to the intake manifold 13 together with the intake air A.

これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、NOxの発生が低減することになる。
特開平9−256915号公報
Thereby, the oxygen concentration in the cylinder of the engine 1 is suppressed, the combustion temperature is lowered, and the generation of NOx is reduced.
Japanese Patent Laid-Open No. 9-256915

図2に示す従来の過給機付内燃機関において、コンプレッサ4が送出する吸気Aの流量を維持、あるいは多くすることを前提に、EGR管路16を経て吸気マニホールド13へ送給される排気Gの流量を増やすためには、コンプレッサ4の吸気導入口と吸気送出口の圧力比を高くする必要がある。
しかしながら、この方式ではインタクーラ11へ流入する吸気Aの温度が200℃程度になり、インタクーラ11やその吸気入口側のゴムホース18が熱負荷で損傷してしまう。
In the conventional supercharger-equipped internal combustion engine shown in FIG. 2, it is assumed that the flow rate of the intake air A sent out by the compressor 4 is maintained or increased. In order to increase the flow rate of the compressor 4, it is necessary to increase the pressure ratio between the intake inlet and the intake outlet of the compressor 4.
However, in this system, the temperature of the intake air A flowing into the intercooler 11 becomes about 200 ° C., and the intercooler 11 and the rubber hose 18 on the intake inlet side thereof are damaged by a thermal load.

本発明は上述した実情に鑑みてなしたもので、インタクーラの熱負荷を軽減できる過給機付内燃機関を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a supercharged internal combustion engine that can reduce the heat load of an intercooler.

上記目的を達成するために、請求項1に記載の発明は、エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路からエンジン吸気経路に至るEGR管路を設け、エンジン吸気経路のインタクーラよりも上流側に液冷熱交換器を組み込んでいる。   In order to achieve the above object, an invention according to claim 1 is provided with an engine and a turbocharger, the turbine of the turbocharger is operated by the exhaust of the engine, and the intake air compressed by the compressor of the turbocharger is passed through the intercooler. In an internal combustion engine with a supercharger for feeding to an engine, an EGR pipe line extending from an engine exhaust path to an engine intake path is provided, and a liquid cooling heat exchanger is incorporated upstream of the intercooler in the engine intake path.

請求項2に記載の発明は、液冷熱交換器の冷媒にエンジン冷却液を用いている。   The invention according to claim 2 uses engine coolant as the refrigerant of the liquid-cooled heat exchanger.

請求項1に記載の発明においては、コンプレッサからインタクーラへ向けて送出される吸気の熱を液冷熱交換器が奪取し、インタクーラ及びその付帯部材の熱負荷を軽減する。   In the first aspect of the invention, the liquid-cooled heat exchanger captures the heat of the intake air sent from the compressor toward the intercooler, thereby reducing the thermal load on the intercooler and its associated members.

請求項2に記載の発明においては、エンジンが軽負荷運転状態であって、コンプレッサから送出される吸気の温度がエンジン冷却液よりも低い場合に、液冷熱交換器がエンジン冷却液の熱を吸気に付与し、エンジン排気の昇温を図る。   In the invention described in claim 2, when the engine is in a light load operation state and the temperature of the intake air sent from the compressor is lower than the engine coolant, the liquid cooling heat exchanger takes in the heat of the engine coolant. To increase the temperature of the engine exhaust.

(1)請求項1に記載の発明では、コンプレッサが送出する吸気の熱を液冷熱交換器により奪取するので、インタクーラ及びその付帯部材が熱負荷で損傷せず、EGR管路からエンジン吸気経路へ送給すべき排気の再循環量を増加させることができる。   (1) In the first aspect of the present invention, since the heat of the intake air sent out by the compressor is taken by the liquid cooling heat exchanger, the intercooler and its associated members are not damaged by the thermal load, and the EGR pipe line leads to the engine intake path. The recirculation amount of the exhaust gas to be delivered can be increased.

(2)よって、EGRの効用が高まり、今後の厳しい排気ガス規制にも対応することが可能になる。   (2) Therefore, the utility of EGR is increased and it becomes possible to cope with strict exhaust gas regulations in the future.

(3)請求項2に記載の発明では、コンプレッサが送出する吸気の温度が低いときに、エンジン冷却液が得たエンジンからの放出熱を、液冷熱交換器により吸気に付与するので、エンジンが軽負荷運転状態であっても排気の昇温が図られ、排気浄化装置の触媒を活性化させることができる。   (3) In the invention according to claim 2, when the temperature of the intake air sent out by the compressor is low, the engine cooling liquid gives the heat released from the engine to the intake air by the liquid cooling heat exchanger. Even in a light load operation state, the temperature of the exhaust can be raised and the catalyst of the exhaust purification device can be activated.

以下、本発明の実施の形態を図面に基づき説明する。
図1は本発明の過給機付内燃機関の実施の形態の一例であり、図中、図2と同一の符号を付した部分は同一物を表わしている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an embodiment of an internal combustion engine with a supercharger according to the present invention. In the figure, the same reference numerals as those in FIG. 2 denote the same components.

この過給機付内燃機関では、コンプレッサ4の吸気送出口に接続されている金属パイプ17に液冷熱交換器21を組み込み、タービン3の排気送出口からマフラ8に至る排気管7に排気浄化装置22を組み込んでいる。   In this supercharged internal combustion engine, a liquid-cooled heat exchanger 21 is incorporated in a metal pipe 17 connected to the intake / outlet of the compressor 4, and an exhaust purification device is provided in the exhaust pipe 7 extending from the exhaust / outlet of the turbine 3 to the muffler 8. 22 is incorporated.

液冷熱交換器21は、アルミニウム合金よりも耐熱温度が高いステンレス鋼を主な材料とし、コンプレッサ4が送出する吸気Aがエンジン冷却液と熱の授受を行なうように構成してある。
排気浄化装置22は、窒素酸化物を還元するための触媒を内装している。
The liquid cooling heat exchanger 21 is mainly made of stainless steel having a heat resistant temperature higher than that of an aluminum alloy, and the intake air A delivered by the compressor 4 exchanges heat with the engine coolant.
The exhaust purification device 22 includes a catalyst for reducing nitrogen oxides.

図1に示す過給機付内燃機関では、エンジン1が稼働状態であるとき、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7に組み込んだ排気浄化装置22やマフラ8を経て大気中に放出される。   In the supercharged internal combustion engine shown in FIG. 1, when the engine 1 is in an operating state, most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4 and is incorporated into the exhaust pipe 7. It is discharged into the atmosphere through the exhaust purification device 22 and the muffler 8.

また、エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、液冷熱交換器21によりエンジン冷却液と熱の授受を行なったうえ、インタクーラ11を通って吸気マニホールド13へ送給され、同時に排気Gの一部が排気マニホールド6からEGR管路16へ流入して、EGRクーラ14で冷却され且つEGRバルブ15により流量調整が行なわれた排気Gが、吸気Aとともに吸気マニホールド13へ送給される。   In addition, the intake air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is exchanged with the engine coolant and heat by the liquid cooling heat exchanger 21 and then passes through the intercooler 11 to the intake manifold 13. At the same time, a part of the exhaust G flows from the exhaust manifold 6 into the EGR pipe 16, is cooled by the EGR cooler 14, and the flow rate is adjusted by the EGR valve 15. 13 is sent.

このとき、コンプレッサ4から送出される吸気Aの温度が著しく高いと、当該吸気Aの熱をエンジン冷却液が奪取し、熱負荷によるインタクーラ11やゴムホース18,19の損傷を防止する。
よって、コンプレッサ4の吸気導入口と吸気送出口の圧力比を高くし、EGR管路16を経て吸気マニホールド13へ送給される排気Gの流量を増やすことが可能になる。
At this time, if the temperature of the intake air A sent from the compressor 4 is remarkably high, the engine coolant takes the heat of the intake air A and prevents damage to the intercooler 11 and the rubber hoses 18 and 19 due to the thermal load.
Therefore, it is possible to increase the pressure ratio between the intake inlet and the intake outlet of the compressor 4 and increase the flow rate of the exhaust G supplied to the intake manifold 13 via the EGR pipe line 16.

これとは逆に、コンプレッサ4から送出される吸気Aの温度が著しく低いと、エンジン冷却液を介してエンジン1の放出熱が吸気Aに付与され、軽負荷運転状態であっても排気温度が上昇し、排気浄化装置22の触媒を活性化させることができる。   On the contrary, when the temperature of the intake air A sent from the compressor 4 is extremely low, the heat released from the engine 1 is given to the intake air A via the engine coolant, and the exhaust temperature is kept even in the light load operation state. As a result, the catalyst of the exhaust purification device 22 can be activated.

なお、本発明の過給機付内燃機関は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。   Note that the supercharged internal combustion engine of the present invention is not limited to the above-described embodiment, and it is needless to say that changes can be made without departing from the scope of the present invention.

本発明の過給機付内燃機関は、車両用のディーゼルエンジンをはじめとして各種の内燃機関に適用できる。   The supercharged internal combustion engine of the present invention can be applied to various internal combustion engines including a diesel engine for vehicles.

本発明の過給機付内燃機関の実施の形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the internal combustion engine with a supercharger of this invention. 従来の過給機付内燃機関の一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional internal combustion engine with a supercharger.

符号の説明Explanation of symbols

1 エンジン
2 ターボチャージャ
3 タービン
4 コンプレッサ
6 排気マニホールド(エンジン排気経路)
11 インタクーラ
12 吸気経路
16 EGR管路
21 液冷熱交換器
A 吸気
G 排気
1 Engine 2 Turbocharger 3 Turbine 4 Compressor 6 Exhaust manifold (engine exhaust path)
11 Intercooler 12 Intake path 16 EGR line 21 Liquid cooling heat exchanger A Intake G Exhaust

Claims (2)

エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路からエンジン吸気経路に至るEGR管路を設け、エンジン吸気経路のインタクーラよりも上流側に液冷熱交換器を組み込んだことを特徴とする過給機付内燃機関。   An internal combustion engine with a supercharger, which includes an engine and a turbocharger, operates the turbine of the turbocharger with the exhaust of the engine, and supplies intake air compressed by the compressor of the turbocharger to the engine via an intercooler. An internal combustion engine with a supercharger, characterized in that an EGR pipe leading to an engine intake path is provided and a liquid-cooled heat exchanger is incorporated upstream of an intercooler in the engine intake path. 液冷熱交換器の冷媒にエンジン冷却液を用いた請求項1に記載の過給機付内燃機関。   The internal combustion engine with a supercharger according to claim 1, wherein an engine coolant is used as a refrigerant of the liquid cooling heat exchanger.
JP2003324581A 2003-09-17 2003-09-17 Internal combustion engine with supercharger Pending JP2005090349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324581A JP2005090349A (en) 2003-09-17 2003-09-17 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324581A JP2005090349A (en) 2003-09-17 2003-09-17 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2005090349A true JP2005090349A (en) 2005-04-07

Family

ID=34455294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324581A Pending JP2005090349A (en) 2003-09-17 2003-09-17 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP2005090349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749096B (en) * 2008-12-10 2013-03-27 曼卡车和巴士奥地利股份公司 Drive unit with cooling circuit and separate heat recovery circuit
US8459388B2 (en) 2008-11-26 2013-06-11 Hyundai Motor Company Evaporation cycle heat exchange system for vehicle
JP2017072061A (en) * 2015-10-07 2017-04-13 いすゞ自動車株式会社 Internal combustion engine, and control method thereof
CN106968778A (en) * 2017-02-22 2017-07-21 中国汽车技术研究中心 Device and method for realizing rapid cooling of engine intake air

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459388B2 (en) 2008-11-26 2013-06-11 Hyundai Motor Company Evaporation cycle heat exchange system for vehicle
US9162549B2 (en) 2008-11-26 2015-10-20 Hyundai Motor Company Evaporation cycle heat exchange system for vehicle
CN101749096B (en) * 2008-12-10 2013-03-27 曼卡车和巴士奥地利股份公司 Drive unit with cooling circuit and separate heat recovery circuit
JP2017072061A (en) * 2015-10-07 2017-04-13 いすゞ自動車株式会社 Internal combustion engine, and control method thereof
CN106968778A (en) * 2017-02-22 2017-07-21 中国汽车技术研究中心 Device and method for realizing rapid cooling of engine intake air

Similar Documents

Publication Publication Date Title
US6981375B2 (en) Turbocharged internal combustion engine with EGR flow
CN102084101B (en) The auxiliary air pump of exhaust gas drive and use its product and method
JP5270354B2 (en) Supply circuit for supplying at least one fluid to a supercharged engine and method for supplying at least one fluid to the engine
JP2007051638A (en) Exhaust gas recirculation system
JP2009511797A (en) Device for recirculation and cooling of exhaust gas from internal combustion engines
GB2418012A (en) Working fluid circuit for a turbocharged engine having exhaust gas recirculation
JP2011038525A (en) Hybrid intake system for superatmospheric charging of engine intake manifold using low-pressure egr/fresh air blending
JP4108061B2 (en) EGR system for turbocharged engine
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
JP2002188526A (en) Egr device
JP2009270508A (en) Internal combustion engine with intercooler
US20070227141A1 (en) Multi-stage jacket water aftercooler system
JP2007077900A (en) Two-stage supercharging system
JP2007127070A (en) Internal combustion engine with supercharger
JP2007224801A (en) Exhaust recirculating device of engine
JP4511845B2 (en) Internal combustion engine with a supercharger
JP2002339810A (en) Exhaust gas recirculating device
JP2005090349A (en) Internal combustion engine with supercharger
JP4616707B2 (en) Exhaust gas recirculation structure for turbocharged engines
JP2004245117A (en) Internal combustion engine with supercharger
JP2005054620A (en) Internal combustion engine with supercharger
JP2007077899A (en) Two-stage supercharging system
WO2009059923A3 (en) Internal combustion engine comprising an inlet system and an outlet system
EP1674710B1 (en) Method for recirculating exhaust gases in a turbocharged engine and the relative turbocharged engine
JP2005069092A (en) Exhaust gas recirculation device of turbo compound engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616