JP4108061B2 - EGR system for turbocharged engine - Google Patents

EGR system for turbocharged engine Download PDF

Info

Publication number
JP4108061B2
JP4108061B2 JP2004121097A JP2004121097A JP4108061B2 JP 4108061 B2 JP4108061 B2 JP 4108061B2 JP 2004121097 A JP2004121097 A JP 2004121097A JP 2004121097 A JP2004121097 A JP 2004121097A JP 4108061 B2 JP4108061 B2 JP 4108061B2
Authority
JP
Japan
Prior art keywords
egr
engine
compressor
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004121097A
Other languages
Japanese (ja)
Other versions
JP2005299615A (en
Inventor
浩之 遠藤
誠一 茨木
毅 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004121097A priority Critical patent/JP4108061B2/en
Publication of JP2005299615A publication Critical patent/JP2005299615A/en
Application granted granted Critical
Publication of JP4108061B2 publication Critical patent/JP4108061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明はターボ過給機を備えた往復動内燃機関におけるEGR(排気再循環)システムに関する。   The present invention relates to an EGR (exhaust gas recirculation) system in a reciprocating internal combustion engine equipped with a turbocharger.

往復動内燃機関ではシリンダ内における燃焼温度が高いために有害物質であるNOxの発生量が多く、その低減対策としてEGR(排気再循環)が従来から行われている。ターボ過給エンジンのEGRシステムにおいては、タービン上流側の排気ガスの一部をEGR弁、EGRクーラを介してコンプレッサ後流側に還流させる高圧ループ式排気循環システム(HPL−EGRシステム)が多く採用されている。
ターボ過給エンジンの場合、エンジン給気圧がエンジン排気圧よりも高い時があり、HPLシステム場合、EGRガスの給気管への合流部より上流に給気を絞るスロットル弁を設けて前記合流部における給気圧を下げてEGRガスが入り易くする必要があるが、そうするとスロットル弁の絞りによりエンジンへの給気圧が低下し、エンジン性能が低下するという問題がある。
In a reciprocating internal combustion engine, the combustion temperature in the cylinder is high, so that a large amount of NOx, which is a harmful substance, is generated. The turbocharged engine EGR system often uses a high-pressure loop exhaust circulation system (HPL-EGR system) that recirculates part of the exhaust gas upstream of the turbine to the compressor downstream side via an EGR valve and EGR cooler. Has been.
In the case of a turbocharged engine, the engine supply air pressure is sometimes higher than the engine exhaust pressure. In the case of an HPL system, a throttle valve for restricting the supply air is provided upstream from the connection portion of the EGR gas to the supply pipe. Although it is necessary to lower the supply air pressure so that EGR gas can easily enter, there is a problem that the supply air pressure to the engine decreases due to the throttle valve being throttled, and the engine performance deteriorates.

これを解消する方法として、タービンを出た排気ガスの一部をコンプレッサ吸入口に導いて吸入空気に混入するLPL−EGRシステムがあるが、このLPLシステムの場合、排気ガスがコンプレッサを通ることになるので、コンプレッサの材料の腐食の問題が生じる。また、EGRガスを冷却器を通して冷却してコンプレッサに吸入させるとしても、EGRガス量を増加する場合はコンプレッサの温度が高くなり、コンプレッサ材料の耐熱性の問題も生じる。   As a method for solving this problem, there is an LPL-EGR system in which a part of the exhaust gas exiting the turbine is introduced into the compressor inlet and mixed into the intake air. In this LPL system, the exhaust gas passes through the compressor. As a result, the problem of corrosion of the compressor material arises. Even if the EGR gas is cooled through the cooler and sucked into the compressor, when the EGR gas amount is increased, the temperature of the compressor becomes high, and the problem of heat resistance of the compressor material also arises.

これら、従来のHPL−EGRシステムを図5に、LPL−EGRシステムを図6に、概略構成図で示す。図5、6において、101はエンジン、102はターボ過給機で排気タービン102aとコンプレッサ102bが軸102c上に設けられている。103はEGR冷却器、104はEGR弁、105は逆止弁、106は給気冷却器、107は前記EGR弁104の開度をエンジンの回転数、負荷に応じて制御しEGR率を調節するコントローラである。
図5のHPL−EGRシステムの場合は、前述したように、給気圧を下げてEGRガスが入り易くするためにEGRガスの給気管への合流部より上流にスロットル弁108が設けられているが、図6のLPL−EGRシステムの場合はこのスロットル弁は設けられていない。
The conventional HPL-EGR system is shown in FIG. 5, and the LPL-EGR system is shown in FIG. 5 and 6, 101 is an engine, 102 is a turbocharger, and an exhaust turbine 102a and a compressor 102b are provided on a shaft 102c. 103 is an EGR cooler, 104 is an EGR valve, 105 is a check valve, 106 is an air supply cooler, and 107 is an EGR valve that controls the opening degree of the EGR valve 104 according to the engine speed and load to adjust the EGR rate. It is a controller.
In the case of the HPL-EGR system shown in FIG. 5, as described above, the throttle valve 108 is provided upstream from the joining portion of the EGR gas to the air supply pipe in order to lower the supply air pressure and make it easier for the EGR gas to enter. In the case of the LPL-EGR system of FIG. 6, this throttle valve is not provided.

図5のHPLシステムにおいては、タービン102aの上流側でエンジン排気の一部が分岐してEGR冷却器103、EGR弁104、及び逆止弁105を介してエンジン給気管に合流する。一方、外気はコンプレッサ102bに吸込まれて圧縮され、給気冷却器106、スロットル弁106を通って冷却されエンジン1に供給される。
ターボ過給エンジンでは、エンジン給気圧はエンジン排気圧よりも高いときが多いので、前記スロットル弁108の開度を調節して給気圧を下げ、EGRガスが給気管に導入されるようにする。このような従来技術では、EGRガスはコンプレッサ102bを通らないので、従来のコンプレッサをそのまま使用できる反面、前記スロットル弁を絞った際にエンジン給気圧が下がり、エンジン性能が低下する欠点がある。したがって、EGR率を増大するにはエンジン性能低下の犠牲が伴うことになる。
In the HPL system of FIG. 5, part of the engine exhaust is branched upstream of the turbine 102 a and merges with the engine air supply pipe via the EGR cooler 103, the EGR valve 104, and the check valve 105. On the other hand, the outside air is sucked into the compressor 102 b and compressed, cooled through the supply air cooler 106 and the throttle valve 106, and supplied to the engine 1.
In a turbocharged engine, the engine air pressure is often higher than the engine exhaust pressure. Therefore, the opening of the throttle valve 108 is adjusted to lower the air pressure so that EGR gas is introduced into the air supply pipe. In such a conventional technique, since EGR gas does not pass through the compressor 102b, the conventional compressor can be used as it is. However, when the throttle valve is throttled, the engine supply pressure is lowered and the engine performance is lowered. Therefore, increasing the EGR rate is accompanied by a sacrifice in engine performance.

図6のLPLシステムでは、排気タービン102aを出た排気ガスの一部がEGR冷却器103、EGR弁104、及び逆止弁105を介してコンプレッサ102bに吸入され、EGRガスはコンプレッサで吸入空気に混合して給気冷却器106を通って冷却され、エンジン101に供給される。
このような従来技術では、EGR率を増大することは容易であるが、NOxやSOx等の酸性物質を含むEGRガスがコンプレッサ102b及び給気冷却器106を通ることになるので、コンプレッサ材料及び給気冷却器材料については腐食に対する考慮を払う必要が生じる。
In the LPL system of FIG. 6, a part of the exhaust gas exiting the exhaust turbine 102a is sucked into the compressor 102b via the EGR cooler 103, the EGR valve 104, and the check valve 105, and the EGR gas is converted into the intake air by the compressor. The mixed air is mixed and cooled through the supply air cooler 106 and supplied to the engine 101.
In such a conventional technique, it is easy to increase the EGR rate, but since EGR gas containing acidic substances such as NOx and SOx passes through the compressor 102b and the charge air cooler 106, the compressor material and the supply air For the air cooler material, it is necessary to pay attention to corrosion.

ターボ過給エンジンの排気再循環システムとして、コンプレッサ羽根車の背面にEGRガスを圧縮する羽根を設け、タービン上流側でエンジン排気の一部を分岐して前記EGRガス圧縮用羽根部に導き、圧縮されたEGRガスを前記コンプレッサで圧縮された給気とミキサで混合して吸気マニフォールドに導入するシステムが開示されている(例えば、特許文献1参照)。
特許文献1のシステムによれば、コンプレッサ羽根車の背面にEGRガス圧縮用の羽根を設けることによりターボ過給機の軸方向長さの増大を最小限に抑えてEGRガス圧縮用の羽根を設けることができ、さらにミキサによる効果的な混合によりシリンダ毎のEGRガスの混合割合の変動を最小限に抑えることができるとしている。
As an exhaust gas recirculation system for a turbocharged engine, a blade for compressing EGR gas is provided on the back of the compressor impeller, and a part of the engine exhaust is branched upstream of the turbine and led to the EGR gas compression blade. A system is disclosed in which the supplied EGR gas is mixed with the supply air compressed by the compressor and the mixer and introduced into the intake manifold (for example, see Patent Document 1).
According to the system of Patent Document 1, an EGR gas compression blade is provided by minimizing the increase in the axial length of the turbocharger by providing an EGR gas compression blade on the rear surface of the compressor impeller. Further, it is said that the fluctuation of the mixing ratio of the EGR gas for each cylinder can be minimized by effective mixing by the mixer.

また、ターボ過給エンジンにおいて、コンプレッサで圧縮された給気で空気タービンを駆動し、該空気タービン軸に連結されたコンプレッサでEGRガスを圧縮するシステムが開示されている(例えば、特許文献2参照)。この特許文献2のシステムによれば、給気は前記空気タービンで膨張し、温度が下がるので、EGRガスを含む給気の温度が低くなり、燃焼温度が低くなってNOxの排出量が減少するとしている。   Moreover, in a turbocharged engine, a system is disclosed in which an air turbine is driven by supply air compressed by a compressor, and EGR gas is compressed by a compressor connected to the air turbine shaft (see, for example, Patent Document 2). ). According to the system of Patent Document 2, the supply air is expanded by the air turbine and the temperature is lowered, so that the temperature of the supply air including the EGR gas is lowered, the combustion temperature is lowered, and the NOx emission amount is reduced. It is said.

さらに、二段ターボ過給エンジンにおける排気再循環システムとして、一段目の排気タービンと二段目の排気タービンの間の排気ガスの一部を一段目のコンプレッサの吸入口に導くシステムが開示されている(例えば、特許文献3参照)。
かかるシステムにおいては、前記のような構成により、一段目タービン後流側から排気ガスの一部を分岐して一段目コンプレッサの吸入口に導いていた従来構成では該分岐部よりも後流に設けられていた絞り弁を削除することが可能となり、EGR率を制御するのに、従来二つの弁を制御していたものを一つの弁の制御で済み、しかも従来前記絞りにより相当高いものとなっていたタービン背圧を下げることができて、エンジンを向上することができるとしている。
Further, as an exhaust gas recirculation system in a two-stage turbocharged engine, a system is disclosed in which a part of the exhaust gas between the first-stage exhaust turbine and the second-stage exhaust turbine is guided to the inlet of the first-stage compressor. (For example, see Patent Document 3).
In such a system, in the conventional configuration in which a part of the exhaust gas is branched from the downstream side of the first stage turbine and led to the suction port of the first stage compressor, the system is provided in the downstream side of the branch part. It is possible to delete the throttle valve that has been used, and to control the EGR rate, it is only necessary to control one valve instead of the conventional control of two valves, and the conventional throttle is considerably higher. The engine back pressure can be lowered and the engine can be improved.

特表2002−514285号公報Special Table 2002-514285 gazette 特開2000−8963号公報JP 2000-8963 A 実開平5−69364号公報Japanese Utility Model Publication No. 5-69364

しかしながら、特許文献1に開示されたシステムでは、EGRガスを圧縮する羽根は給気を圧縮するコンプレッサの背面に形成されているので、コンプレッサの寿命はEGRガスによる腐食環境に曝されるEGRガス圧縮羽根の寿命によって決まる等の問題を内包している。
また、特許文献2に開示されたシステムでは、EGRガス圧縮用のコンプレッサが前記空気タービンにより駆動されるので、EGRガス用コンプレッサ駆動用の空気タービンを要するうえに、その駆動効率が低くなることは避けられない。さらに、特許文献3に開示されたシステム構成では、EGRガスは一段目と二段目の両コンプレッサを通ることになり、両コンプレッサともEGRガス中の酸性物質に対する腐食対策を講じる必要がある。
However, in the system disclosed in Patent Document 1, since the blades for compressing the EGR gas are formed on the back surface of the compressor for compressing the supply air, the life of the compressor is EGR gas compression exposed to the corrosive environment by the EGR gas. It contains problems such as being determined by the blade life.
Further, in the system disclosed in Patent Document 2, since the EGR gas compression compressor is driven by the air turbine, an air turbine for driving the EGR gas compressor is required, and the drive efficiency is low. Inevitable. Furthermore, in the system configuration disclosed in Patent Document 3, EGR gas passes through both the first and second compressors, and both compressors need to take measures against corrosion of acidic substances in the EGR gas.

したがって本発明の目的は、ターボ過給エンジンにおいて、エンジン給気管やタービン排気管に絞り弁を設けることなくEGR率を運転範囲の全域で高めることができるとともに、NOxやSOx等の酸性物質を含み腐食作用がある排気ガスが通る給気サイドの構成部品であるコンプレッサや冷却器を限定することができるEGRシステムを提供することである。   Therefore, an object of the present invention is to increase the EGR rate in the entire operating range without providing a throttle valve in the engine air supply pipe or turbine exhaust pipe in a turbocharged engine, and to contain acidic substances such as NOx and SOx. To provide an EGR system capable of limiting compressors and coolers that are components on the supply side through which corrosive exhaust gas passes.

削除 Delete

削除 Delete

削除 Delete

上記目的を達成するために、本発明は、ターボ過給機を備えた過給エンジンにおいて、前記ターボ過給機は同軸上に低圧コンプレッサと高圧コンプレッサとを備え、前記低圧コンプレッサ吐出口は中間冷却器を介して前記高圧コンプレッサの吸入口に連結し、エンジンの排気出口から前記ターボ過給機の排気タービンの排気入口へ至る管路から分岐する分岐管路を前記高圧コンプレッサ吸入口に連結し、前記高圧コンプレッサの吐出口を給気冷却器を介してエンジンの給気入口に連結し、前記分岐管路に高圧EGR冷却器を配設し、該高圧EGR冷却器の下流側にEGR弁を該EGR弁の下流側に逆止弁をそれぞれ配設して、前記EGR弁が高圧EGR冷却器と前記逆止弁との間に位置されるように配設し、前記逆止弁の下流側が前記高圧コンプレッサの吸入口に連結し、前記EGR弁の開度をエンジン回転数、負荷に応じて制御するコントローラを設けたことを特徴とするターボ過給エンジンのEGRシステムを提案する。 To achieve the above object, according to the present invention, there is provided a supercharged engine including a turbocharger, wherein the turbocharger includes a low-pressure compressor and a high-pressure compressor on the same axis, and the low-pressure compressor discharge port has an intermediate cooling function. Connected to the suction port of the high-pressure compressor via a compressor, and connected to the high-pressure compressor suction port a branch pipe branching from a pipeline from the exhaust outlet of the engine to the exhaust inlet of the exhaust turbine of the turbocharger, The discharge port of the high pressure compressor is connected to the intake air inlet of the engine via an intake air cooler, a high pressure EGR cooler is disposed in the branch pipe, and an EGR valve is provided downstream of the high pressure EGR cooler. A check valve is disposed on the downstream side of the EGR valve, the EGR valve is disposed between the high pressure EGR cooler and the check valve, and the downstream side of the check valve is disposed on the downstream side of the check valve. High pressure Connected to the inlet of the presser, opening the engine speed of the EGR valve, proposes EGR system turbocharged engine, characterized in that a controller for controlling according to the load.

かかるシステムは、給気圧力を高めた高Pme(高平均有効圧力)エンジンに適する。ターボチャージャを低圧と高圧の二つのコンプレッサが同軸上に設けられた2段圧縮ターボチャージャに構成し、低圧、高圧コンプレッサの間には中間冷却器を配設してエンジン給気の圧縮による温度上昇を抑えて高圧にすることができ、EGRガスは高圧コンプレッサに吸込まれて低圧コンプレッサから吐出された空気とともに圧縮されてエンジン給気入口に導かれる。
この場合もEGRガスの分岐管路には高圧EGR冷却器とEGR弁が配設される。かかるエンジンは高過給エンジンであり、高圧コンプレッサの後流には給気冷却器が配設されるが、高圧コンプレッサとこの給気冷却器にはEGRガスが流れるので腐食に対する配慮をする必要がある。また、前記EGR弁による流量調節は、コントローラによりエンジンの回転数及び負荷に応じて制御される。
Such a system is suitable for high Pme (high average effective pressure) engines with increased charge pressure. The turbocharger is configured as a two-stage compression turbocharger in which two low-pressure and high-pressure compressors are provided on the same axis, and an intermediate cooler is installed between the low-pressure and high-pressure compressors to increase the temperature due to compression of the engine air supply. The EGR gas is sucked into the high-pressure compressor, compressed together with the air discharged from the low-pressure compressor, and guided to the engine air supply inlet.
Also in this case, a high-pressure EGR cooler and an EGR valve are arranged in the branch line of the EGR gas. Such an engine is a high-supercharged engine, and an intake air cooler is disposed downstream of the high-pressure compressor. However, since EGR gas flows through the high-pressure compressor and the intake air cooler, it is necessary to consider corrosion. is there. The flow rate adjustment by the EGR valve is controlled by the controller according to the engine speed and load.

さらに、かかる発明において、前記低圧コンプレッサ吐出口は中間冷却器を介して前記高圧コンプレッサ吸入口に連結し、エンジンの排気出口から前記ターボ過給機の排気タービンの排気入口へ至る管路から分岐する分岐管路を前記中間冷却器の被冷却ガス出口に連結し、前記高圧コンプレッサの吐出口をエンジンの給気入口に連結する構成とする。この場合、EGRガスは分岐管路に設けられた高圧EGR冷却器で冷却されてから前記高圧コンプレッサに吸入される。 Furthermore, in this invention, the low-pressure compressor discharge port is connected to the high-pressure compressor intake port via an intermediate cooler, and branches from a pipe line extending from an engine exhaust outlet to an exhaust inlet of the turbocharger exhaust turbine. The branch pipe is connected to the cooled gas outlet of the intermediate cooler, and the discharge port of the high-pressure compressor is connected to the air supply inlet of the engine. In this case, the EGR gas is cooled by a high pressure EGR cooler provided in the branch pipe and then sucked into the high pressure compressor.

ターボ過給エンジンにおいてNOx低減のために必要とされるEGR率はエンジン回転数、負荷により異なるが、本発明のシステムにより全運転範囲において必要なEGR率をエンジン性能を犠牲にすることなく達成でき、また腐食性物質を含むEGRガスに触れる給気サイドの機能部品を限定することができて、限定された部品にのみ耐腐食性の配慮をすればよいという効果がある。   The EGR rate required for NOx reduction in a turbocharged engine varies depending on the engine speed and load, but the system of the present invention can achieve the EGR rate required over the entire operating range without sacrificing engine performance. In addition, it is possible to limit the functional parts on the air supply side that come into contact with the EGR gas containing a corrosive substance, and there is an effect that only the limited parts need to be considered for corrosion resistance.

以下、図面を参照して本発明の好適な実施例を例示的に説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りはこの発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
(比較例1)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
(Comparative Example 1)

図1において、1はエンジン本体、2はターボチャージャで排気タービン2a、吸入空気用コンプレッサ2b、EGRガス用コンプレッサ2dが軸2cで連結された、コンプレッサホイールを2個有する構成である。
前記排気タービン2aを出た排気ガスの一部が分岐されて低圧EGR冷却器3aで冷却され、EGR弁4と逆止弁5を通って前記EGRガス用コンプレッサ2dに吸込まれて圧縮され、圧縮されたEGRガスは高圧EGR冷却器3bで冷却されてエンジン給気入口に導入される。
In FIG. 1, 1 is an engine body, 2 is a turbocharger, and has an arrangement of two compressor wheels in which an exhaust turbine 2a, an intake air compressor 2b, and an EGR gas compressor 2d are connected by a shaft 2c.
A part of the exhaust gas exiting the exhaust turbine 2a is branched and cooled by the low-pressure EGR cooler 3a, passed through the EGR valve 4 and the check valve 5, and sucked into the EGR gas compressor 2d to be compressed and compressed. The EGR gas thus cooled is cooled by the high-pressure EGR cooler 3b and introduced into the engine supply air inlet.

一方、外気が吸入空気用コンプレッサ2bに吸込、圧縮されて給気冷却器6で冷却されてエンジン給気入口に導入される。該給気と前記EGRガスはエンジン給気入口、例えば吸気マニフォールドで合流、混合してエンジンシリンダに吸入される。NOxを効果的に低減するに要するEGRガス量はエンジン回転数及び負荷により異なるので、前記EGR弁の開度は、コントローラ7に予めインプットされたプログラムによって、回転数、負荷に応じて制御される。なお逆止弁5は、運転条件の急変や給気系の脈動等によりEGR弁下流側の圧力が上流側よりも高くなるような場合があったとしても逆流することがないようにしたものであり、必ずしも必要なものではない。
(比較例2)
On the other hand, the outside air is sucked into the intake air compressor 2b, compressed, cooled by the intake air cooler 6, and introduced into the engine intake air inlet. The supply air and the EGR gas merge and mix at an engine supply air inlet, for example, an intake manifold, and are sucked into the engine cylinder. Since the amount of EGR gas required to effectively reduce NOx differs depending on the engine speed and load, the opening degree of the EGR valve is controlled according to the speed and load by a program input in advance to the controller 7. . The check valve 5 is designed to prevent backflow even if the pressure on the downstream side of the EGR valve becomes higher than that on the upstream side due to sudden changes in operating conditions, pulsation of the air supply system, or the like. Yes, it is not always necessary.
(Comparative Example 2)

図2に示す比較例2の比較例1(図1)との相違は、排気タービン2aの後流側から分岐されてEGRガス用コンプレッサ2bの吸入口に連結される分岐回路に補助空気弁8を介して外部空気を導入する管路が接続されたことである。その他の構成は図1と同じであり、図1と同じ構成には同じ符号が付してある。
前記のように構成すれば、必要なEGRガス量が少ない場合には前記補助空気弁8を開くことにより前記EGRガス用コンプレッサ2dに外気を吸込ませることができ、該EGRガス用コンプレッサ2dの能力を有効に利用することができる。前記補助空気弁8の開度をEGR弁4の開度とともにエンジン回転数、負荷に応じてコントローラ7により制御するようにしてもよい。
なお、図1、2において、EGRガス用コンプレッサ2dは吸入空気用コンプレッサ2bの前方に配置してあるが、これは吸入空気用コンプレッサ2bの背後側、即ち排気タービン2a側に配置してもよいことは言うまでもない。
(実施例1)
2 is different from Comparative Example 1 (FIG. 1) in Comparative Example 2 shown in FIG. 2 in that the auxiliary air valve 8 is connected to the branch circuit branched from the downstream side of the exhaust turbine 2a and connected to the intake port of the EGR gas compressor 2b. This is because the pipe for introducing the external air is connected via the. Other configurations are the same as those in FIG. 1, and the same components as those in FIG.
With the above configuration, when the required amount of EGR gas is small, the auxiliary air valve 8 is opened so that the outside air can be sucked into the EGR gas compressor 2d. Can be used effectively. The opening degree of the auxiliary air valve 8 may be controlled by the controller 7 according to the engine speed and load together with the opening degree of the EGR valve 4.
1 and 2, the EGR gas compressor 2d is arranged in front of the intake air compressor 2b, but it may be arranged behind the intake air compressor 2b, that is, on the exhaust turbine 2a side. Needless to say.
(Example 1)

図3において、1はエンジン本体、2はターボチャージャであるが、該ターボチャージャのコンプレッサは、図1、2の場合と異なり、低圧コンプレッサ2e及び高圧コンプレッサ2fに構成されている。即ち1台のターボチャージャに低圧、高圧の2個コンプレッサホイールを同軸上に配設して2段圧縮過給としたものであり、過給度を高くした高Pme(平均有効圧力)エンジンに適する。
前記低圧コンプレッサ2eの吐出口は高圧コンプレッサ2fの吸入口と中間冷却器9を介して連結されている。排気タービン2aの上流側からエンジンを出た排気の一部が分岐されたEGRガスは前記高圧コンプレッサ2fの吸入口に導かれ、該高圧コンプレッサ2f内で前記低圧コンプレッサ2eからの空気とともに圧縮され給気冷却器6で冷却されてエンジンの給気入口に送られる。
前記EGRガスは高圧EGR冷却器3bで冷却され、EGR弁4と逆止弁5を通って前記高圧コンプレッサ2fの吸入口に導かれる。前記EGR弁4の開度はエンジン回転数、負荷に応じてコントローラ7により制御される。
(比較例3)
In FIG. 3, reference numeral 1 denotes an engine body, and 2 a turbocharger. Unlike the cases shown in FIGS. 1 and 2, the compressor of the turbocharger is composed of a low-pressure compressor 2 e and a high-pressure compressor 2 f. In other words, two low-pressure and high-pressure compressor wheels are coaxially arranged in one turbocharger to form a two-stage compression supercharging, which is suitable for a high Pme (average effective pressure) engine with a high degree of supercharging. .
The discharge port of the low-pressure compressor 2e is connected to the suction port of the high-pressure compressor 2f via an intercooler 9. The EGR gas from which a part of the exhaust gas exiting the engine from the upstream side of the exhaust turbine 2a is branched is led to the intake port of the high-pressure compressor 2f, and is compressed and supplied together with the air from the low-pressure compressor 2e in the high-pressure compressor 2f. It is cooled by the air cooler 6 and sent to the intake port of the engine.
The EGR gas is cooled by the high-pressure EGR cooler 3b , and is guided to the suction port of the high-pressure compressor 2f through the EGR valve 4 and the check valve 5. The opening degree of the EGR valve 4 is controlled by the controller 7 in accordance with the engine speed and the load.
(Comparative Example 3)

図4に示す比較例3の実施例1(図3)との相違は、EGRガスが高圧コンプレッサ2fの吸入口ではなく中間冷却器9に導入されることと図3の高圧EGR冷却器3bが配設されていないことで、その他は図3と同じであり、図3と同じ構成には同じ符号が付してある。
図4において、EGRガスは高圧コンプレッサ2fに吸入される前に前記中間冷却器で給気とともに冷却することとして、図3における高圧EGR冷却器3bを削除してコスト低減を図ったものである。なお、図3、4ではEGRガスを排気タービン2aの上流側で分岐させているが、下流側で分岐させるようにしてもよい。
The difference between the comparative example 3 shown in FIG. 4 and the first embodiment (FIG. 3) is that EGR gas is introduced into the intermediate cooler 9 instead of the suction port of the high pressure compressor 2f and the high pressure EGR cooler 3b in FIG. The other components are the same as those in FIG. 3, and the same components as those in FIG. 3 are denoted by the same reference numerals.
In FIG. 4, the EGR gas is cooled together with the supply air by the intermediate cooler before being sucked into the high-pressure compressor 2f, and the high-pressure EGR cooler 3b in FIG. 3 and 4, the EGR gas is branched on the upstream side of the exhaust turbine 2a, but may be branched on the downstream side.

以上に説明した実施例1ではエンジンの全運低範囲においてEGR率を高くすることが可能である。また実施例1では、EGRガスが通るコンプレッサは高圧コンプレッサに限られる。このように、EGRガスが通る部品をできるだけ限定することにより、大量のEGRガス導入に伴う耐熱、耐食対策を施すべき部品を限定することができる。   In the first embodiment described above, it is possible to increase the EGR rate in the entire range of low engine operation. In the first embodiment, the compressor through which the EGR gas passes is limited to the high pressure compressor. As described above, by limiting the parts through which the EGR gas passes as much as possible, it is possible to limit the parts to which heat resistance and corrosion resistance measures are to be taken when a large amount of EGR gas is introduced.

本発明によれば、環境保全のためエンジンの排ガス規制が益々厳しくなる一方、エンジンのさらなる高出力化、高効率化も要望される状況において、高出力化、高効率化を図ったエンジンにおけるNOxの排出量の低減を図るための必要、充分なEGR率を確保でき、腐食性物質を含むEGRガスが通る給気サイドの機能部品を最小限に限定できるEGRシステムを提供することができる。   According to the present invention, while exhaust gas regulations for engines are becoming more stringent for environmental protection, NOx in engines that achieve higher output and higher efficiency in a situation where higher output and higher efficiency of the engine are also desired. Therefore, it is possible to provide an EGR system that can secure a necessary and sufficient EGR rate for reducing the amount of exhaust gas discharged, and can limit the functional parts on the supply side through which EGR gas containing corrosive substances passes to a minimum.

本発明の第1比較例に係るターボ過給エンジンのEGRシステムの概略構成図である。It is a schematic block diagram of the EGR system of the turbocharged engine which concerns on the 1st comparative example of this invention. 本発明の第2比較例に係るターボ過給エンジンのEGRシステムの概略構成図である。It is a schematic block diagram of the EGR system of the turbocharged engine which concerns on the 2nd comparative example of this invention. 本発明の第1実施例に係るターボ過給エンジンのEGRシステムの概略構成図である。1 is a schematic configuration diagram of an EGR system for a turbocharged engine according to a first embodiment of the present invention. 本発明の第3比較例に係るターボ過給エンジンのEGRシステムの概略構成図である。It is a schematic block diagram of the EGR system of the turbocharged engine which concerns on the 3rd comparative example of this invention. 従来のターボ過給エンジンにおけるHPL−EGRシステムの概略構成図である。It is a schematic block diagram of the HPL-EGR system in the conventional turbocharged engine. 従来のターボ過給エンジンにおけるLPL−EGRシステムの概略構成図である。It is a schematic block diagram of the LPL-EGR system in the conventional turbocharged engine.

符号の説明Explanation of symbols

1 エンジン
2 ターボ過給機
3a 低圧EGR冷却器
3b 高圧EGR冷却器
4 EGR弁
5 逆止弁
6 給気冷却器
7 コントローラ
8 補助空気弁
9 中間冷却器
1 Engine 2 Turbocharger 3a Low pressure EGR cooler 3b High pressure EGR cooler 4 EGR valve 5 Check valve 6 Supply cooler 7 Controller 8 Auxiliary air valve 9 Intermediate cooler

Claims (1)

ターボ過給機を備えた過給エンジンにおいて、前記ターボ過給機は同軸上に低圧コンプレッサと高圧コンプレッサとを備え、前記低圧コンプレッサ吐出口は中間冷却器を介して前記高圧コンプレッサの吸入口に連結し、エンジンの排気出口から前記ターボ過給機の排気タービンの排気入口へ至る管路から分岐する分岐管路を前記高圧コンプレッサ吸入口に連結し、前記高圧コンプレッサの吐出口を給気冷却器を介してエンジンの給気入口に連結し、前記分岐管路に高圧EGR冷却器を配設し、該高圧EGR冷却器の下流側にEGR弁を該EGR弁の下流側に逆止弁をそれぞれ配設して、前記EGR弁が高圧EGR冷却器と前記逆止弁との間に位置されるように配設し、前記逆止弁の下流側が前記高圧コンプレッサの吸入口に連結し、前記EGR弁の開度をエンジン回転数、負荷に応じて制御するコントローラを設けたことを特徴とするターボ過給エンジンのEGRシステム。 In a supercharged engine having a turbocharger, the turbocharger is coaxially provided with a low-pressure compressor and a high-pressure compressor, and the low-pressure compressor discharge port is connected to an intake port of the high-pressure compressor via an intercooler. A branch pipe branching from a pipe extending from the exhaust outlet of the engine to the exhaust inlet of the exhaust turbine of the turbocharger is connected to the high-pressure compressor inlet, and the discharge outlet of the high-pressure compressor is connected to a supply air cooler. The high-pressure EGR cooler is arranged in the branch pipe, an EGR valve is arranged downstream of the high-pressure EGR cooler, and a check valve is arranged downstream of the EGR valve. and set, the EGR valve is disposed so as to be positioned between the high-pressure EGR cooler and the check valve, the downstream side of the check valve is connected to the inlet of the high pressure compressor, said EG Opening the engine speed of the valve, EGR systems turbocharged engine, characterized in that a controller for controlling according to the load.
JP2004121097A 2004-04-16 2004-04-16 EGR system for turbocharged engine Expired - Fee Related JP4108061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121097A JP4108061B2 (en) 2004-04-16 2004-04-16 EGR system for turbocharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121097A JP4108061B2 (en) 2004-04-16 2004-04-16 EGR system for turbocharged engine

Publications (2)

Publication Number Publication Date
JP2005299615A JP2005299615A (en) 2005-10-27
JP4108061B2 true JP4108061B2 (en) 2008-06-25

Family

ID=35331449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121097A Expired - Fee Related JP4108061B2 (en) 2004-04-16 2004-04-16 EGR system for turbocharged engine

Country Status (1)

Country Link
JP (1) JP4108061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869867A (en) * 2010-07-02 2013-01-09 三菱重工业株式会社 Seal air supply apparatus and exhaust gas turbine supercharger using seal air supply apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571608B2 (en) 2005-11-28 2009-08-11 General Electric Company Turbocharged engine system and method of operation
JP4803007B2 (en) * 2006-12-04 2011-10-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP4737059B2 (en) * 2006-12-07 2011-07-27 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
CN101675223A (en) * 2007-05-14 2010-03-17 博格华纳公司 Method of controlling a turbocharger
GB2457326B (en) * 2008-10-17 2010-01-06 Univ Loughborough An exhaust arrangement for an internal combustion engine
GB2464500B (en) 2008-10-17 2013-02-20 Cummins Turbo Tech Ltd An internal combustion engine with exhaust gas recirculation
JP2010096161A (en) * 2008-10-20 2010-04-30 Toyota Motor Corp Exhaust emission control device
JP4706986B2 (en) 2009-07-01 2011-06-22 三菱自動車工業株式会社 Channel member structure
US8307646B2 (en) * 2009-08-04 2012-11-13 International Engine Intellectual Property Company, Llc System using supplemental compressor for EGR
JP5682245B2 (en) 2010-11-10 2015-03-11 株式会社Ihi Low pressure loop EGR device
JP5747483B2 (en) 2010-11-16 2015-07-15 株式会社Ihi Low pressure loop EGR device
DE102011076800A1 (en) * 2011-05-31 2012-12-06 Behr Gmbh & Co. Kg Heat exchanger
JP5170324B2 (en) * 2011-06-02 2013-03-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP5823842B2 (en) * 2011-12-08 2015-11-25 Udトラックス株式会社 Exhaust gas recirculation device for multi-cylinder internal combustion engine with turbocharger
JP5966589B2 (en) * 2012-05-14 2016-08-10 株式会社Ihi Low pressure loop EGR device
CN102748121A (en) * 2012-06-27 2012-10-24 北京航空航天大学 Two-stage turbocharger for aviation piston engine
JP2015124663A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Internal combustion engine
CN104454655B (en) * 2014-12-17 2017-02-01 北京航空航天大学 Wide-flow combined type two-stage supercharger gas compressor shell based on mixed pressure spreading
CN104675510B (en) * 2014-12-17 2017-06-06 北京航空航天大学 A kind of quick response high-altitude two-stage turbocharger of low pneumatic inertia
GB2564691B (en) * 2017-07-20 2019-08-14 Ford Global Tech Llc An EGR system having a turbine driven auxiliary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869867A (en) * 2010-07-02 2013-01-09 三菱重工业株式会社 Seal air supply apparatus and exhaust gas turbine supercharger using seal air supply apparatus
US8973361B2 (en) 2010-07-02 2015-03-10 Mitsubishi Heavy Industries, Ltd. Seal air supply system and exhaust gas turbine turbocharger using seal air supply system
CN102869867B (en) * 2010-07-02 2015-11-25 三菱重工业株式会社 Sealing air supplier and employ the exhaust-gas turbocharger of sealing air feeder

Also Published As

Publication number Publication date
JP2005299615A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4108061B2 (en) EGR system for turbocharged engine
US5611202A (en) Turbocharged internal combustion engine
CN107654314B (en) Engine system
US6918251B2 (en) Turbo-charged engine with EGR
US20070074512A1 (en) Turbocharged internal combustion engine with EGR system having reverse flow
JP2009511797A (en) Device for recirculation and cooling of exhaust gas from internal combustion engines
JP2005344714A (en) Engine with turbocharger
KR102633863B1 (en) Engine system and method of controlling the same
JP5031250B2 (en) Engine three-stage turbocharging system
JP2013515207A (en) Internal combustion engine
JPH0674101A (en) Exhaust gas re-circulating device
JP5313981B2 (en) Exhaust gas turbocharger structure, drive system equipped with the exhaust gas turbocharger structure, and setting method of the drive system
JP2000249004A (en) Egr device provided with reed valve
US20120227400A1 (en) Method and system for improving efficiency of multistage turbocharger
JP2007077900A (en) Two-stage supercharging system
US20140130494A1 (en) Air compressing device of engine
KR101683495B1 (en) Engine system having turbo charger
JP2007071179A (en) Two stage supercharging system
JP2007127070A (en) Internal combustion engine with supercharger
JP2012197716A (en) Exhaust loss recovery device
JP4616707B2 (en) Exhaust gas recirculation structure for turbocharged engines
JP2010127126A (en) Two-stage supercharging system
KR102437227B1 (en) Exhaust gas recirculation system for engine
KR102463199B1 (en) Engine system
US20190368414A1 (en) Engine system and method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4108061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees