JP2012197716A - Exhaust loss recovery device - Google Patents

Exhaust loss recovery device Download PDF

Info

Publication number
JP2012197716A
JP2012197716A JP2011062130A JP2011062130A JP2012197716A JP 2012197716 A JP2012197716 A JP 2012197716A JP 2011062130 A JP2011062130 A JP 2011062130A JP 2011062130 A JP2011062130 A JP 2011062130A JP 2012197716 A JP2012197716 A JP 2012197716A
Authority
JP
Japan
Prior art keywords
egr
turbocharger
exhaust
turbine
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011062130A
Other languages
Japanese (ja)
Inventor
Takashi Takakura
隆 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2011062130A priority Critical patent/JP2012197716A/en
Publication of JP2012197716A publication Critical patent/JP2012197716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve exhaust gas recirculation at a high EGR rate while performing supercharging by a supercharging system, and to ensure intake air volume required for combustion without extremely increasing exhaust pressure.SOLUTION: An exhaust loss recovery device is applied to an engine 1 including the supercharging system and an EGR line 11. The supercharging system is constituted of a low-pressure stage turbocharger 15 and a high-pressure stage turbocharger 14 which functions as a variable nozzle turbocharger, and the EGR line 11 connects between an exhaust manifold 9 and an intake manifold 7 to recirculate a part of exhaust gas 8 as EGR gas 8'. The exhaust loss recovery device includes: an EGR turbocharger 16 driving a turbine 16b by the EGR gas 8', compressing intake air 4 by a compressor 16a, and introducing the compressed intake air to the upstream side of the supercharging system of an intake system; a bypass line 19 bypassing the turbine 16b of the EGR turbocharger and allowing the EGR gas 8' to flow; and a bypass valve 20 opening/closing the bypass line.

Description

本発明は、排気損失回収装置に関するものである。   The present invention relates to an exhaust loss recovery device.

従来より、自動車のエンジン等では、排気側から排気ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排気ガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOxの発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)が行われている。   2. Description of the Related Art Conventionally, in an automobile engine or the like, a part of exhaust gas is extracted from the exhaust side and returned to the intake side, and combustion of fuel in the engine is suppressed by the exhaust gas returned to the intake side so that the combustion temperature is increased. So-called exhaust gas recirculation (EGR) is performed in which the generation of NOx is reduced by lowering.

図2は前述した排気ガス再循環を行うためのEGR装置の一例を示すもので、図中1はターボチャージャ2を過給システムとして搭載したディーゼル機関であるエンジンを示し、エアクリーナ3から導いた吸気4を吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへ送り、該コンプレッサ2aで加圧された吸気4をインタークーラ6へと送って冷却し、該インタークーラ6から更に吸気マニホールド7へと吸気4を導いてエンジン1の各気筒に分配するようにしてある。   FIG. 2 shows an example of the EGR device for performing the above-described exhaust gas recirculation. In FIG. 2, reference numeral 1 denotes an engine that is a diesel engine equipped with a turbocharger 2 as a supercharging system, and intake air introduced from an air cleaner 3. 4 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, the intake air 4 pressurized by the compressor 2a is sent to the intercooler 6 to be cooled, and the intake air from the intercooler 6 to the intake manifold 7 is further taken in. 4 is distributed to each cylinder of the engine 1.

また、このエンジン1の各気筒から排出された排気ガス8を排気マニホールド9を介して前記ターボチャージャ2のタービン2bへと送り、該タービン2bを駆動した排気ガス8を排気管10を介して車外へ排出するようにしてある。   Further, the exhaust gas 8 discharged from each cylinder of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 9, and the exhaust gas 8 driving the turbine 2b is sent to the outside of the vehicle through the exhaust pipe 10. To be discharged.

そして、排気マニホールド9と吸気マニホールド7との間がEGRライン11により接続されており、排気マニホールド9から排気ガス8の一部をEGRガス8’として抜き出して吸気管5に導き得るようにしてある。   The exhaust manifold 9 and the intake manifold 7 are connected by an EGR line 11 so that a part of the exhaust gas 8 can be extracted from the exhaust manifold 9 as the EGR gas 8 ′ and guided to the intake pipe 5. .

ここで、前記EGRライン11には、該EGRライン11を適宜に開閉するEGRバルブ12と、再循環されるEGRガス8’を冷却するためのEGRクーラ13とが装備され、該EGRクーラ13では、冷却水とEGRガス8’とを熱交換させることによりEGRガス8’の温度を低下し得るようになっており、この水冷したEGRガス8’のエンジン1への再循環により燃焼温度の低下を図り得るようにしてある。   Here, the EGR line 11 is equipped with an EGR valve 12 that appropriately opens and closes the EGR line 11 and an EGR cooler 13 for cooling the recirculated EGR gas 8 ′. The temperature of the EGR gas 8 ′ can be lowered by heat exchange between the cooling water and the EGR gas 8 ′, and the combustion temperature is lowered by recirculation of the water-cooled EGR gas 8 ′ to the engine 1. Can be planned.

ただし、前述した如きターボチャージャ2付きのエンジン1においては、吸気側が過給されているために高速回転域等で排気側との圧力差が少なくなってしまい、高いEGR率を実現することが難しいという問題があるが、ターボチャージャ2として、タービン2b側のノズル部に角度調整可能な多数のノズルベーンを環状に備えてノズル開度を任意に変更し得るようにしたマルチベーンタイプの可変ノズルターボ(バリアブルジオメトリターボチャージャ)を採用し、必要に応じタービン2b側のノズル開度を小さく絞り込んでノズル部における排気ガス8の通過抵抗を増やし、これにより排気マニホールド9の圧力を高めて吸気側と排気側との圧力差を確保することが行われている。   However, in the engine 1 with the turbocharger 2 as described above, since the intake side is supercharged, the pressure difference from the exhaust side is reduced in the high speed rotation region or the like, and it is difficult to realize a high EGR rate. However, as the turbocharger 2, a multi-vane type variable nozzle turbo (which has an annular nozzle nozzle on the turbine 2b side that can be adjusted in angle so that the nozzle opening can be arbitrarily changed) A variable geometry turbocharger), and if necessary, the nozzle opening on the turbine 2b side is narrowed down to increase the passage resistance of the exhaust gas 8 at the nozzle, thereby increasing the pressure of the exhaust manifold 9 to increase the pressure on the intake side and the exhaust side. The pressure difference is secured.

ただし、タービン2b側のノズル開度を小さく絞り込んで排気マニホールド9の圧力を高める操作は、タービン2bにおける排気ガス8の旋速を上げてタービン2bの回転数を上げる操作でもあり、コンプレッサ2a側の出口圧力(過給圧)も上昇してしまうことになるが、タービン2bでの効率が悪くなることで排気マニホールド9の方がコンプレッサ2aの出口よりも圧力上昇の度合が高くなるため、比較的高い圧力領域で吸気側と排気側との圧力差が確保されて高いEGR率が実現されることになる。   However, the operation of increasing the pressure of the exhaust manifold 9 by narrowing the nozzle opening on the turbine 2b side is also an operation of increasing the rotational speed of the turbine 2b by increasing the rotational speed of the exhaust gas 8 in the turbine 2b. Although the outlet pressure (supercharging pressure) also increases, the efficiency of the turbine 2b deteriorates, so that the exhaust manifold 9 has a higher pressure rise than the outlet of the compressor 2a. A pressure difference between the intake side and the exhaust side is ensured in a high pressure region, and a high EGR rate is realized.

尚、排気マニホールド9から抜き出した排気ガス8の一部を吸気管5へ再循環するようにした例を開示する先行技術文献情報としては下記の特許文献1等がある。   Prior art document information disclosing an example in which a part of the exhaust gas 8 extracted from the exhaust manifold 9 is recirculated to the intake pipe 5 includes the following Patent Document 1.

特開2001−123889号公報JP 2001-123889 A

しかしながら、このように比較的高い圧力領域で排気側と吸気側との圧力差を確保して排気ガス再循環を行うと、多量のEGRガス8’を再循環することができて高いEGR率を実現できる一方、吸気4(新気)が入り難くなって燃焼に必要な吸気4が量的に不足する虞れが生じるため、必要な量の吸気4を確保し得るようEGRバルブ12の開度を絞り込んでEGRガス8’の再循環量を抑制する措置が採られているが、多量のEGRガス8’が再循環することでバランスしている排気側と吸気側との関係が、前記EGRバルブ12の開度を絞り込むことでエンジン1の排気圧が過給圧よりも大幅に高くなるような極端な状態となり、これによりエンジン1の排気抵抗が大きくなってポンピングロスが過大となり、燃費の大幅な悪化を招いてしまうという問題があった。   However, if the exhaust gas recirculation is performed while ensuring the pressure difference between the exhaust side and the intake side in such a relatively high pressure region, a large amount of EGR gas 8 'can be recirculated, and a high EGR rate can be obtained. On the other hand, the intake 4 (fresh air) becomes difficult to enter, and there is a risk that the intake 4 required for combustion may be insufficient in quantity. Therefore, the opening of the EGR valve 12 can be secured to ensure the necessary amount of intake 4. Measures are taken to reduce the recirculation amount of the EGR gas 8 ′, but the relationship between the exhaust side and the intake side balanced by recirculation of a large amount of EGR gas 8 ′ is the above-mentioned EGR. By narrowing down the opening of the valve 12, the exhaust pressure of the engine 1 becomes an extreme state that is significantly higher than the supercharging pressure. This increases the exhaust resistance of the engine 1 and causes an excessive pumping loss, resulting in an increase in fuel consumption. Cause a significant deterioration There is a problem that put away is.

また、近年においては、過給システムのダウンサイジングやトルクアップを実現するために、過給システムを高圧段ターボチャージャと低圧段ターボチャージャとから成る二段式の過給システムとしたものがあるが、このような二段式の過給システムにおいては、図に示した単段式のものよりも更に圧力比が高くなるので、前述の如き運転状態で必要な量の吸気4を確保するためにEGRバルブ12の開度を絞り込んでしまうと、ポンピングロスがより一層過大となって燃費の悪化が更に顕著なものとなる虞れがあった。   In recent years, in order to realize downsizing and torque increase of the supercharging system, there is a type in which the supercharging system is a two-stage supercharging system composed of a high-pressure stage turbocharger and a low-pressure stage turbocharger. In such a two-stage supercharging system, the pressure ratio is higher than that of the single-stage type shown in the figure, so that the necessary amount of intake air 4 can be secured in the operating state as described above. If the opening degree of the EGR valve 12 is narrowed down, there is a possibility that the pumping loss is further excessive and the fuel consumption is further deteriorated.

本発明は上述の実情に鑑みてなしたもので、過給システムにより過給を行いながらも高いEGR率での排気再循環を実現し且つ燃焼に必要な吸気の量を極端な排気圧の上昇を招くことなく確保することを目的とする。   The present invention has been made in view of the above circumstances, and realizes exhaust gas recirculation at a high EGR rate while performing supercharging by a supercharging system, and extremely increases the amount of intake air necessary for combustion. It aims to secure without incurring.

本発明は、適宜な段数のターボチャージャから成り且つ少なくとも排気系の最上流段のターボチャージャがタービンのノズル開度を調整可能な可変ノズルターボである過給システムと、排気マニホールドと吸気マニホールドとの間を接続して排気ガスの一部をEGRガスとして排気側から吸気側へ再循環するEGRラインとを備えたエンジンに適用するための排気損失回収装置であって、前記EGRラインを流れるEGRガスによりタービンを駆動し且つ該タービンと同軸のコンプレッサで吸気を圧縮して吸気系の前記過給システムの上流側に導くEGR用ターボチャージャと、該EGR用ターボチャージャのタービンを迂回してEGRガスを流すバイパスラインと、該バイパスラインを開閉するバイパスバルブとを備えたことを特徴とするものである。   The present invention relates to a supercharging system comprising a turbocharger having an appropriate number of stages and at least the most upstream turbocharger of the exhaust system being a variable nozzle turbo capable of adjusting the nozzle opening of a turbine, and an exhaust manifold and an intake manifold. An exhaust loss recovery device for application to an engine having an EGR line that recirculates part of the exhaust gas as EGR gas from the exhaust side to the intake side by connecting the two, and the EGR gas flowing through the EGR line The EGR turbocharger that drives the turbine and compresses the intake air with a compressor coaxial with the turbine and guides it to the upstream side of the supercharging system of the intake system, and bypasses the turbine of the EGR turbocharger to generate EGR gas. A bypass line for flowing and a bypass valve for opening and closing the bypass line are provided. Than is.

而して、高速回転域等で排気系の最上流段のターボチャージャにおけるタービンのノズル開度を小さく絞り込んで排気マニホールドの圧力を高め、比較的高い圧力領域で排気側と吸気側との圧力差を確保して排気ガス再循環を行うと、過給システムにより吸気を過給していても、高いEGR率でEGRガスを再循環することが可能となるが、吸気(新気)が入り難くなって燃焼に必要な吸気が量的に不足する虞れが生じる。   Thus, in the uppermost turbocharger of the exhaust system in a high speed rotation region, etc., the nozzle opening of the turbine is narrowed down to increase the pressure of the exhaust manifold, and the pressure difference between the exhaust side and the intake side in a relatively high pressure region. If the exhaust gas recirculation is performed while securing the intake air, it becomes possible to recirculate the EGR gas at a high EGR rate even if the intake air is supercharged by the supercharging system, but intake (fresh air) is difficult to enter. As a result, there is a risk that the amount of intake air necessary for combustion will be insufficient.

この際、EGRバルブを絞り込む替わりにバイパスバルブを閉じ、EGRラインを流れるEGRガスをEGR用ターボチャージャのタービンに導くと、該タービンによりEGRガスが持つエネルギーが回収され、これにより前記タービンと同軸のコンプレッサが駆動されて吸気が圧縮され、大気圧以上に圧力を高められた吸気が過給システムに導かれて過給されることになる。   At this time, instead of narrowing down the EGR valve, when the bypass valve is closed and the EGR gas flowing through the EGR line is guided to the turbine of the EGR turbocharger, the energy of the EGR gas is recovered by the turbine, and thereby, the EGR gas is coaxial with the turbine. The compressor is driven to compress the intake air, and the intake air whose pressure is increased to the atmospheric pressure or higher is led to the supercharging system to be supercharged.

即ち、既に圧力を嵩上げされた吸気が過給システムに導かれて更に過給されることになるため、該過給システムだけで大気から取り込んだ吸気を昇圧する場合よりも高い圧力まで吸気を過給することが可能となり、しかも、EGRガスがEGR用ターボチャージャのタービンで仕事をすることにより通過抵抗を受けて絞り込み効果も得られるため、燃焼に必要な吸気の量を不足させてしまうほどの過剰なEGRガスの再循環が著しく是正され、これまでよりも吸気がエンジンに取り込まれ易くなるため、燃焼に必要な吸気の量を極端な排気圧の上昇を招くことなく確保することが可能となる。   In other words, since the intake air whose pressure has already been increased is guided to the supercharging system and further supercharged, the intake air is increased to a pressure higher than that when the intake air taken in from the atmosphere is boosted only by the supercharging system. In addition, the EGR gas works with the turbine of the turbocharger for EGR, so that it can pass through resistance and obtain a narrowing effect, so that the amount of intake air necessary for combustion is insufficient. Excessive EGR gas recirculation is remarkably corrected, and intake air is more easily taken into the engine than before, so that it is possible to secure the amount of intake air necessary for combustion without causing an extreme increase in exhaust pressure. Become.

また、本発明においては、エンジンから送出される排気ガスによって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気ガスによって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとにより過給システムを二段で構成し、高圧段ターボチャージャを可変ノズルターボとしても良い。   In the present invention, a high-pressure stage turbocharger that operates a high-pressure stage turbine with exhaust gas delivered from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and a high-pressure stage turbine of the high-pressure stage turbocharger The high-pressure stage turbocharger is constituted by a two-stage supercharging system comprising a low-pressure stage turbocharger that operates a low-pressure stage turbine with exhaust gas delivered from the exhaust gas and feeds the intake air compressed by the low-pressure stage compressor to the high-pressure stage compressor. May be a variable nozzle turbo.

上記した本発明の排気損失回収装置によれば、過給システムにより過給を行いながらも高いEGR率での排気再循環を実現し且つ燃焼に必要な吸気の量を極端な排気圧の上昇を招くことなく確保することができるので、エンジンの排気圧が過給圧よりも大幅に高くなるような極端な状態を未然に回避することができ、これによりエンジンのポンピングロスを著しく低減して燃費の大幅な改善を図ることができるという優れた効果を奏し得る。   According to the exhaust loss recovery apparatus of the present invention described above, exhaust gas recirculation is achieved at a high EGR rate while supercharging is performed by a supercharging system, and the amount of intake air necessary for combustion is increased extremely. Since it can be secured without incurring, it is possible to avoid an extreme situation in which the exhaust pressure of the engine is significantly higher than the boost pressure, thereby significantly reducing the pumping loss of the engine and reducing the fuel consumption. It is possible to achieve an excellent effect that a significant improvement can be achieved.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 従来例を示す概略図である。It is the schematic which shows a prior art example.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図2と同一の符号を付した部分は同一物を表わしている。   FIG. 1 shows an example of an embodiment for carrying out the present invention, and parts denoted by the same reference numerals as those in FIG. 2 represent the same items.

本形態例においては、前述した図2の従来例で単段のターボチャージャ2により構成されていた過給システムを、エンジン1から送出される排気ガス8によって高圧段タービン14bを作動させ且つ高圧段コンプレッサ14aで圧縮した吸気4をエンジン1へ送給する高圧段ターボチャージャ14と、該高圧段ターボチャージャ14の高圧段タービン14bから送出される排気ガス8によって低圧段タービン15bを作動させ且つ低圧段コンプレッサ15aで圧縮した吸気4を前記高圧段コンプレッサ14aへ送給する低圧段ターボチャージャ15とにより二段式の過給システムとした場合が例示されており、ここに図示している例では、排気系の最上流段のターボチャージャを成す高圧段ターボチャージャ14が、高圧段タービン14bのノズル開度を調整可能な可変ノズルターボとして構成されている。   In the present embodiment, the supercharging system constituted by the single-stage turbocharger 2 in the conventional example of FIG. 2 described above is operated by operating the high-pressure turbine 14b with the exhaust gas 8 delivered from the engine 1, and the high-pressure stage. A high-pressure stage turbocharger 14 that feeds the intake air 4 compressed by the compressor 14a to the engine 1, and a low-pressure stage turbine 15b that is operated by the exhaust gas 8 that is sent from the high-pressure stage turbine 14b of the high-pressure stage turbocharger 14 A case where a two-stage supercharging system is illustrated by a low-pressure stage turbocharger 15 that feeds the intake air 4 compressed by the compressor 15a to the high-pressure stage compressor 14a is illustrated. In the example shown here, The high-pressure stage turbocharger 14 constituting the most upstream turbocharger of the system is a high-pressure stage turbine 14b. And it is configured to cheat opening as an adjustable variable-geometry turbocharger.

そして、EGRガス8’が流れるEGRライン11の途中に、該EGRライン11を流れるEGRガス8’によりタービン16bを駆動し且つ該タービン16bと同軸のコンプレッサ16aによりエアクリーナ17から取り込んだ吸気4を圧縮してエアクリーナ3に連絡管18を介して導くEGR用ターボチャージャ16が新たに付設されていると共に、該EGR用ターボチャージャ16のタービン16bを迂回してEGRガス8’を流すバイパスライン19と、該バイパスライン19を開閉するバイパスバルブ20とが備えられている。   In the middle of the EGR line 11 through which the EGR gas 8 ′ flows, the turbine 16b is driven by the EGR gas 8 ′ flowing through the EGR line 11, and the intake air 4 taken in from the air cleaner 17 is compressed by the compressor 16a coaxial with the turbine 16b. And an EGR turbocharger 16 that is led to the air cleaner 3 via the connecting pipe 18 and a bypass line 19 that bypasses the turbine 16b of the EGR turbocharger 16 and flows the EGR gas 8 '; A bypass valve 20 for opening and closing the bypass line 19 is provided.

而して、高速回転域等で高圧段ターボチャージャ14における高圧段タービン14bのノズル開度を小さく絞り込んで排気マニホールド9の圧力を高め、比較的高い圧力領域で排気側と吸気側との圧力差を確保して排気ガス再循環を行うと、高圧段ターボチャージャ14及び低圧段ターボチャージャ15により吸気4を過給していても、高いEGR率でEGRガス8’を再循環することが可能となるが、吸気4(新気)が入り難くなって燃焼に必要な吸気4が量的に不足する虞れが生じる。   Thus, the nozzle opening of the high-pressure turbine 14b in the high-pressure turbocharger 14 is narrowed down in the high-speed rotation region or the like to increase the pressure of the exhaust manifold 9, and the pressure difference between the exhaust side and the intake side in a relatively high pressure region. When the exhaust gas recirculation is performed while ensuring the above, it is possible to recirculate the EGR gas 8 'at a high EGR rate even if the intake air 4 is supercharged by the high pressure turbocharger 14 and the low pressure turbocharger 15. However, the intake air 4 (fresh air) becomes difficult to enter and there is a risk that the intake air 4 necessary for combustion will be insufficient in quantity.

この際、EGRバルブ12を絞り込む替わりにバイパスバルブ20を閉じ、EGRライン11を流れるEGRガス8’をEGR用ターボチャージャ16のタービン16bに導くと、該タービン16bによりEGRガス8’が持つエネルギーが回収され、これにより前記タービン16bと同軸のコンプレッサ16aが駆動されて吸気4が圧縮され、大気圧以上に圧力を高められた吸気4がエアクリーナ3を介し低圧段ターボチャージャ15の低圧段コンプレッサ15aに導かれて過給されることになる。   At this time, when the EGR gas 8 ′ flowing through the EGR line 11 is led to the turbine 16b of the EGR turbocharger 16 instead of narrowing down the EGR valve 12, the energy of the EGR gas 8 ′ is obtained by the turbine 16b. Then, the compressor 16a coaxial with the turbine 16b is driven to compress the intake air 4, and the intake air 4 whose pressure is increased to the atmospheric pressure or higher is supplied to the low pressure compressor 15a of the low pressure turbocharger 15 via the air cleaner 3. It will be led and supercharged.

即ち、既に圧力を嵩上げされた吸気4が低圧段ターボチャージャ15及び高圧段ターボチャージャ14に導かれて更に過給されることになるため、これら低圧段ターボチャージャ15及び高圧段ターボチャージャ14だけで大気から取り込んだ吸気4を昇圧する場合よりも高い圧力まで吸気4を過給することが可能となり、しかも、EGRガス8’がEGR用ターボチャージャ16のタービン16bで仕事をすることにより通過抵抗を受けて絞り込み効果も得られるため、燃焼に必要な吸気4の量を不足させてしまうほどの過剰なEGRガス8’の再循環が著しく是正され、これまでよりも吸気4がエンジン1に取り込まれ易くなるため、燃焼に必要な吸気4の量を極端な排気圧の上昇を招くことなく確保することが可能となる。   That is, since the intake air 4 whose pressure has already been increased is led to the low-pressure stage turbocharger 15 and the high-pressure stage turbocharger 14 and further supercharged, only the low-pressure stage turbocharger 15 and the high-pressure stage turbocharger 14 are used. It is possible to supercharge the intake air 4 to a pressure higher than that when the intake air 4 taken in from the atmosphere is boosted, and the EGR gas 8 'works in the turbine 16b of the EGR turbocharger 16, thereby reducing the passage resistance. Therefore, since the throttle effect is also obtained, the excessive recirculation of the EGR gas 8 ′ which causes the amount of the intake air 4 necessary for combustion to be insufficient is significantly corrected, and the intake air 4 is taken into the engine 1 more than before. Therefore, the amount of intake air 4 necessary for combustion can be ensured without causing an extreme increase in exhaust pressure.

従って、上記形態例によれば、低圧段ターボチャージャ15及び高圧段ターボチャージャ14により過給を行いながらも高いEGR率での排気再循環を実現し且つ燃焼に必要な吸気4の量を極端な排気圧の上昇を招くことなく確保することができるので、エンジン1の排気圧が過給圧よりも大幅に高くなるような極端な状態を未然に回避することができ、これによりエンジン1のポンピングロスを著しく低減して燃費の大幅な改善を図ることができる。   Therefore, according to the above embodiment, the exhaust gas recirculation is achieved at a high EGR rate while supercharging is performed by the low pressure turbocharger 15 and the high pressure turbocharger 14, and the amount of the intake air 4 necessary for combustion is extremely reduced. Since it can be ensured without causing an increase in the exhaust pressure, an extreme state in which the exhaust pressure of the engine 1 becomes significantly higher than the supercharging pressure can be avoided in advance, whereby the pumping of the engine 1 can be avoided. Loss can be significantly reduced and fuel efficiency can be greatly improved.

尚、本発明の排気損失回収装置は、上述の形態例にのみ限定されるものではなく、過給システムが単段のターボチャージャにより構成されていても良く、更には、三段以上のターボチャージャで構成されていても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust loss recovery device of the present invention is not limited to the above-described embodiment. The supercharging system may be configured by a single-stage turbocharger, and further, a turbocharger having three or more stages. Of course, various modifications may be made without departing from the scope of the present invention.

1 エンジン
4 吸気
7 吸気マニホールド
8 排気ガス
8’ EGRガス
9 排気マニホールド
10 排気管
11 EGRライン
12 EGRバルブ
14 高圧段ターボチャージャ(過給システム:可変ノズルターボ)
14a 高圧段コンプレッサ
14b 高圧段タービン
15 低圧段ターボチャージャ(過給システム)
15a 低圧段コンプレッサ
15b 低圧段タービン
16 EGR用ターボチャージャ
16a コンプレッサ
16b タービン
19 バイパスライン
20 バイパスバルブ
1 Engine 4 Intake 7 Intake manifold 8 Exhaust gas 8 'EGR gas 9 Exhaust manifold 10 Exhaust pipe 11 EGR line 12 EGR valve 14 High-pressure stage turbocharger (supercharging system: variable nozzle turbo)
14a High-pressure stage compressor 14b High-pressure stage turbine 15 Low-pressure stage turbocharger (supercharging system)
15a Low pressure stage compressor 15b Low pressure stage turbine 16 EGR turbocharger 16a Compressor 16b Turbine 19 Bypass line 20 Bypass valve

Claims (2)

適宜な段数のターボチャージャから成り且つ少なくとも排気系の最上流段のターボチャージャがタービンのノズル開度を調整可能な可変ノズルターボである過給システムと、排気マニホールドと吸気マニホールドとの間を接続して排気ガスの一部をEGRガスとして排気側から吸気側へ再循環するEGRラインとを備えたエンジンに適用するための排気損失回収装置であって、前記EGRラインを流れるEGRガスによりタービンを駆動し且つ該タービンと同軸のコンプレッサで吸気を圧縮して吸気系の前記過給システムの上流側に導くEGR用ターボチャージャと、該EGR用ターボチャージャのタービンを迂回してEGRガスを流すバイパスラインと、該バイパスラインを開閉するバイパスバルブとを備えたことを特徴とする排気損失回収装置。   A turbocharger consisting of an appropriate number of turbochargers and at least the most upstream turbocharger of the exhaust system is a variable nozzle turbo capable of adjusting the nozzle opening of the turbine, and is connected between the exhaust manifold and the intake manifold. An exhaust loss recovery device for applying to an engine having an EGR line that recirculates a part of the exhaust gas as EGR gas from the exhaust side to the intake side, and driving the turbine by the EGR gas flowing through the EGR line And an EGR turbocharger that compresses intake air by a compressor coaxial with the turbine and guides it to the upstream side of the supercharging system of the intake system, and a bypass line that bypasses the turbine of the EGR turbocharger and flows EGR gas And an exhaust loss circuit characterized by comprising a bypass valve for opening and closing the bypass line. Apparatus. エンジンから送出される排気ガスによって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気ガスによって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとにより過給システムを二段で構成し、高圧段ターボチャージャを可変ノズルターボとしたことを特徴とする請求項1に記載の排気損失回収装置。   The high-pressure stage turbocharger that operates the high-pressure stage turbine with exhaust gas delivered from the engine and supplies the intake air compressed by the high-pressure stage compressor to the engine, and the exhaust gas delivered from the high-pressure stage turbine of the high-pressure stage turbocharger The supercharging system is configured in two stages with a low-pressure stage turbocharger that operates the low-pressure stage turbine and feeds the intake air compressed by the low-pressure stage compressor to the high-pressure stage compressor, and the high-pressure stage turbocharger is a variable nozzle turbo. The exhaust loss recovery device according to claim 1.
JP2011062130A 2011-03-22 2011-03-22 Exhaust loss recovery device Pending JP2012197716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062130A JP2012197716A (en) 2011-03-22 2011-03-22 Exhaust loss recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062130A JP2012197716A (en) 2011-03-22 2011-03-22 Exhaust loss recovery device

Publications (1)

Publication Number Publication Date
JP2012197716A true JP2012197716A (en) 2012-10-18

Family

ID=47180192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062130A Pending JP2012197716A (en) 2011-03-22 2011-03-22 Exhaust loss recovery device

Country Status (1)

Country Link
JP (1) JP2012197716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177825A (en) * 2012-02-28 2013-09-09 Hino Motors Ltd Multistage supercharging system
CN104884772A (en) * 2012-12-11 2015-09-02 马自达汽车株式会社 Engine equipped with turbocharger
JP2017015071A (en) * 2015-06-29 2017-01-19 ヴィンタートゥール ガス アンド ディーゼル リミテッド Air supply device, internal combustion engine, method for additional air supply of internal combustion engine, and method for refitting internal combustion engine
CN114704409A (en) * 2022-04-15 2022-07-05 潍柴动力股份有限公司 Air system and air system control method
JP7415068B2 (en) 2022-03-02 2024-01-16 ヤンマーパワーテクノロジー株式会社 engine equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100145598A1 (en) * 2008-12-09 2010-06-10 Piper Erik L Apparatus for measuring egr and method
JP2010138710A (en) * 2008-12-09 2010-06-24 Hino Motors Ltd Two-stage supercharging system
JP2013519034A (en) * 2010-02-05 2013-05-23 ヴァンダイン スーパー ターボ,インコーポレイテッド Super turbocharger with high speed traction drive and continuously variable transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100145598A1 (en) * 2008-12-09 2010-06-10 Piper Erik L Apparatus for measuring egr and method
JP2010138710A (en) * 2008-12-09 2010-06-24 Hino Motors Ltd Two-stage supercharging system
JP2013519034A (en) * 2010-02-05 2013-05-23 ヴァンダイン スーパー ターボ,インコーポレイテッド Super turbocharger with high speed traction drive and continuously variable transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177825A (en) * 2012-02-28 2013-09-09 Hino Motors Ltd Multistage supercharging system
CN104884772A (en) * 2012-12-11 2015-09-02 马自达汽车株式会社 Engine equipped with turbocharger
US9702296B2 (en) 2012-12-11 2017-07-11 Mazda Motor Corporation Turbocharged engine
JP2017015071A (en) * 2015-06-29 2017-01-19 ヴィンタートゥール ガス アンド ディーゼル リミテッド Air supply device, internal combustion engine, method for additional air supply of internal combustion engine, and method for refitting internal combustion engine
JP7415068B2 (en) 2022-03-02 2024-01-16 ヤンマーパワーテクノロジー株式会社 engine equipment
CN114704409A (en) * 2022-04-15 2022-07-05 潍柴动力股份有限公司 Air system and air system control method

Similar Documents

Publication Publication Date Title
US6918251B2 (en) Turbo-charged engine with EGR
US9010117B2 (en) Multi-stage turbocharger system with intercooling and aftercooling
US20090173071A1 (en) Diesel engine with exhaust gas recirculation system
JP2011038525A (en) Hybrid intake system for superatmospheric charging of engine intake manifold using low-pressure egr/fresh air blending
JP2013108479A (en) Diesel engine
JP2009115089A (en) Engine with supercharger and its operating method
JP2012197716A (en) Exhaust loss recovery device
JP5814008B2 (en) Accumulated EGR system
JP2010255525A (en) Internal combustion engine and method for controlling the same
JP2007077900A (en) Two-stage supercharging system
JP2007071179A (en) Two stage supercharging system
KR101566133B1 (en) An internal combustion engine and method of operating an internal combustion engine
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP4616707B2 (en) Exhaust gas recirculation structure for turbocharged engines
CN106870214A (en) A kind of Double flow path turbo-charger
JP2005147030A (en) Exhaust gas reflux device for engine with supercharger
JP2010127126A (en) Two-stage supercharging system
JP2011241766A (en) Two-stages supercharging system
US20180100428A1 (en) Engine system
JP2007077899A (en) Two-stage supercharging system
JP2001342839A (en) Turbo supercharging system
US11448168B2 (en) Exhaust gas recirculation system and engine
JP2010138710A (en) Two-stage supercharging system
JP2011080406A (en) Engine supercharging system
JP2007051578A (en) Two stage supercharging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208