JP2005054620A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2005054620A
JP2005054620A JP2003284738A JP2003284738A JP2005054620A JP 2005054620 A JP2005054620 A JP 2005054620A JP 2003284738 A JP2003284738 A JP 2003284738A JP 2003284738 A JP2003284738 A JP 2003284738A JP 2005054620 A JP2005054620 A JP 2005054620A
Authority
JP
Japan
Prior art keywords
engine
egr
compressor
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284738A
Other languages
Japanese (ja)
Inventor
Masaru Nakajima
大 中島
Kiyohiro Shimokawa
清広 下川
Yusuke Adachi
祐輔 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003284738A priority Critical patent/JP2005054620A/en
Publication of JP2005054620A publication Critical patent/JP2005054620A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger which obtains an effect of an EGR in all operating range by preventing occurrence of a surge of a compressor. <P>SOLUTION: The internal combustion engine with the supercharger operates a turbine 3 of a turbocharger 2 with exhaust gas G of the engine 1, and supplies an intake air A compressed by the compressor 4 of the turbocharger 2 to the engine 1 via an inter-cooler 17. An exhaust manifold 6 of the engine 1 is connected to a downstream side of the compressor 4 via an EGR duct 31. Another EGR duct 23 connected to this EGR duct 31 and reaching an upstream side of the compressor 4 is provided, and a part of the exhaust G split by the EGR duct 31 is guided from the another EGR duct 23 to the upstream side of the compressor 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はEGR装置を装備した過給機付内燃機関に関するものである。   The present invention relates to a supercharged internal combustion engine equipped with an EGR device.

従来、排気ガス再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関では、エンジン排気経路から分流した排気をエンジン吸気経路へ送給し、シリンダ内における燃料の燃焼を抑制して燃焼温度の低下を図り、NOxの発生を低減させるようにしている(例えば、特許文献1参照)。   Conventionally, in an internal combustion engine with a supercharger to which exhaust gas recirculation (EGR) is applied, exhaust gas diverted from the engine exhaust path is sent to the engine intake path to suppress the combustion of fuel in the cylinder. The combustion temperature is lowered to reduce the generation of NOx (see, for example, Patent Document 1).

この過給機付内燃機関は図3に示すように、エンジン1とターボチャージャ2を備え、当該ターボチャージャ2は、タービン3、コンプレッサ4、タービン翼車をコンプレッサ翼車に連結する伝達軸5などで構成されている。   As shown in FIG. 3, the supercharged internal combustion engine includes an engine 1 and a turbocharger 2. The turbocharger 2 includes a turbine 3, a compressor 4, a transmission shaft 5 that connects the turbine impeller to the compressor impeller, and the like. It consists of

タービン3は、排気導入口がエンジン1の排気マニホールド6に接続され、排気送出口が排気管7によりマフラ8に連通し、排気導入口には、流路断面調整機構(図示せず)が設けられている。
また、コンプレッサ4は、吸気導入口が吸気管9によりエアクリーナ10に接続され、吸気送出口がインタクーラ11を有する吸気管12によりエンジン1の吸気マニホールド13に連通している。
The turbine 3 has an exhaust introduction port connected to the exhaust manifold 6 of the engine 1, an exhaust delivery port communicates with the muffler 8 through an exhaust pipe 7, and a flow path cross-sectional adjustment mechanism (not shown) is provided at the exhaust introduction port. It has been.
The compressor 4 has an intake inlet connected to an air cleaner 10 via an intake pipe 9 and an intake outlet connected to an intake manifold 13 of the engine 1 via an intake pipe 12 having an intercooler 11.

これに加えて、排気マニホールド6に、EGRクーラ14とEGRバルブ15を直列に組み込んだEGR管路16の上流端を接続し、吸気管12のインタクーラ11よりも下流側個所に、EGR管路16の下流端を接続している。
上記のインタクーラ11には、空冷方式のフィン形熱交換器が用いられ、EGRクーラ14には、液冷方式の管形熱交換器が用いられている。
In addition, an upstream end of an EGR pipe 16 in which an EGR cooler 14 and an EGR valve 15 are incorporated in series is connected to the exhaust manifold 6, and the EGR pipe 16 Is connected to the downstream end.
The intercooler 11 is an air-cooled fin-type heat exchanger, and the EGR cooler 14 is a liquid-cooled tubular heat exchanger.

図3に示す過給機付内燃機関では、エンジン1が稼働状態であるとき、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。
また、エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、吸気管12やインタクーラ11を通って吸気マニホールド13へ送給され、同時に排気Gの一部が排気マニホールド6からEGR管路16へ流入して、EGRクーラ14で冷却され且つEGRバルブ15により流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。
In the supercharged internal combustion engine shown in FIG. 3, when the engine 1 is in an operating state, most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4, and the exhaust pipe 7 and the muffler 8. After being released into the atmosphere.
The compressed air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is supplied to the intake manifold 13 through the intake pipe 12 and the intercooler 11, and at the same time, a part of the exhaust G is exhausted from the exhaust manifold 6. Then, the exhaust gas G flows into the EGR pipe line 16, is cooled by the EGR cooler 14, and the flow rate is adjusted by the EGR valve 15, and is supplied to the intake manifold 13 together with the intake air A.

これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、NOxの発生が低減することになる。
なお、図3に示す過給機付内燃機関におけるコンプレッサ4の全負荷作動線(入口圧力P1に対する出口圧力P2の割合と通過気体流量との関係を示す線図)は、図4に鎖線で表記されるような傾向を呈し、この全負荷作動線の左側がサージ発生領域となる。
特開平9−256915号公報
Thereby, the oxygen concentration in the cylinder of the engine 1 is suppressed, the combustion temperature is lowered, and the generation of NOx is reduced.
Note that the full load operation line of the compressor 4 in the supercharged internal combustion engine shown in FIG. 3 (the diagram showing the relationship between the ratio of the outlet pressure P2 to the inlet pressure P1 and the passing gas flow rate) is indicated by a chain line in FIG. The left side of the full load operation line is a surge generation region.
Japanese Patent Laid-Open No. 9-256915

しかしながら、図3に示す従来の過給機付内燃機関において、エンジン1が低速高負荷運転領域で稼働しているときに、EGR管路16から吸気マニホールド13へ送給される排気Gの流量を多くするために、流路断面調整機構によってタービン3へ送給される排気Gの流量を抑えると、コンプレッサ4を通過する気体(吸気A)の流量が相対的に少なくなり、サージの発生によってコンプレッサ4が損傷することが懸念される。   However, in the conventional turbocharged internal combustion engine shown in FIG. 3, when the engine 1 is operating in the low speed and high load operation region, the flow rate of the exhaust G fed from the EGR line 16 to the intake manifold 13 is reduced. In order to increase the flow rate, if the flow rate of the exhaust G fed to the turbine 3 is suppressed by the flow path cross-sectional adjustment mechanism, the flow rate of the gas (intake air A) passing through the compressor 4 becomes relatively small, and the compressor is generated due to the occurrence of a surge. There is a concern that 4 may be damaged.

また、同様な目的で、エンジン1が高速運転領域で稼働しているときに、タービン3へ送給される排気Gの流量を抑えると、エンジン1のポンピングロスが増加して燃料消費が過大になってしまう。   For the same purpose, if the flow rate of the exhaust G fed to the turbine 3 is suppressed when the engine 1 is operating in the high-speed operation region, the pumping loss of the engine 1 increases and fuel consumption becomes excessive. turn into.

本発明は上述した実情に鑑みてなしたもので、コンプレッサのサージの発生を防止し、全ての運転領域でEGRの効用が得られる過給機付内燃機関を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a supercharged internal combustion engine that prevents the occurrence of a surge in a compressor and can obtain the effect of EGR in all operating regions.

上記目的を達成するために、請求項1に記載の発明は、エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至る第1のEGR管路を設け、該第1のEGR管路に連なり且つエンジン吸気経路のコンプレッサよりも上流側に至る第2のEGR管路を設けている。   In order to achieve the above object, an invention according to claim 1 is provided with an engine and a turbocharger, the turbine of the turbocharger is operated by the exhaust of the engine, and the intake air compressed by the compressor of the turbocharger is passed through the intercooler. In an internal combustion engine with a supercharger for feeding to an engine, a first EGR pipe is provided from an upstream side of a turbine in an engine exhaust path to a downstream side of a compressor in an engine intake path, and the first EGR pipe And a second EGR pipe that extends upstream from the compressor in the engine intake path.

請求項2に記載の発明は、エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至る第1のEGR管路を設け、該第1のEGR管路とは別に、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも上流側に至る第2のEGR管路を設けている。   According to a second aspect of the present invention, there is provided a turbocharger comprising an engine and a turbocharger, wherein the turbocharger turbine is operated by exhaust of the engine and the intake air compressed by the compressor of the turbocharger is supplied to the engine via the intercooler. In the attached internal combustion engine, a first EGR pipe from the upstream side of the turbine in the engine exhaust path to the downstream side of the compressor in the engine intake path is provided, and the engine exhaust path is separated from the first EGR pipe. A second EGR pipe is provided from the upstream side of the turbine to the upstream side of the compressor in the engine intake path.

請求項3に記載の発明は、第1のEGR管路及び第2のEGR管路のそれぞれに、EGRバルブを組み込んでいる。   The invention described in claim 3 incorporates an EGR valve in each of the first EGR pipe and the second EGR pipe.

請求項4に記載の発明は、エンジン吸気経路のコンプレッサよりも上流側へ至るEGR経路に組み込んだEGRクーラの上流側に、パティキュレート捕集用のフィルタを設けている。   According to a fourth aspect of the present invention, a particulate collection filter is provided on the upstream side of the EGR cooler incorporated in the EGR path extending upstream from the compressor in the engine intake path.

請求項1に記載の発明においては、エンジン排気経路から第1のEGR管路で分流した排気のうちの一部を、第2のEGR管路によりエンジン吸気経路のコンプレッサの上流側へ導く。   In the first aspect of the present invention, a part of the exhaust gas diverted from the engine exhaust path through the first EGR pipe is guided to the upstream side of the compressor in the engine intake path by the second EGR pipe.

請求項2に記載の発明においては、エンジン排気経路から排気の一部を、第2のEGR管路によりエンジン吸気経路のコンプレッサの上流側へ導く。   In the second aspect of the present invention, a part of the exhaust from the engine exhaust path is guided to the upstream side of the compressor in the engine intake path by the second EGR pipe.

請求項3に記載の発明においては、各EGR管路に付帯するそれぞれのEGRバルブの開度を調整して、第1のEGR管路からコンプレッサの下流側へ供給される排気の流量と、第2のEGR管路からコンプレッサの上流側へ供給される排気の流量とを、最適な割合にする。   In the third aspect of the invention, the flow rate of the exhaust gas supplied from the first EGR pipe to the downstream side of the compressor is adjusted by adjusting the opening of each EGR valve attached to each EGR pipe. The flow rate of the exhaust gas supplied from the EGR pipe 2 to the upstream side of the compressor is set to an optimum ratio.

請求項4に記載の発明においては、排気に含まれているパティキュレートをフィルタで捕集した後、EGRクーラからコンプレッサへ導いてインタクーラへ送出する。   In the invention described in claim 4, after the particulates contained in the exhaust gas are collected by the filter, they are guided from the EGR cooler to the compressor and sent to the intercooler.

(1)請求項1に記載の発明では、エンジン排気経路から第1のEGR管路で分流した排気のうちの一部を、第2のEGR管路によりエンジン吸気経路のコンプレッサの上流側へ導き、低速高負荷運転領域でエンジンが稼働するときのコンプレッサへの通過気体流量を確保し、高速運転領域でエンジンが稼働するときのポンピングロスの解消を図るので、コンプレッサのサージを防止し、全ての運転領域でEGRの効用を得ることができる。   (1) In the first aspect of the invention, a part of the exhaust gas diverted from the engine exhaust path through the first EGR pipe is led to the upstream side of the compressor in the engine intake path by the second EGR pipe. , Ensuring the passing gas flow rate to the compressor when the engine is operating in the low speed and high load operation region, and eliminating the pumping loss when the engine is operating in the high speed operation region. The utility of EGR can be obtained in the operation region.

(2)請求項2に記載の発明では、エンジン排気経路から排気の一部を、第2のEGR管路によりエンジン吸気経路のコンプレッサの上流側へ導き、低速高負荷運転領域でエンジンが稼働するときのコンプレッサへの通過気体流量を確保し、高速運転領域でエンジンが稼働するときのポンピングロスの解消を図るので、コンプレッサのサージを防止し、全ての運転領域でEGRの効用を得ることができる。   (2) In the invention according to claim 2, a part of the exhaust from the engine exhaust path is guided to the upstream side of the compressor in the engine intake path by the second EGR pipe, and the engine operates in the low speed and high load operation region. When the flow of gas to the compressor is ensured and the pumping loss is eliminated when the engine is operating in the high speed operation region, the surge of the compressor can be prevented, and the effect of EGR can be obtained in all operation regions .

(3)請求項3に記載の発明では、各EGR管路に付帯しているEGRバルブの開度を調整して、最適な流量の排気がコンプレッサの上流側に供給されるようにするので、当該コンプレッサのサージを効果的に防止できる。   (3) In the invention described in claim 3, the opening of the EGR valve attached to each EGR pipe is adjusted so that the exhaust gas having the optimum flow rate is supplied to the upstream side of the compressor. The compressor surge can be effectively prevented.

(4)請求項4に記載の発明では、パティキュレートをフィルタで捕集した後の排気を、EGRクーラからコンプレッサへ導いてインタクーラへ送出するので、コンプレッサの汚れ、及びインタクーラの目詰まりを防止することができる。   (4) In the invention according to the fourth aspect, the exhaust gas after the particulates are collected by the filter is guided from the EGR cooler to the compressor and sent to the intercooler, so that contamination of the compressor and clogging of the intercooler are prevented. be able to.

以下、本発明の実施の形態を図面に基づき説明する。
図1は本発明の過給機付内燃機関の実施の形態の第1の例であり、図中、図3と同一の符号を付した部分は同一物を表わしている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a first example of an embodiment of an internal combustion engine with a supercharger according to the present invention. In the figure, the same reference numerals as those in FIG. 3 denote the same parts.

この過給機付内燃機関では、コンプレッサ4の吸気送出口に、インタクーラ17を組み込んだ吸気管18の上流端を接続し、エンジン1に吸気マニホールド13に、吸気管18の下流端を接続している。
また、排気マニホールド6に、フィルタ28とEGRクーラ29とEGRバルブ30を直列に組み込んだEGR管路31の上流端を接続し、吸気管18のインタクーラ17よりも下流側個所に、EGR管路31の下流端を接続している。
In this supercharged internal combustion engine, the upstream end of the intake pipe 18 incorporating the intercooler 17 is connected to the intake / outlet of the compressor 4, the downstream end of the intake pipe 18 is connected to the engine 1 and the intake manifold 13. Yes.
Further, an upstream end of an EGR pipe 31 in which a filter 28, an EGR cooler 29 and an EGR valve 30 are incorporated in series is connected to the exhaust manifold 6, and the EGR pipe 31 is located downstream of the intercooler 17 of the intake pipe 18. Is connected to the downstream end.

フィルタ28は、排気G(軽油の燃焼ガス)に含まれているパティキュレート(粒子状物質:Particulate Matter)を捕集して、大気中への拡散を抑制するための手段である。
フィルタ28の一例としては、コージライトなどのセラミックスによりハニカムコアを形成し、該ハニカムコアの多孔質薄壁で区分される多数の区画に排気Gを流通させる構造のものがある。
The filter 28 is a means for collecting particulates (particulate matter) contained in the exhaust G (light oil combustion gas) and suppressing diffusion into the atmosphere.
As an example of the filter 28, there is a structure in which a honeycomb core is formed of ceramics such as cordierite, and the exhaust G is circulated through a number of sections divided by a porous thin wall of the honeycomb core.

更に、EGRバルブ22を組み込んだEGR管路23の上流端を、前記EGR管路31のEGRクーラ29よりも下流側箇所に接続し、コンプレッサ4の吸気導入口に連通する吸気管9に、EGR管路23の下流端を接続している。
上記のインタクーラ17には、空冷方式のフィン形熱交換器を用い、EGRクーラ29には、液冷方式の管形熱交換器を用いている。
Further, the upstream end of the EGR pipe 23 incorporating the EGR valve 22 is connected to the downstream side of the EGR cooler 29 of the EGR pipe 31 and the intake pipe 9 communicating with the intake inlet of the compressor 4 is connected to the EGR pipe 9. The downstream end of the pipe line 23 is connected.
The intercooler 17 uses an air-cooled fin heat exchanger, and the EGR cooler 29 uses a liquid-cooled tube heat exchanger.

図1に示す過給機付内燃機関では、エンジン1が稼働状態であるとき、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。
また、エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、吸気管18やインタクーラ17を通って吸気マニホールド13へ送給され、同時に排気Gの一部が排気マニホールド6からEGR管路31へ流入して、フィルタ28によりパティキュレートを取り除いた後、EGRクーラ29で冷却され且つEGRバルブ30により流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。
In the supercharged internal combustion engine shown in FIG. 1, when the engine 1 is in an operating state, most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4, and the exhaust pipe 7 and the muffler 8. After being released into the atmosphere.
Further, the compressed intake air A which flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is supplied to the intake manifold 13 through the intake pipe 18 and the intercooler 17, and at the same time, a part of the exhaust G is exhausted from the exhaust manifold 6. Then, after the particulates are removed by the filter 28, the exhaust gas G cooled by the EGR cooler 29 and adjusted in flow rate by the EGR valve 30 is sent to the intake manifold 13 together with the intake air A. The

これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、NOxの発生が低減することになる。   Thereby, the oxygen concentration in the cylinder of the engine 1 is suppressed, the combustion temperature is lowered, and the generation of NOx is reduced.

更に、EGR管路31により分流され且つパティキュレートを取り除いた排気Gのうちの一部が、EGR管路23を経てコンプレッサ4の上流側へ導かれる。
この排気Gは、吸気Aとしてコンプレッサ4に流入して圧縮された後、吸気管18及びインタクーラ17を経て吸気マニホールド13へ送給される。
Further, a part of the exhaust gas G which is diverted by the EGR pipe 31 and from which the particulates are removed is guided to the upstream side of the compressor 4 through the EGR pipe 23.
The exhaust G flows into the compressor 4 as the intake air A and is compressed, and then supplied to the intake manifold 13 through the intake pipe 18 and the intercooler 17.

つまり、エンジン1が低速高負荷運転領域で稼働しているときに、EGR管路31から吸気マニホールド13へ送給される排気Gの流量を多くするために、流路断面調整機構によりタービン3へ送給される排気Gの流量を抑える場合には、コンプレッサ4を通過する気体(排気Gとエアクリーナ10から得た吸気Aの混合気)の流量が過少にならないように、各EGR管路31,23に付帯しているそれぞれのEGRバルブ30,22の開度を調整すれば、コンプレッサ4のサージの発生を防止できる。   That is, in order to increase the flow rate of the exhaust G fed from the EGR pipe 31 to the intake manifold 13 when the engine 1 is operating in the low-speed and high-load operation region, the flow-path cross-section adjusting mechanism supplies the turbine 3 with the flow rate. In order to suppress the flow rate of the exhaust G to be fed, each EGR pipe line 31, so that the flow rate of the gas passing through the compressor 4 (the mixture of the exhaust G and the intake air A obtained from the air cleaner 10) does not become excessive. If the opening degree of each of the EGR valves 30 and 22 attached to 23 is adjusted, the surge of the compressor 4 can be prevented from occurring.

また、エンジン1が高速運転領域で稼働しているときに、各EGRバルブ30,22の開度を調整すれば、流路断面調整機構によるタービン3への排気Gの流量を制限せずに、吸気マニホールド13へ送給される排気Gの流量を多くすることができる。   Further, when the opening degree of each EGR valve 30, 22 is adjusted when the engine 1 is operating in the high-speed operation region, the flow rate of the exhaust G to the turbine 3 by the flow path cross-sectional adjustment mechanism is not limited. The flow rate of the exhaust G fed to the intake manifold 13 can be increased.

これにより、エンジン1のポンピングロスの低減が図られ、燃料消費を抑制することが可能になる。
更に、EGRクーラ29の上流側にフィルタ28を設けて排気G中のパティキュレートを取り除くので、コンプレッサ4が汚れず、インタクーラ17に目詰まりが発生しない。
なお、図1に示す過給機付内燃機関におけるコンプレッサ4の全負荷作動線(入口圧力P1に対する出口圧力P2の割合と通過気体流量との関係を示す線図)は、先述した図3のものに対して、図4に実線で表記されるような傾向を呈し、鎖線で表記した図3のものの全負荷作動線の左側に存在しているサージ発生領域を回避することになる。
Thereby, the pumping loss of the engine 1 can be reduced and fuel consumption can be suppressed.
Further, since the filter 28 is provided on the upstream side of the EGR cooler 29 to remove particulates in the exhaust G, the compressor 4 is not contaminated and the intercooler 17 is not clogged.
The full load operating line of the compressor 4 in the supercharged internal combustion engine shown in FIG. 1 (the diagram showing the relationship between the ratio of the outlet pressure P2 to the inlet pressure P1 and the passing gas flow rate) is that of FIG. On the other hand, a tendency as indicated by a solid line in FIG. 4 is exhibited, and a surge generation region existing on the left side of the full load operation line of FIG. 3 indicated by a chain line is avoided.

すなわち、本発明の過給機付内燃機関では、コンプレッサ4のサージの発生を防止でき且つ全ての運転領域でEGRの効用が得られる。   That is, in the internal combustion engine with a supercharger according to the present invention, the occurrence of surge in the compressor 4 can be prevented, and the effect of EGR can be obtained in all operating regions.

上述した過給機付内燃機関の変形例としては、液冷方式の管形熱交換器をインタクーラ17に用いてパティキュレートによる目詰まりを回避し、EGR管路31にフィルタ28を組み込まないようにした構成が考えられる。   As a modification of the above-described supercharger-equipped internal combustion engine, a liquid-cooled tubular heat exchanger is used for the intercooler 17 so as to avoid clogging due to particulates, so that the filter 28 is not incorporated in the EGR pipe 31. A possible configuration is possible.

図2は本発明の過給機付内燃機関の実施の形態の第2の例であり、図中、図1及び図3と同一の符号を付した部分は同一物を表わしている。   FIG. 2 shows a second example of the supercharger-equipped internal combustion engine according to the present invention. In the figure, the same reference numerals as those in FIGS. 1 and 3 denote the same parts.

この過給機付内燃機関では、排気マニホールド6に、EGRクーラ19とEGRバルブ20を直列に組み込んだEGR管路21の上流端を接続し、当該EGR管路21の下流端を、吸気管18のインタクーラ17よりも下流側個所に接続している。   In this supercharger-equipped internal combustion engine, the exhaust manifold 6 is connected to the upstream end of an EGR pipe 21 incorporating an EGR cooler 19 and an EGR valve 20 in series, and the downstream end of the EGR pipe 21 is connected to the intake pipe 18. The intercooler 17 is connected downstream of the intercooler 17.

更に、フィルタ27とEGRクーラ24とEGRバルブ25を直列に組み込んだEGR管路26の上流端を、排気マニホールド6に接続し、コンプレッサ4の吸気導入口に連通する吸気管9に、EGR管路26の下流端を接続している。
フィルタ27は、先述したフィルタ28と同等であり、また、EGRクーラ24には、液冷方式の管形熱交換器を用いている。
Further, the upstream end of the EGR pipe 26 in which the filter 27, the EGR cooler 24 and the EGR valve 25 are incorporated in series is connected to the exhaust manifold 6, and the EGR pipe is connected to the intake pipe 9 communicating with the intake inlet of the compressor 4. The downstream end of 26 is connected.
The filter 27 is equivalent to the filter 28 described above, and a liquid-cooled tubular heat exchanger is used for the EGR cooler 24.

図2に示す過給機付内燃機関では、エンジン1が稼働状態であるとき、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。
また、エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、吸気管18やインタクーラ17を通って吸気マニホールド13へ送給され、同時に排気Gの一部が排気マニホールド6からEGR管路21へ流入して、EGRクーラ19で冷却され且つEGRバルブ20により流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。
In the supercharged internal combustion engine shown in FIG. 2, when the engine 1 is in an operating state, most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4, and the exhaust pipe 7 and the muffler 8. After being released into the atmosphere.
Further, the compressed intake air A which flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is supplied to the intake manifold 13 through the intake pipe 18 and the intercooler 17, and at the same time, a part of the exhaust G is exhausted from the exhaust manifold 6. Then, the exhaust gas G flows into the EGR pipe line 21, is cooled by the EGR cooler 19, and the flow rate is adjusted by the EGR valve 20, and is supplied to the intake manifold 13 together with the intake air A.

これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、NOxの発生が低減することになる。   Thereby, the oxygen concentration in the cylinder of the engine 1 is suppressed, the combustion temperature is lowered, and the generation of NOx is reduced.

更に、排気Gの一部が排気マニホールド6からEGR管路26へ流入し、フィルタ27でパティキュレートを取り除いた後、EGRクーラ24で冷却され且つEGRバルブ25により流量調整が行なわれた排気Gがコンプレッサ4の上流側へ導かれる。
この排気Gは、吸気Aとしてコンプレッサ4に流入して圧縮された後、吸気管18及びインタクーラ17を経て吸気マニホールド13へ送給される。
Further, a part of the exhaust gas G flows from the exhaust manifold 6 into the EGR pipe line 26, the particulates are removed by the filter 27, and then the exhaust gas G cooled by the EGR cooler 24 and the flow rate of which is adjusted by the EGR valve 25 is adjusted. It is guided upstream of the compressor 4.
The exhaust G flows into the compressor 4 as the intake air A and is compressed, and then supplied to the intake manifold 13 through the intake pipe 18 and the intercooler 17.

つまり、エンジン1が低速高負荷運転領域で稼働しているときに、EGR管路21から吸気マニホールド13へ送給される排気Gの流量を多くするために、流路断面調整機構によりタービン3へ送給される排気Gの流量を抑える場合には、コンプレッサ4を通過する気体(排気Gとエアクリーナ10から得た吸気Aの混合気)の流量が過少にならないように、各EGR管路21,26に付帯しているそれぞれのEGRバルブ20,25の開度を調整すれば、コンプレッサ4のサージの発生を防止できる。   In other words, when the engine 1 is operating in the low speed and high load operation region, in order to increase the flow rate of the exhaust G fed from the EGR pipe 21 to the intake manifold 13, the flow path cross-sectional adjustment mechanism is used to supply the turbine 3. In order to suppress the flow rate of the exhaust gas G to be fed, each EGR pipe line 21, so that the flow rate of the gas passing through the compressor 4 (mixture of the exhaust gas G and the intake air A obtained from the air cleaner 10) does not become excessive. If the opening degree of each of the EGR valves 20 and 25 attached to 26 is adjusted, the surge of the compressor 4 can be prevented from occurring.

また、エンジン1が高速運転領域で稼働しているときに、各EGRバルブ20,25の開度を調整すれば、流路断面調整機構によるタービン3への排気Gの流量を制限せずに、吸気マニホールド13へ送給される排気Gの流量を多くすることができる。   Moreover, when the opening degree of each EGR valve 20 and 25 is adjusted when the engine 1 is operating in the high-speed operation region, the flow rate of the exhaust gas G to the turbine 3 by the flow path cross-sectional adjustment mechanism is not limited. The flow rate of the exhaust G fed to the intake manifold 13 can be increased.

これにより、エンジン1のポンピングロスの低減が図られ、燃料消費を抑制することが可能になる。
更に、EGRクーラ24の上流側にフィルタ27を設けて排気G中のパティキュレートを取り除くので、コンプレッサ4が汚れず、インタクーラ17に目詰まりが発生しない。
なお、図2に示す過給機付内燃機関におけるコンプレッサ4の全負荷作動線(入口圧力P1に対する出口圧力P2の割合と通過気体流量との関係を示す線図)は、先述した図3のものに対して、図4に実線で表記されるような傾向を呈し、鎖線で表記した図3のものの全負荷作動線の左側に存在しているサージ発生領域を回避することになる。
Thereby, the pumping loss of the engine 1 can be reduced and fuel consumption can be suppressed.
Furthermore, since the filter 27 is provided on the upstream side of the EGR cooler 24 to remove particulates in the exhaust G, the compressor 4 is not contaminated and the intercooler 17 is not clogged.
The full load operation line of the compressor 4 in the internal combustion engine with a supercharger shown in FIG. 2 (the diagram showing the relationship between the ratio of the outlet pressure P2 to the inlet pressure P1 and the flow rate of the passing gas) is that of FIG. On the other hand, a tendency as indicated by a solid line in FIG. 4 is exhibited, and a surge generation region existing on the left side of the full load operation line of FIG. 3 indicated by a chain line is avoided.

すなわち、本発明の過給機付内燃機関では、コンプレッサ4のサージの発生を防止でき且つ全ての運転領域でEGRの効用が得られる。   That is, in the internal combustion engine with a supercharger according to the present invention, the occurrence of surge in the compressor 4 can be prevented, and the effect of EGR can be obtained in all operating regions.

上述した過給機付内燃機関の変形例としては、液冷方式の管形熱交換器をインタクーラ17に用いてパティキュレートによる目詰まりを回避し、EGR管路26にフィルタ27を組み込まないようにした構成が考えられる。   As a modification of the above-described supercharger-equipped internal combustion engine, a liquid-cooled tubular heat exchanger is used for the intercooler 17, so that clogging due to particulates is avoided, and the filter 27 is not incorporated in the EGR line 26. A possible configuration is possible.

なお、本発明の過給機付内燃機関は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。   Note that the supercharged internal combustion engine of the present invention is not limited to the above-described embodiment, and it is needless to say that changes can be made without departing from the scope of the present invention.

本発明の過給機付内燃機関は、車両用のディーゼルエンジンをはじめとして各種の内燃機関に適用できる。   The supercharged internal combustion engine of the present invention can be applied to various internal combustion engines including a diesel engine for vehicles.

本発明の過給機付内燃機関の実施の形態の第1の例を示す概念図である。It is a conceptual diagram which shows the 1st example of embodiment of the internal combustion engine with a supercharger of this invention. 本発明の過給機付内燃機関の実施の形態の第2の例を示す概念図である。It is a conceptual diagram which shows the 2nd example of embodiment of the internal combustion engine with a supercharger of this invention. 従来の過給機付内燃機関の一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional internal combustion engine with a supercharger. 図1乃至図3に関連するそれぞれのコンプレッサの全負荷作動線図である。FIG. 4 is a full load operating diagram of each compressor associated with FIGS. 1 to 3.

符号の説明Explanation of symbols

1 エンジン
2 ターボチャージャ
3 タービン
4 コンプレッサ
6 排気マニホールド(エンジン排気経路)
9 吸気管(エンジン吸気経路)
17 インタクーラ
18 吸気管(エンジン吸気経路)
20 EGRバルブ
21 EGR管路(第1のEGR管路)
22 EGRバルブ
23 EGR管路(第2のEGR管路)
24 EGRクーラ
25 EGRバルブ
26 EGR管路(第2のEGR管路)
27 フィルタ
28 フィルタ
29 EGRクーラ
30 EGRバルブ
31 EGR管路(第1のEGR管路)
1 Engine 2 Turbocharger 3 Turbine 4 Compressor 6 Exhaust manifold (engine exhaust path)
9 Intake pipe (engine intake path)
17 Intercooler 18 Intake pipe (engine intake path)
20 EGR valve 21 EGR line (first EGR line)
22 EGR valve 23 EGR line (second EGR line)
24 EGR cooler 25 EGR valve 26 EGR line (second EGR line)
27 Filter 28 Filter 29 EGR cooler 30 EGR valve 31 EGR pipe line (first EGR pipe line)

Claims (4)

エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至る第1のEGR管路を設け、該第1のEGR管路に連なり且つエンジン吸気経路のコンプレッサよりも上流側に至る第2のEGR管路を設けたことを特徴とする過給機付内燃機関。   In an internal combustion engine with a supercharger that includes an engine and a turbocharger, and operates the turbine of the turbocharger with the exhaust of the engine and feeds the intake air compressed by the compressor of the turbocharger to the engine via the intercooler. A first EGR pipe from the upstream side of the turbine to the downstream side of the compressor in the engine intake path is provided, and a second EGR pipe connected to the first EGR pipe and upstream of the compressor in the engine intake path is provided. An internal combustion engine with a supercharger, characterized in that an EGR pipe line is provided. エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至る第1のEGR管路を設け、該第1のEGR管路とは別に、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも上流側に至る第2のEGR管路を設けたことを特徴とする過給機付内燃機関。   In an internal combustion engine with a supercharger that includes an engine and a turbocharger, and operates the turbine of the turbocharger with the exhaust of the engine and feeds the intake air compressed by the compressor of the turbocharger to the engine via the intercooler. A first EGR pipe from the upstream side of the turbine to the downstream side of the compressor of the engine intake path is provided, and separately from the first EGR pipe, the engine intake path from the upstream side of the turbine of the engine exhaust path A supercharger-equipped internal combustion engine, characterized in that a second EGR pipe extending upstream of the compressor is provided. 第1のEGR管路及び第2のEGR管路のそれぞれに、EGRバルブを組み込んだ請求項1あるいは請求項2のいずれかに記載の過給機付内燃機関。   The internal combustion engine with a supercharger according to claim 1 or 2, wherein an EGR valve is incorporated in each of the first EGR line and the second EGR line. エンジン吸気経路のコンプレッサよりも上流側へ至るEGR経路に組み込んだEGRクーラの上流側に、パティキュレート捕集用のフィルタを設けた請求項1あるいは請求項2のいずれかに記載の過給機付内燃機関。   3. A turbocharger according to claim 1, wherein a filter for collecting particulates is provided upstream of an EGR cooler incorporated in an EGR path extending upstream from the compressor in the engine intake path. Internal combustion engine.
JP2003284738A 2003-08-01 2003-08-01 Internal combustion engine with supercharger Pending JP2005054620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284738A JP2005054620A (en) 2003-08-01 2003-08-01 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284738A JP2005054620A (en) 2003-08-01 2003-08-01 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2005054620A true JP2005054620A (en) 2005-03-03

Family

ID=34364576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284738A Pending JP2005054620A (en) 2003-08-01 2003-08-01 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP2005054620A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770270A2 (en) * 2005-10-03 2007-04-04 Deere & Company EGR system having reverse flow, internal combustion engine and method
WO2007040070A1 (en) * 2005-10-06 2007-04-12 Isuzu Motors Limited Egr system of internal combustion engine
US20090194602A1 (en) * 2005-06-09 2009-08-06 Renault S.A.S. Additional heating device for a motor vehicle
JP2010065596A (en) * 2008-09-10 2010-03-25 Mazda Motor Corp Exhaust gas recirculating device of engine
JP2013036445A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Egr system of internal combustion engine
JP2016176409A (en) * 2015-03-20 2016-10-06 三菱重工業株式会社 Engine exhaust recirculation device and control method for the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090194602A1 (en) * 2005-06-09 2009-08-06 Renault S.A.S. Additional heating device for a motor vehicle
EP1770270A2 (en) * 2005-10-03 2007-04-04 Deere & Company EGR system having reverse flow, internal combustion engine and method
EP1770270A3 (en) * 2005-10-03 2012-10-10 Deere & Company EGR system having reverse flow, internal combustion engine and method
WO2007040070A1 (en) * 2005-10-06 2007-04-12 Isuzu Motors Limited Egr system of internal combustion engine
JP2007100627A (en) * 2005-10-06 2007-04-19 Isuzu Motors Ltd Egr system for internal combustion engine
JP4692201B2 (en) * 2005-10-06 2011-06-01 いすゞ自動車株式会社 EGR system for internal combustion engine
JP2010065596A (en) * 2008-09-10 2010-03-25 Mazda Motor Corp Exhaust gas recirculating device of engine
JP2013036445A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Egr system of internal combustion engine
JP2016176409A (en) * 2015-03-20 2016-10-06 三菱重工業株式会社 Engine exhaust recirculation device and control method for the same

Similar Documents

Publication Publication Date Title
JP5047352B2 (en) Exhaust turbocharger housing structure
JP4792997B2 (en) Exhaust gas purification system for internal combustion engine
US6981375B2 (en) Turbocharged internal combustion engine with EGR flow
JP4363395B2 (en) Exhaust gas purification device for internal combustion engine
CN101225778B (en) An exhaust system for an internal combustion engine provided with an exhaust gas recirculation circuit
JP5146303B2 (en) Exhaust gas recirculation device
GB2418012A (en) Working fluid circuit for a turbocharged engine having exhaust gas recirculation
JP2006291739A (en) Egr device
US20110107747A1 (en) Exhaust gas recirculation system and apparatus for a locomotive two-stroke uniflow scavenged diesel engine
EP1186767A2 (en) Exhaust gas recirculation system for internal combustion engine
JP2002188526A (en) Egr device
WO2011141631A1 (en) Arrangement and method for exhaust gas recirculation and turbocharging
US20110314797A1 (en) Pressure balanced exhaust gas recirculation assembly for a locomotive two-stroke uniflow scavenged diesel engine
JP2007077900A (en) Two-stage supercharging system
JP2008309125A (en) Exhaust gas recirculation system for internal combustion engine
JP2005054620A (en) Internal combustion engine with supercharger
JP2007071179A (en) Two stage supercharging system
US20110155111A1 (en) Exhaust gas recirculation system for a locomotive two-stroke uniflow scavenged diesel engine
JP2007224801A (en) Exhaust recirculating device of engine
JP2007127070A (en) Internal combustion engine with supercharger
JP2005220862A (en) Internal combustion engine with supercharger
JP2004245117A (en) Internal combustion engine with supercharger
JP5280113B2 (en) Exhaust gas recirculation device in a multi-cylinder internal combustion engine
JP2007077899A (en) Two-stage supercharging system
JP2005090349A (en) Internal combustion engine with supercharger