JP4363395B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4363395B2
JP4363395B2 JP2005320583A JP2005320583A JP4363395B2 JP 4363395 B2 JP4363395 B2 JP 4363395B2 JP 2005320583 A JP2005320583 A JP 2005320583A JP 2005320583 A JP2005320583 A JP 2005320583A JP 4363395 B2 JP4363395 B2 JP 4363395B2
Authority
JP
Japan
Prior art keywords
exhaust
combustion engine
internal combustion
turbine
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005320583A
Other languages
Japanese (ja)
Other versions
JP2007127058A (en
Inventor
久 大木
智海 山田
嗣史 藍川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005320583A priority Critical patent/JP4363395B2/en
Priority to DE102006049392A priority patent/DE102006049392B4/en
Priority to FR0654711A priority patent/FR2893083B1/en
Publication of JP2007127058A publication Critical patent/JP2007127058A/en
Application granted granted Critical
Publication of JP4363395B2 publication Critical patent/JP4363395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)

Description

本発明は、排気再循環装置(EGR装置)を備える内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine including an exhaust gas recirculation device (EGR device).

多気筒内燃機関の一方の気筒群に接続されている一方の排気マニホルドに還元剤添加弁を設けると共に他方の気筒群に接続されている他方の排気マニホルドにEGR装置のEGRガス取出口を設け、還元剤添加弁から添加される還元剤がEGR装置へ侵入することを抑制する技術が知られている(特許文献1参照)。
特開2004−76595号公報 特開2001−152842号公報 特開2002−256854号公報 特開2002−21539号公報 特開平10−30446号公報
A reducing agent addition valve is provided in one exhaust manifold connected to one cylinder group of the multi-cylinder internal combustion engine, and an EGR gas outlet of the EGR device is provided in the other exhaust manifold connected to the other cylinder group; A technique for suppressing the reducing agent added from the reducing agent addition valve from entering the EGR device is known (see Patent Document 1).
JP 2004-76595 A JP 2001-152842 A JP 2002-256854 A JP 2002-21539 A Japanese Patent Laid-Open No. 10-30446

しかしながら、上記特許文献1の技術では、還元剤添加弁の設けられた一方の排気マニホルドとEGRガス取出口の設けられた他方の排気マニホルドとは、下流に配置された過給機のタービンの手前で合流する。このため、還元剤添加弁から添加された還元剤がタービン手前の合流部分で他方の排気マニホルドに回り込み、還元剤がEGR装置に侵入するおそれがあった。   However, in the technique of Patent Document 1, the one exhaust manifold provided with the reducing agent addition valve and the other exhaust manifold provided with the EGR gas outlet are located in front of the turbine of the supercharger disposed downstream. Join at. For this reason, there is a possibility that the reducing agent added from the reducing agent addition valve will enter the other exhaust manifold at the junction before the turbine, and the reducing agent may enter the EGR device.

本発明は上記事情に鑑みなされたもので、その目的とするところは、排気中に添加された還元剤がEGR装置に流入することをより抑制することが可能な技術を提供することにある。   This invention is made | formed in view of the said situation, The place made into the objective is providing the technique which can suppress more that the reducing agent added in exhaust_gas | exhaustion flows into an EGR apparatus.

本発明にあっては、以下の構成を採用する。すなわち、
複数の気筒を有する内燃機関からの排気によってタービンロータが駆動されるタービンを有する過給機と、
前記内燃機関の一方の気筒群から延びる第1排気通路と、
前記内燃機関の他方の気筒群から延びる第2排気通路と、
前記タービンから下流側に延びる第3排気通路と、
該第3排気通路に配置された排気浄化触媒と、
排気に還元剤を添加する還元剤添加手段と、
排気の一部をEGRガスとして吸気系に供給するEGR装置と、
を備える内燃機関の排気浄化装置であって、
前記第1排気通路に前記還元剤添加手段を設け、
前記第2排気通路に前記EGR装置のEGRガス取出口を設け、
前記第1排気通路及び前記第2排気通路からのそれぞれの排気は、大部分が混ざり合うことなく分離したまま前記タービンロータに流入することを特徴とする内燃機関の排気浄化装置である。
In the present invention, the following configuration is adopted. That is,
A turbocharger having a turbine in which a turbine rotor is driven by exhaust from an internal combustion engine having a plurality of cylinders;
A first exhaust passage extending from one cylinder group of the internal combustion engine;
A second exhaust passage extending from the other cylinder group of the internal combustion engine;
A third exhaust passage extending downstream from the turbine;
An exhaust purification catalyst disposed in the third exhaust passage;
Reducing agent addition means for adding a reducing agent to the exhaust;
An EGR device that supplies a part of the exhaust gas as EGR gas to the intake system;
An exhaust purification device for an internal combustion engine comprising:
Providing the reducing agent adding means in the first exhaust passage;
An EGR gas outlet of the EGR device is provided in the second exhaust passage;
Each exhaust gas from the first exhaust passage and the second exhaust passage flows into the turbine rotor while being largely separated without being mixed with each other, and is an exhaust gas purification apparatus for an internal combustion engine.

本発明によると、第1、第2排気通路からのぞれぞれの排気は、これら第1、第2排気通路の下流に配置されたタービンのタービンロータまで大部分が混ざり合うことなく分離したままである。よって、第1排気通路の排気は第2排気通路に回り込み難く、第2排気通路のEGRガス取出口まで到達することが抑制される。したがって、EGRガスを吸気
系に供給しているときに還元剤添加が行われても、添加された還元剤がEGRガス取出口からEGR装置に流入することをより抑制することができる。
According to the present invention, the respective exhausts from the first and second exhaust passages are separated without being largely mixed up to the turbine rotor of the turbine disposed downstream of the first and second exhaust passages. It remains. Therefore, the exhaust of the first exhaust passage is unlikely to enter the second exhaust passage and is prevented from reaching the EGR gas outlet of the second exhaust passage. Therefore, even if the reducing agent is added while the EGR gas is supplied to the intake system, the added reducing agent can be further suppressed from flowing into the EGR device from the EGR gas outlet.

前記第1排気通路から前記タービンに流入した排気は、該タービンの相対的に温度が高い部分を通過しても良い。   Exhaust gas that has flowed into the turbine from the first exhaust passage may pass through a portion of the turbine where the temperature is relatively high.

第1排気通路において排気中に添加されタービンに流入した還元剤は周囲温度が低下すると該タービン内に付着し易くなる。また、還元剤がタービン内に付着すると該還元剤が接合剤となって排気中の粒子状物質がタービン内に堆積し易くなる。上記によれば、還元剤を含んだ排気がタービンにおいて相対的に温度が高い部分を流れることになる。そのため、還元剤がタービン内に付着することを抑制することができる。また、付着した還元剤に起因してタービン内に粒子状物質が堆積することを抑制することができる。   The reducing agent added to the exhaust gas in the first exhaust passage and flowing into the turbine easily adheres to the turbine when the ambient temperature decreases. Further, when the reducing agent adheres to the turbine, the reducing agent becomes a bonding agent, and particulate matter in the exhaust gas easily accumulates in the turbine. According to the above, the exhaust gas containing the reducing agent flows through a portion having a relatively high temperature in the turbine. Therefore, it can suppress that a reducing agent adheres in a turbine. Moreover, it can suppress that a particulate matter accumulates in a turbine resulting from the adhering reducing agent.

前記一方の気筒群における気筒内の吸入空気量を前記他方の気筒群における気筒内の吸入空気量よりも少なくする吸入空気量調整手段を備えても良い。   There may be provided intake air amount adjusting means for making the intake air amount in the cylinder in the one cylinder group smaller than the intake air amount in the cylinder in the other cylinder group.

気筒内における吸入空気量を少なくすることで該気筒から排出される排気の温度を上昇させることができる。したがって、上記によれば、第1排気通路の排気の温度を第2排気通路の排気よりも高くすることができる。これにより、還元剤が第1排気通路やタービン内へ付着することを抑制することができる。また、還元剤の気化を促進することができるため、排気浄化触媒をより効率的に昇温させたり、該排気浄化触媒における排気の浄化をより効率的に行ったりすることが可能となる。   By reducing the amount of intake air in the cylinder, the temperature of the exhaust gas discharged from the cylinder can be raised. Therefore, according to the above, the temperature of the exhaust in the first exhaust passage can be made higher than that in the second exhaust passage. Thereby, it can suppress that a reducing agent adheres in a 1st exhaust passage and a turbine. Further, since the vaporization of the reducing agent can be promoted, it is possible to raise the temperature of the exhaust purification catalyst more efficiently and to purify the exhaust gas in the exhaust purification catalyst more efficiently.

前記一方の気筒群への吸気を前記他方の気筒群への吸気よりも高スワール化させるスワール制御手段を備えても良い。   There may be provided swirl control means for making the intake air to the one cylinder group have a higher swirl than the intake air to the other cylinder group.

一方の気筒群において気筒内の吸入空気量を減少させた場合、該一方の気筒群では空燃比が低下するためスモークが発生し易くなる。上記によれば、一方の気筒群において、吸気を高スワール化することで気筒内における空燃比の分布をより均一化することができる。これにより、スモークの発生を抑制することができる。   When the intake air amount in the cylinder is reduced in one cylinder group, the air-fuel ratio is lowered in the one cylinder group, and smoke is likely to be generated. According to the above, the air-fuel ratio distribution in the cylinders can be made more uniform by increasing the intake air in one cylinder group. Thereby, generation | occurrence | production of smoke can be suppressed.

本発明によると、排気中に添加された還元剤がEGRガス取出口へ回り込むことをより抑制することができる。したがって、排気中に添加された還元剤がEGR装置に流入することをより抑制することが可能となる。   According to the present invention, it is possible to further suppress the reducing agent added to the exhaust gas from entering the EGR gas outlet. Accordingly, it is possible to further suppress the reducing agent added to the exhaust from flowing into the EGR device.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

図1は、本発明の実施例1に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus according to Embodiment 1 of the present invention is applied and its intake / exhaust system.

図1に示す内燃機関1は、第1気筒#1〜第4気筒#4の4つの気筒を有する水冷式の4サイクル・ディーゼル機関である。   An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders, a first cylinder # 1 to a fourth cylinder # 4.

内燃機関1には、上流側において、各気筒の吸気ポートに吸気マニホルド2が接続されている。吸気マニホルド2には上流側に吸気管3が接続されている。吸気管3の途中には、過給機(ターボチャージャ)4のコンプレッサ4aが配置されている。   An intake manifold 2 is connected to the intake port of each cylinder on the upstream side of the internal combustion engine 1. An intake pipe 3 is connected to the intake manifold 2 on the upstream side. A compressor 4 a of a supercharger (turbocharger) 4 is arranged in the middle of the intake pipe 3.

また、内燃機関1には、下流側において、各気筒の排気ポートを介して排気マニホルドが接続されている。本実施例では、排気マニホルドは、2つに分離している。第1気筒#1及び第4気筒#4には第1排気マニホルド5が接続され、第2気筒#2及び第3気筒#3には第2排気マニホルド6が接続されている第1排気マニホルド5には下流側に第1排気管7が接続されている。また、第2排気マニホルド6には下流側に第2排気管8が接続されている。第1排気マニホルド5及び第1排気管7が本発明に係る第1排気通路に相当する。第2排気マニホルド6及び第2排気管8が本発明に係る第2排気通路に相当する。   Further, an exhaust manifold is connected to the internal combustion engine 1 via an exhaust port of each cylinder on the downstream side. In this embodiment, the exhaust manifold is separated into two. A first exhaust manifold 5 is connected to the first cylinder # 1 and the fourth cylinder # 4, and a second exhaust manifold 6 is connected to the second cylinder # 2 and the third cylinder # 3. The 1st exhaust pipe 7 is connected to the downstream. A second exhaust pipe 8 is connected to the second exhaust manifold 6 on the downstream side. The first exhaust manifold 5 and the first exhaust pipe 7 correspond to the first exhaust passage according to the present invention. The second exhaust manifold 6 and the second exhaust pipe 8 correspond to the second exhaust passage according to the present invention.

第1、第2排気管7,8の下流終端は、過給機(ターボチャージャ)4のタービン4bに接続されている。過給機4は、第1、第2排気管7,8からの排気を受けてタービン4bのタービンロータ46が回転することにより、タービン4bと連結されたコンプレッサ4aが回転して吸気を過給するものである。過給機4は、タービン4b内に可変ノズル41を有する可変容量ターボチャージャ(バリヤブルノズルターボチャージャ)である。   The downstream ends of the first and second exhaust pipes 7 and 8 are connected to a turbine 4 b of a supercharger (turbocharger) 4. The turbocharger 4 receives the exhaust from the first and second exhaust pipes 7 and 8, and the turbine rotor 46 of the turbine 4b rotates, whereby the compressor 4a connected to the turbine 4b rotates and supercharges the intake air. To do. The supercharger 4 is a variable capacity turbocharger (variable nozzle turbocharger) having a variable nozzle 41 in the turbine 4b.

ここで、図2に示すように、タービン4bの第1、第2排気管7,8を接続する入口は2つに分割されており、第1、第2排気管7,8は2つの第1、第2入口42,43にそれぞれ接続される。   Here, as shown in FIG. 2, the inlet connecting the first and second exhaust pipes 7 and 8 of the turbine 4 b is divided into two parts, and the first and second exhaust pipes 7 and 8 are divided into two first parts. 1 and the second inlets 42 and 43, respectively.

また、過給機4は、2つの入口である第1、第2入口42,43から内部の通路も2つに分けられているツインスクロールターボを採用している。第1入口42からは、第1スクロール通路44が延び、第2入口43からは第2スクロール通路45が延びている。第1、第2スクロール通路44,45は、渦巻状に延びており、可変ノズル41へ排気を流出させ、タービンロータ46が該排気で回転させられる。   The supercharger 4 employs a twin scroll turbo in which the internal passages are divided into two from the first and second inlets 42 and 43 which are two inlets. A first scroll passage 44 extends from the first inlet 42, and a second scroll passage 45 extends from the second inlet 43. The first and second scroll passages 44 and 45 extend in a spiral shape, and exhaust gas flows out to the variable nozzle 41, and the turbine rotor 46 is rotated by the exhaust gas.

タービン4bには、タービンロータ46に隣接してベアリングハウジング47が設けられている。ベアリングハウジング47には潤滑油や冷却水が供給される。このため、タービン4bにおけるベアリングハウジング47側の温度は、その反対側の排気流出側に比べて低くなっている。そして、タービン4bにおいては、第2入口43がベアリングハウジング47側に配置されており、第1入口42がベアリングハウジング47から離れた排気流出側に配置されている。   The turbine 4 b is provided with a bearing housing 47 adjacent to the turbine rotor 46. Lubricating oil and cooling water are supplied to the bearing housing 47. For this reason, the temperature on the bearing housing 47 side in the turbine 4b is lower than that on the exhaust outlet side on the opposite side. In the turbine 4 b, the second inlet 43 is disposed on the bearing housing 47 side, and the first inlet 42 is disposed on the exhaust outlet side away from the bearing housing 47.

過給機4のタービン4bの下流には第3排気管9が接続されている。この第3排気管9の途中には、排気浄化触媒としての吸蔵還元型NOx触媒を担持したフィルタ10が配置されている。フィルタ10の下流には不図示のマフラーが配置され、排気はマフラーを経由して大気へ排出される。   A third exhaust pipe 9 is connected downstream of the turbine 4 b of the supercharger 4. In the middle of the third exhaust pipe 9, a filter 10 carrying an NOx storage reduction catalyst as an exhaust purification catalyst is disposed. A muffler (not shown) is disposed downstream of the filter 10, and the exhaust is discharged to the atmosphere via the muffler.

一方、内燃機関1には、排気再循環装置(EGR装置)11が搭載されている。EGR装置11は、排気の一部をEGRガスとして内燃機関1の吸気マニホルド2に還流させることで、内燃機関1の燃焼温度を低下させて排気中に含まれるNOxを低減させるものである。   On the other hand, an exhaust gas recirculation device (EGR device) 11 is mounted on the internal combustion engine 1. The EGR device 11 reduces the NOx contained in the exhaust gas by lowering the combustion temperature of the internal combustion engine 1 by recirculating part of the exhaust gas as EGR gas to the intake manifold 2 of the internal combustion engine 1.

EGR装置11は、一端が第2排気管8に接続され、他端が吸気マニホルド2に接続されたEGR管12を有している。そして、第2排気管8からEGR管12にEGRガスを導くためのEGRガス取出口13は第2排気管8の途中に設けられている。   The EGR device 11 has an EGR pipe 12 having one end connected to the second exhaust pipe 8 and the other end connected to the intake manifold 2. An EGR gas outlet 13 for guiding EGR gas from the second exhaust pipe 8 to the EGR pipe 12 is provided in the middle of the second exhaust pipe 8.

さらに、内燃機関1の第1排気マニホルド5には、還元剤添加手段としての還元剤添加ノズル14が取り付けられている。還元剤添加ノズル14は、排気中に還元剤としての燃料を添加する。還元剤添加ノズル14は、第1排気マニホルド5の気筒#1の直下流に配置されている。   Further, a reducing agent addition nozzle 14 as a reducing agent addition means is attached to the first exhaust manifold 5 of the internal combustion engine 1. The reducing agent addition nozzle 14 adds fuel as a reducing agent into the exhaust gas. The reducing agent addition nozzle 14 is disposed immediately downstream of the cylinder # 1 of the first exhaust manifold 5.

以上の構成の内燃機関1には、内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)15が併設されている。このECU15は、CPU、ROM、RAM、バックアップRAMなどからなる制御コンピュータである。   The internal combustion engine 1 having the above configuration is provided with an electronic control unit (ECU) 15 for controlling the internal combustion engine 1. The ECU 15 is a control computer including a CPU, a ROM, a RAM, a backup RAM, and the like.

そして、ECU15は、ROMに記憶されたプログラムに従って動作し、EGR装置11を用いたEGR運転や、還元剤添加ノズル14を用いた還元剤添加を実行する。   The ECU 15 operates in accordance with a program stored in the ROM, and executes an EGR operation using the EGR device 11 and a reducing agent addition using the reducing agent addition nozzle 14.

ここで、EGR運転とは、内燃機関1における燃焼温度を低下させてNOxの生成を抑制するために、内燃機関1の運転状態が、排気圧力が吸気圧力よりも高い所定の運転領域にあるときに、EGR管12を介して排気の一部を吸気マニホルド2に導入するものである。   Here, the EGR operation is when the operation state of the internal combustion engine 1 is in a predetermined operation region where the exhaust pressure is higher than the intake pressure in order to reduce the combustion temperature in the internal combustion engine 1 and suppress the generation of NOx. In addition, a part of the exhaust gas is introduced into the intake manifold 2 via the EGR pipe 12.

また、還元剤添加とは、還元剤添加ノズル14から燃料を添加するものである。これは、NOx還元処理、SOx被毒解消処理、PM酸化除去処理などといったフィルタ10に対する処理時に行われる。   The addition of reducing agent is to add fuel from the reducing agent addition nozzle 14. This is performed during processing on the filter 10 such as NOx reduction processing, SOx poisoning elimination processing, PM oxidation removal processing, and the like.

なお、NOx還元処理は、還元剤添加ノズル14から排気中へ還元剤たる燃料を添加させることにより、フィルタ10のNOx触媒に流入する排気の空燃比をリッチ空燃比とし、NOx触媒に吸蔵されたNOxを放出・還元する処理である。SOx被毒解消処理は、触媒温度が600℃〜800℃のときに還元剤添加ノズル14から排気中へ還元剤たる燃料を添加させることにより、フィルタ10のNOx触媒に流入する排気の空燃比をリッチ空燃比とし、NOx触媒に吸蔵されたSOxを放出及び還元させる処理である。PM酸化除去処理は、還元剤添加ノズル14から排気中へ還元剤たる燃料を添加させることにより、それらの未燃燃料成分をフィルタ10のNOx触媒において酸化させ、酸化の際に発生する熱によってフィルタ10の温度を高めフィルタ10に捕集されたPMを除去する処理である。   In the NOx reduction process, the fuel as the reducing agent is added from the reducing agent addition nozzle 14 into the exhaust gas, so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst of the filter 10 is changed to the rich air-fuel ratio and stored in the NOx catalyst. This is a process for releasing / reducing NOx. In the SOx poisoning elimination process, when the catalyst temperature is 600 ° C. to 800 ° C., the fuel as the reducing agent is added from the reducing agent addition nozzle 14 into the exhaust gas, thereby reducing the air-fuel ratio of the exhaust gas flowing into the NOx catalyst of the filter 10. This is a process for releasing and reducing SOx stored in the NOx catalyst with a rich air-fuel ratio. In the PM oxidation removal process, fuel as a reducing agent is added into the exhaust gas from the reducing agent addition nozzle 14 to oxidize those unburned fuel components in the NOx catalyst of the filter 10 and filter the heat generated during the oxidation. 10 is a process for increasing the temperature of 10 and removing PM trapped in the filter 10.

本実施例では、第1排気マニホルド5に還元剤添加ノズル14を設け、第2排気管8にEGR装置11のEGRガス取出口13を設けている。そして、第1、第2排気管7,8は、ツインスクロールターボである過給機4のタービン4bの2分割された第1、第2入口42,43のそれぞれに接続される。   In the present embodiment, a reducing agent addition nozzle 14 is provided in the first exhaust manifold 5, and an EGR gas outlet 13 of the EGR device 11 is provided in the second exhaust pipe 8. The first and second exhaust pipes 7 and 8 are connected to the two divided first and second inlets 42 and 43 of the turbine 4b of the supercharger 4 which is a twin scroll turbo.

すなわち、本実施例では、第1、第2排気マニホルド5,6及び第1、第2排気管7,8からのそれぞれの排気は、これら第1、第2排気管7,8の下流に配置されたタービン4b内でも分離されたままで、大部分が混ざり合うことなく分離したままタービンロータ46に流入する。よって、第1排気マニホルド5及び第1排気管7の排気は、タービン4bを経由してから第2排気管8に回り込み難く、第2排気管8のEGRガス取出口13まで到達することが抑制される。したがって、EGR運転時に還元剤添加ノズル14から燃料添加が行われても、添加した燃料がEGRガス取出口13へ回り込むことをより抑制することができる。したがって、排気中に添加された還元剤がEGR装置11に流入することをより抑制することができる。   That is, in the present embodiment, the respective exhausts from the first and second exhaust manifolds 5 and 6 and the first and second exhaust pipes 7 and 8 are arranged downstream of the first and second exhaust pipes 7 and 8. Even in the turbine 4b that has been separated, it flows into the turbine rotor 46 while being separated without being mostly mixed. Therefore, the exhaust from the first exhaust manifold 5 and the first exhaust pipe 7 is less likely to enter the second exhaust pipe 8 after passing through the turbine 4b, and is prevented from reaching the EGR gas outlet 13 of the second exhaust pipe 8. Is done. Therefore, even if fuel is added from the reducing agent addition nozzle 14 during the EGR operation, it is possible to further suppress the added fuel from entering the EGR gas outlet 13. Therefore, it can suppress more that the reducing agent added in exhaust_gas | exhaustion flows into the EGR apparatus 11. FIG.

これにより、還元剤たる燃料が吸気系へ回り込むことに起因するトルク変動や排気エミッションの悪化を低減できる。また、還元剤添加をできるだけ少ない添加燃料でより効率的に行うことができる。   As a result, it is possible to reduce torque fluctuations and exhaust emission deterioration caused by the fuel as the reducing agent flowing into the intake system. Further, the reducing agent can be added more efficiently with as little added fuel as possible.

加えて、過給機4は、ツインスクロールターボであり、第1、第2入口42,43のそれぞれから第1、第2スクロール通路44,45が設けられており、タービン4b内でも第1、第2排気管7,8からの排気を分離している。このため、第1排気マニホルド5及び第1排気管7の排気は、タービン4b内を経由しても極めて第2排気管8に回り込み難
く、第2排気管8のEGRガス取出口13まで到達することが抑制される。
In addition, the supercharger 4 is a twin scroll turbo, and first and second scroll passages 44 and 45 are provided from the first and second inlets 42 and 43, respectively. The exhaust from the second exhaust pipes 7 and 8 is separated. For this reason, the exhaust gas from the first exhaust manifold 5 and the first exhaust pipe 7 reaches the EGR gas outlet 13 of the second exhaust pipe 8 without being easily routed to the second exhaust pipe 8 even through the turbine 4b. It is suppressed.

また、第1入口42は、図2に示すように、第1排気管7から排出した排気がツインスクロールターボである過給機4のタービン4bの相対的に温度が高い部分となる排気流出側の第1スクロール通路44を通過するような位置に配置されている。   Further, as shown in FIG. 2, the first inlet 42 is an exhaust outflow side where the exhaust discharged from the first exhaust pipe 7 is a portion where the temperature of the turbine 4 b of the turbocharger 4 is a twin scroll turbo is relatively high. The first scroll passage 44 is disposed at such a position.

第1排気マニホルド5において排気中に添加されタービン4bに流入した燃料は周囲温度が低下すると該タービン4b内に付着し易くなる。また、燃料がタービン4b内に付着すると該燃料が接合剤となって排気中の粒子状物質がタービン内に堆積し易くなる。しかし、図2のように、第1入口42が配置されていると、還元剤添加ノズル14から燃料を添加された第1排気マニホルド5の排気がタービン4bの相対的に温度が高い部分である排気流出側の第1スクロール通路44を通過することになる。そのため、還元剤たる燃料がタービン4b内に付着することを抑制することができる。また、付着した燃料に起因してタービン4b内の例えば可変ノズル41と第1スクロール通路44との間などに粒子状物質が堆積することを抑制することができる。   The fuel added to the exhaust gas in the first exhaust manifold 5 and flowing into the turbine 4b tends to adhere to the turbine 4b when the ambient temperature decreases. Further, when the fuel adheres to the turbine 4b, the fuel becomes a bonding agent, and particulate matter in the exhaust gas easily accumulates in the turbine. However, as shown in FIG. 2, when the first inlet 42 is arranged, the exhaust of the first exhaust manifold 5 to which fuel is added from the reducing agent addition nozzle 14 is a portion where the temperature of the turbine 4b is relatively high. It passes through the first scroll passage 44 on the exhaust outlet side. Therefore, it can suppress that the fuel which is a reducing agent adheres in the turbine 4b. Further, it is possible to suppress the particulate matter from being deposited, for example, between the variable nozzle 41 and the first scroll passage 44 in the turbine 4b due to the attached fuel.

さらに、EGRガス取出口13が第2排気マニホルド6の下流側の第2排気管8の途中に設けられることで、EGRガスの流れをスムーズにし、圧損を低くして燃費を良好に維持することができる。   Furthermore, by providing the EGR gas outlet 13 in the middle of the second exhaust pipe 8 on the downstream side of the second exhaust manifold 6, the flow of the EGR gas can be made smooth, the pressure loss can be reduced, and the fuel efficiency can be maintained well. Can do.

図3は、本発明の実施例2に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。なお、本実施例では、実施例1と異なる点についてのみ説明する。   FIG. 3 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust purification system according to Embodiment 2 of the present invention is applied and its intake / exhaust system. In the present embodiment, only differences from the first embodiment will be described.

本実施例では、内燃機関1は、各気筒における吸気弁のバルブタイミングを制御する可変動弁機構16を備えている。可変動弁機構16は、ECU15に電気的に接続されている。   In this embodiment, the internal combustion engine 1 includes a variable valve mechanism 16 that controls the valve timing of the intake valve in each cylinder. The variable valve mechanism 16 is electrically connected to the ECU 15.

そして、可変動弁機構16を用い、第1排気マニホルド5に接続される第1、第4気筒#1、#4における気筒内の吸入空気量を、第2排気マニホルド6に接続される第2、第3気筒#2、#3における気筒内の吸入空気量よりも少なくする。   Then, using the variable valve mechanism 16, the intake air amount in the cylinders of the first and fourth cylinders # 1 and # 4 connected to the first exhaust manifold 5 is changed to the second exhaust manifold 6. The amount of intake air in the cylinders in the third cylinders # 2 and # 3 is made smaller.

具体的には、第1、第4気筒#1、#4における吸気弁の閉弁時期を第2、第3気筒#2、#3における吸気弁の閉弁時期に比べて遅角させる。この制御を行う可変動弁機構16及びECU14が吸入空気量調整手段に相当する。   Specifically, the closing timing of the intake valves in the first and fourth cylinders # 1 and # 4 is retarded compared to the closing timing of the intake valves in the second and third cylinders # 2 and # 3. The variable valve mechanism 16 and the ECU 14 that perform this control correspond to intake air amount adjusting means.

このように、第1、第4気筒#1、#4における気筒内の吸入空気量を少なくすると、吸入空気量の少ない第1、第4気筒#1、#4から排出される排気の温度を上昇させることができる。したがって、第1排気マニホルド5及び第1排気管7の排気の温度を、第2排気マニホルド6及び第2排気管8の排気よりも高くすることができる。このため、第1排気マニホルド6の排気に還元剤添加ノズル14から還元剤たる燃料を添加しても、燃料は高温の排気中では第1排気マニホルド5及び第1排気管7内やタービン4b内に付着し難く、まして付着に起因して粒子状物質を堆積させる接合剤とはなり難くなる。   Thus, if the intake air amount in the cylinders of the first and fourth cylinders # 1 and # 4 is reduced, the temperature of the exhaust gas discharged from the first and fourth cylinders # 1 and # 4 having a small intake air amount is reduced. Can be raised. Accordingly, the exhaust temperature of the first exhaust manifold 5 and the first exhaust pipe 7 can be made higher than the exhaust temperature of the second exhaust manifold 6 and the second exhaust pipe 8. For this reason, even if fuel as a reducing agent is added from the reducing agent addition nozzle 14 to the exhaust of the first exhaust manifold 6, the fuel is in the first exhaust manifold 5 and the first exhaust pipe 7 or in the turbine 4b in the high-temperature exhaust. It is difficult to become a bonding agent for depositing particulate matter due to adhesion.

また、このように第1排気マニホルド5及び第1排気管7の排気が昇温されると、高温の排気中では還元剤たる燃料の気化を促進できるため、フィルタ10をより効率的に昇温させたり、該フィルタ10における排気の浄化をより効率的に行ったりすることができる。   Further, when the temperature of the exhaust of the first exhaust manifold 5 and the first exhaust pipe 7 is increased in this way, the vaporization of the fuel as the reducing agent can be promoted in the high-temperature exhaust, so that the temperature of the filter 10 can be increased more efficiently. Or purification of exhaust gas in the filter 10 can be performed more efficiently.

図4は、本発明の実施例3に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。なお、本実施例では、実施例1と異なる点についてのみ説明する。   FIG. 4 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus according to Embodiment 3 of the present invention is applied and its intake / exhaust system. In the present embodiment, only differences from the first embodiment will be described.

本実施例では、内燃機関1は、各気筒における吸気ポートにスワールコントロールバルブ(SCV)17を装着している。該スワールコントロールバルブ17はECU15に電気的に接続されている。スワールコントロールバルブ17は気筒毎に別々に制御することが可能となっている。ECU15は各気筒に対応するスワールコントロールバルブ17のそれぞれを開閉制御して各気筒内に生じる渦流の強弱を調整する。   In this embodiment, the internal combustion engine 1 is equipped with a swirl control valve (SCV) 17 at the intake port of each cylinder. The swirl control valve 17 is electrically connected to the ECU 15. The swirl control valve 17 can be controlled separately for each cylinder. The ECU 15 controls the opening and closing of each swirl control valve 17 corresponding to each cylinder to adjust the strength of the vortex generated in each cylinder.

そして、スワールコントロールバルブ17を用い、第1排気マニホルド5に接続される第1、第4気筒#1、#4への吸気を、第2排気マニホルド6に接続される第2、第3気筒#2、#3への吸気よりも高スワール化させる。   Then, the swirl control valve 17 is used to intake air to the first and fourth cylinders # 1 and # 4 connected to the first exhaust manifold 5 and to the second and third cylinders # connected to the second exhaust manifold 6. 2. Swirl higher than intake to # 3.

具体的には、第2、第3気筒#2、#3では、スワールコントロールバルブ17を開き気味にさせ、吸気量をより多くする。一方、第1、第4気筒#1、#4では、スワールコントロールバルブ17を閉じ気味にさせ、吸気量をより少なくすると共に第1、第4気筒#1、#4内に生じるスワールを強く(高スワール化)する。   Specifically, in the second and third cylinders # 2 and # 3, the swirl control valve 17 is opened and the intake amount is increased. On the other hand, in the first and fourth cylinders # 1 and # 4, the swirl control valve 17 is closed and the intake amount is reduced, and the swirl generated in the first and fourth cylinders # 1 and # 4 is increased ( High swirl).

このように、第1、第4気筒#1、#4内の高スワール化し、かつ、第1、第4気筒#1、#4における気筒内の吸気量を少なくすると、吸入空気量の少ない第1、第4気筒#1、#4から排出される排気の温度を上昇させることができる。したがって、第1排気マニホルド5及び第1排気管7の排気の温度を、第2排気マニホルド6及び第2排気管8の排気よりも高くすることができる。このため、第1排気マニホルド6の排気に還元剤添加ノズル14から還元剤たる燃料を添加しても、燃料は高温の排気中では第1排気マニホルド5及び第1排気管7内やタービン4b内に付着し難く、まして付着に起因して粒子状物質を堆積させる接合剤とはなり難くなる。   As described above, when the swirl in the first and fourth cylinders # 1 and # 4 is increased and the intake air amount in the first and fourth cylinders # 1 and # 4 is reduced, the intake air amount is reduced. 1. The temperature of exhaust discharged from the fourth cylinders # 1 and # 4 can be raised. Accordingly, the exhaust temperature of the first exhaust manifold 5 and the first exhaust pipe 7 can be made higher than the exhaust temperature of the second exhaust manifold 6 and the second exhaust pipe 8. For this reason, even if fuel as a reducing agent is added from the reducing agent addition nozzle 14 to the exhaust of the first exhaust manifold 6, the fuel is in the first exhaust manifold 5 and the first exhaust pipe 7 or in the turbine 4b in the high-temperature exhaust. It is difficult to become a bonding agent for depositing particulate matter due to adhesion.

また、このように第1排気マニホルド5及び第1排気管7の排気が昇温されると、高温の排気中では還元剤たる燃料の気化を促進できるため、フィルタ10をより効率的に昇温させたり、該フィルタ10における排気の浄化をより効率的に行ったりすることができる。   Further, when the temperature of the exhaust of the first exhaust manifold 5 and the first exhaust pipe 7 is increased in this way, the vaporization of the fuel as the reducing agent can be promoted in the high-temperature exhaust, so that the temperature of the filter 10 can be increased more efficiently. Or purification of exhaust gas in the filter 10 can be performed more efficiently.

ここで、第1、第4気筒#1、#4において気筒内の吸入空気量を減少させた場合、該第1、第4気筒#1、#4では空燃比が低下するためスモークが発生し易くなる。しかし、スワールコントロールバルブ17によって、第1、第4気筒#1、#4において、吸気を高スワール化することで気筒内における空燃比の分布をより均一化することができる。これにより、スモークの発生を抑制することができる。   Here, when the intake air amount in the first and fourth cylinders # 1 and # 4 is decreased, smoke is generated in the first and fourth cylinders # 1 and # 4 because the air-fuel ratio decreases. It becomes easy. However, the swirl control valve 17 can make the air-fuel ratio distribution in the cylinders more uniform by increasing the intake air in the first and fourth cylinders # 1 and # 4. Thereby, generation | occurrence | production of smoke can be suppressed.

実施例1に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus according to Embodiment 1 is applied and an intake / exhaust system thereof. 実施例1に係るタービンの概略構成を示す図である。1 is a diagram illustrating a schematic configuration of a turbine according to Embodiment 1. FIG. 実施例2に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which the exhaust gas purification apparatus which concerns on Example 2 is applied, and its intake / exhaust system. 実施例3に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which the exhaust gas purification apparatus which concerns on Example 3 is applied, and its intake / exhaust system.

符号の説明Explanation of symbols

1 内燃機関
2 吸気マニホルド
3 吸気管
4 過給機
4a コンプレッサ
4b タービン
5 第1排気マニホルド
6 第2排気マニホルド
7 第1排気管
8 第2排気管
9 第3排気管
10 フィルタ
11 EGR装置
12 EGR管
13 EGRガス取出口
14 還元剤添加ノズル
15 ECU
16 可変動弁機構
17 スワールコントロールバルブ
46 タービンロータ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake manifold 3 Intake pipe 4 Supercharger 4a Compressor 4b Turbine 5 1st exhaust manifold 6 2nd exhaust manifold 7 1st exhaust pipe 8 2nd exhaust pipe 9 3rd exhaust pipe 10 Filter 11 EGR apparatus 12 EGR pipe 13 EGR gas outlet 14 Reducing agent addition nozzle 15 ECU
16 Variable valve mechanism 17 Swirl control valve 46 Turbine rotor

Claims (3)

複数の気筒を有する内燃機関からの排気によってタービンロータが駆動されるタービンを有する過給機と、
前記内燃機関の一方の気筒群から延びる第1排気通路と、
前記内燃機関の他方の気筒群から延びる第2排気通路と、
前記タービンから下流側に延びる第3排気通路と、
該第3排気通路に配置された排気浄化触媒と、
排気に還元剤を添加する還元剤添加手段と、
排気の一部をEGRガスとして吸気系に供給するEGR装置と、
を備える内燃機関の排気浄化装置であって、
前記第1排気通路に前記還元剤添加手段を設け、
前記第2排気通路に前記EGR装置のEGRガス取出口を設け、
前記第1排気通路及び前記第2排気通路からのそれぞれの排気は、大部分が混ざり合うことなく分離したまま前記タービンロータに流入するものであって、
前記一方の気筒群における気筒内の吸入空気量を前記他方の気筒群における気筒内の吸入空気量よりも少なくする吸入空気量調整手段を備えることを特徴とする内燃機関の排気浄化装置。
A turbocharger having a turbine in which a turbine rotor is driven by exhaust from an internal combustion engine having a plurality of cylinders;
A first exhaust passage extending from one cylinder group of the internal combustion engine;
A second exhaust passage extending from the other cylinder group of the internal combustion engine;
A third exhaust passage extending downstream from the turbine;
An exhaust purification catalyst disposed in the third exhaust passage;
Reducing agent addition means for adding a reducing agent to the exhaust;
An EGR device that supplies a part of the exhaust gas as EGR gas to the intake system;
An exhaust purification device for an internal combustion engine comprising:
Providing the reducing agent adding means in the first exhaust passage;
An EGR gas outlet of the EGR device is provided in the second exhaust passage;
Each of the exhaust from the first exhaust passage and the second exhaust passage flows into the turbine rotor while being largely separated without being mixed ,
An exhaust emission control device for an internal combustion engine, comprising: an intake air amount adjusting means for making an intake air amount in a cylinder in the one cylinder group smaller than an intake air amount in a cylinder in the other cylinder group .
前記第1排気通路から前記タービンに流入した排気は、該タービンの相対的に温度が高い部分を通過することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas flowing into the turbine from the first exhaust passage passes through a portion of the turbine having a relatively high temperature. 前記一方の気筒群への吸気を前記他方の気筒群への吸気よりも高スワール化させるスワール制御手段を備えることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。 The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2 , further comprising swirl control means for making the intake air to the one cylinder group have a higher swirl than the intake air to the other cylinder group.
JP2005320583A 2005-11-04 2005-11-04 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4363395B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005320583A JP4363395B2 (en) 2005-11-04 2005-11-04 Exhaust gas purification device for internal combustion engine
DE102006049392A DE102006049392B4 (en) 2005-11-04 2006-10-19 Exhaust emission control system for an internal combustion engine
FR0654711A FR2893083B1 (en) 2005-11-04 2006-11-03 EMISSION CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320583A JP4363395B2 (en) 2005-11-04 2005-11-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007127058A JP2007127058A (en) 2007-05-24
JP4363395B2 true JP4363395B2 (en) 2009-11-11

Family

ID=37950097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320583A Expired - Fee Related JP4363395B2 (en) 2005-11-04 2005-11-04 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP4363395B2 (en)
DE (1) DE102006049392B4 (en)
FR (1) FR2893083B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513106B2 (en) 2006-11-01 2009-04-07 Cummins, Inc. Method for hydrocarbon injection into an exhaust system, upstream of a turbocharger, while minimizing exposure of the exhaust gas recirculation system to the same hydrocarbons
DE102007057310A1 (en) 2007-11-28 2009-06-04 Continental Automotive Gmbh Internal combustion engine, has exhaust manifolds supplying exhaust gas into turbocharger that is connectable to engine and integral with respective assigned cylinder heads of cylinders
DE102009004418A1 (en) 2009-01-13 2010-07-15 Man Nutzfahrzeuge Ag A method for the aftertreatment of an exhaust gas stream of a multi-cylinder internal combustion engine of a vehicle and exhaust aftertreatment device
EP2559888B1 (en) * 2010-04-12 2016-05-11 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
US9976499B2 (en) 2010-09-23 2018-05-22 General Electric Company Engine system and method
US20120078492A1 (en) * 2010-09-23 2012-03-29 General Electric Company Engine system and method
DE102011113809A1 (en) * 2011-09-20 2013-03-21 Volkswagen Aktiengesellschaft Exhaust system for an internal combustion engine
DE102012018967B4 (en) * 2012-09-26 2024-09-26 Daimler Truck AG Method for regenerating a particle filter and arrangement of an exhaust system on an internal combustion engine of a vehicle
JP2016191373A (en) * 2015-03-31 2016-11-10 株式会社豊田自動織機 Internal combustion engine
JP6503274B2 (en) * 2015-09-28 2019-04-17 株式会社豊田自動織機 Exhaust gas recirculation system for internal combustion engine
SE540234C2 (en) * 2016-09-30 2018-05-08 Scania Cv Ab Multiple bank exhaust system for a turbocharged internal combustion engine comprising reductant supply system
WO2019174706A1 (en) 2018-03-12 2019-09-19 Volvo Truck Corporation Method for controlling an internal combustion engine arrangement
CN110939499A (en) * 2018-09-25 2020-03-31 福爱电子(贵州)有限公司 Hydrocarbon nozzle and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179892A (en) * 1977-12-27 1979-12-25 Cummins Engine Company, Inc. Internal combustion engine with exhaust gas recirculation
DE19857234C2 (en) * 1998-12-11 2000-09-28 Daimler Chrysler Ag Exhaust gas recirculation device
JP4184732B2 (en) * 2002-08-09 2008-11-19 株式会社豊田自動織機 Exhaust gas purification device for internal combustion engine
US6871642B1 (en) * 2004-02-27 2005-03-29 Daimlerchrysler Ag Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device and method of operating same

Also Published As

Publication number Publication date
FR2893083B1 (en) 2010-09-03
DE102006049392A1 (en) 2007-05-10
DE102006049392B4 (en) 2012-03-01
FR2893083A1 (en) 2007-05-11
JP2007127058A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4363395B2 (en) Exhaust gas purification device for internal combustion engine
JP4792997B2 (en) Exhaust gas purification system for internal combustion engine
JP5259822B2 (en) Exhaust turbocharger for automobile internal combustion engine
US8250866B2 (en) EGR extraction immediately downstream pre-turbo catalyst
EP1873366B1 (en) Control strategy for turbocharged diesel engines
JP4811366B2 (en) Exhaust control device for internal combustion engine
JP2012518115A (en) Exhaust manifold for reciprocating engine with turbocharger
JP4862604B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4735390B2 (en) Supercharged internal combustion engine with oxygen enrichment device
JP2013002302A (en) Exhaust system of internal combustion engine
WO2005003536A1 (en) Diesel engine exhaust gas purifier and control means
JP2010255525A (en) Internal combustion engine and method for controlling the same
JP6369430B2 (en) Exhaust system for turbocharged engine
JP2009235944A (en) Supercharging apparatus for engine
JP4737151B2 (en) Exhaust system for internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP2006046252A (en) Exhaust emission control method and engine provided with exhaust emission control device
JP5168268B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4552763B2 (en) Control device for internal combustion engine
JP6593082B2 (en) Intake and exhaust system for internal combustion engine
JP2007285265A (en) Exhaust structure for exhaust system
JP2005054620A (en) Internal combustion engine with supercharger
JP4499961B2 (en) Multi-cylinder supercharged engine
JP2005282380A (en) Engine exhaust gas recirculation device
JP6838380B2 (en) Internal combustion engine intake / exhaust structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees