JP4735390B2 - Supercharged internal combustion engine with oxygen enrichment device - Google Patents

Supercharged internal combustion engine with oxygen enrichment device Download PDF

Info

Publication number
JP4735390B2
JP4735390B2 JP2006116774A JP2006116774A JP4735390B2 JP 4735390 B2 JP4735390 B2 JP 4735390B2 JP 2006116774 A JP2006116774 A JP 2006116774A JP 2006116774 A JP2006116774 A JP 2006116774A JP 4735390 B2 JP4735390 B2 JP 4735390B2
Authority
JP
Japan
Prior art keywords
oxygen
passage
internal combustion
combustion engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006116774A
Other languages
Japanese (ja)
Other versions
JP2007285281A (en
Inventor
直基 島▼崎▲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006116774A priority Critical patent/JP4735390B2/en
Publication of JP2007285281A publication Critical patent/JP2007285281A/en
Application granted granted Critical
Publication of JP4735390B2 publication Critical patent/JP4735390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、EGRシステムを備えると共に、吸気通路に酸素富化装置を備えた内燃機関に関する。   The present invention relates to an internal combustion engine including an EGR system and an oxygen enrichment device in an intake passage.

自動車搭載の内燃機関においては、近年、NOx規制値が厳しくなってきているため、EGR(排気再循環)の適用を内燃機関の全運転領域に拡大する傾向にあり、現在のEGRシステムでは、EGR弁の制御だけでなく、吸気絞り、リード弁、排気絞り等を使用して、必要なEGR量を確保している。   In internal combustion engines mounted on automobiles, NOx regulation values have become stricter in recent years, and therefore, the application of EGR (exhaust gas recirculation) tends to be expanded to the entire operating range of internal combustion engines. In the current EGR system, In addition to the control of the valve, an intake throttle, a reed valve, an exhaust throttle, etc. are used to secure the necessary EGR amount.

しかしながら、過給器付き内燃機関は、内燃機関の高負荷時には吸気圧力が高くなってEGR量を確保し難くなるので、排気圧力を吸気圧力よりも高く維持する必要があり、そのため、燃費が悪化するという問題がある。   However, in an internal combustion engine with a supercharger, when the internal combustion engine is under a high load, the intake pressure becomes high and it becomes difficult to secure the EGR amount. Therefore, it is necessary to maintain the exhaust pressure higher than the intake pressure, and therefore the fuel consumption deteriorates. There is a problem of doing.

また、内燃期間の軽負荷時では、PCI(Premixed Compression Ignition :予混合圧縮着火)燃焼の適用等のため、高いEGR率が必要となるが、このEGRガスの冷却が不十分であると吸気温度が上昇し吸気の密度が低下する。そのため、筒内(シリンダ内)に供給される酸素量が減少して、燃料の噴射量を増加したくても筒内の空気過剰率λが1以下となるためできない。その結果、PCI燃焼ができないという問題がある。一方、この多量のEGRガスを冷却しようとすると、大容量EGRクーラーが必要となるが、EGRクーラーにおける熱交換量には限界があり、実用的でないという問題がある。   Further, at the time of a light load during the internal combustion period, a high EGR rate is required for the application of PCI (Premixed Compression Ignition) combustion, etc., but if the EGR gas is not sufficiently cooled, the intake air temperature Increases and the intake air density decreases. Therefore, even if the amount of oxygen supplied into the cylinder (inside the cylinder) is reduced and the fuel injection amount is desired to be increased, the excess air ratio λ in the cylinder cannot be 1 or less. As a result, there is a problem that PCI combustion cannot be performed. On the other hand, if this large amount of EGR gas is to be cooled, a large-capacity EGR cooler is required, but there is a problem that the amount of heat exchange in the EGR cooler is limited and not practical.

一方、EGRシステムの代りに、酸素富化装置(又は、窒素富化装置)を用いて、酸素濃度を低減させた吸気(窒素富化空気)をシリンダ内に供給して燃焼温度を低下させるシステムが提案されている(例えば、特許文献1及び特許文献2参照。)。 On the other hand, instead of the EGR system, an oxygen enrichment device (or nitrogen enrichment device) is used to supply intake air (nitrogen enriched air) with a reduced oxygen concentration into the cylinder to lower the combustion temperature. Has been proposed (see, for example, Patent Document 1 and Patent Document 2).

また、酸素富化装置で発生する酸素富化空気を、内燃機関をバイパスするバイパス管を経由させて排気管の酸化触媒へ供給して排気ガス中のHC及びPM(粒子状物質)のSOF成分の酸化を促進するシステムも提案されている(例えば、特許文献3及び特許文献4参照。)。   Also, the oxygen-enriched air generated in the oxygen enricher is supplied to the oxidation catalyst of the exhaust pipe via a bypass pipe that bypasses the internal combustion engine, and the SOF components of HC and PM (particulate matter) in the exhaust gas A system that promotes the oxidation of is also proposed (see, for example, Patent Document 3 and Patent Document 4).

しかしながら、最近の内燃機関では、全負荷の運転状態においてもEGRを適用することが要求されてきており、EGR流路を廃止して、EGRシステムの代りに酸素富化装置を用いる場合には、膨大な窒素富化空気が必要になるので、酸素富化膜等で空気中の酸素と窒素を富化するためには、多量の空気を加圧する必要が生じ、この仕事量のために燃費が著しく悪化するという問題がある。
特許第2864896号公報(第3実施例、図20) 特許第2535281号公報 実開平5−87259号公報 実公平7−3007号公報
However, in recent internal combustion engines, it has been required to apply EGR even in a full load operation state. When the EGR flow path is abolished and an oxygen enrichment device is used instead of the EGR system, Since a large amount of nitrogen-enriched air is required, in order to enrich oxygen and nitrogen in the air with an oxygen-enriched membrane, etc., it is necessary to pressurize a large amount of air, and this work amount reduces fuel consumption. There is a problem of getting worse.
Japanese Patent No. 2864896 (Third Example, FIG. 20) Japanese Patent No. 2535281 Japanese Utility Model Publication No. 5-87259 No. 7-3007

本発明は、上記の問題を解決するためになされたものであり、その目的は、EGRシステムと酸素富化装置の併用により、簡単な構成で、全負荷の運転状態において、燃費の悪化を抑制しながら、燃焼温度を低下してNOxの発生を防止できる酸素富化装置を備えた過給器付き内燃機関を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to suppress deterioration of fuel consumption in a full-load operation state with a simple configuration by using an EGR system and an oxygen enricher in combination. An object of the present invention is to provide a supercharged internal combustion engine equipped with an oxygen enrichment device that can reduce the combustion temperature and prevent the generation of NOx.

上記のような目的を達成するための酸素富化装置を備えた過給器付き内燃機関は、EGRシステムと排気通路に酸化触媒を担持した排気ガス浄化装置を備え、吸気を低酸素濃度ガスと高濃度酸素ガスとに分ける酸素富化装置を吸気通路に設けると共に、過給器のコンプレッサを前記酸素富化装置の上流側の吸気通路に設けている過給器付き内燃機関において、前記酸素富化装置により分けられた低濃度酸素ガスを吸気系通路に供給すると共に、前記酸素富化装置により分けられた高濃度酸素ガスを前記排気ガス浄化装置の上流側の排気通路と吸気系通路のどちらかを選択して供給する通路切替手段を有し、該通路切替手段は、アクセル開度の開く速度が所定値以下のときに高酸素濃度ガスを前記排気ガス浄化装置の上流側の排気通路に供給するように構成される。 An internal combustion engine with a supercharger equipped with an oxygen enricher for achieving the above object comprises an EGR system and an exhaust gas purifying device carrying an oxidation catalyst in an exhaust passage, and the intake air and a low oxygen concentration gas In the internal combustion engine with a supercharger in which an oxygen enrichment device that divides into high-concentration oxygen gas is provided in the intake passage, and a compressor of the supercharger is provided in the intake passage upstream of the oxygen enrichment device, The low-concentration oxygen gas divided by the gasification device is supplied to the intake system passage, and the high-concentration oxygen gas divided by the oxygen enrichment device is supplied to either the exhaust passage or the intake system passage upstream of the exhaust gas purification device. Passage switching means for selectively supplying the high-concentration gas to the upstream exhaust passage of the exhaust gas purifying device when the opening speed of the accelerator opening is equal to or lower than a predetermined value. Supply Configured.

この吸気系通路とは、吸気管や吸気マニホールド等の吸気マニホールドに吸気を導く通路部分であればよく、インタークーラーの入口側等であってもよい。また、通路切替手段は、三方弁等の切替弁で構成できるが、2つの通路にそれぞれ設けた開閉弁で構成してもよい。   The intake system passage may be a passage portion that guides intake air to an intake manifold such as an intake pipe or an intake manifold, and may be an inlet side of an intercooler or the like. The passage switching means can be constituted by a switching valve such as a three-way valve, but may be constituted by on-off valves respectively provided in two passages.

この構成によれば、低酸素濃度ガスを吸気マニホールド等の吸気系通路を経て筒内(シリンダ内)に導入することにより、EGRと同様な効果を得ることができ、EGRシステムのEGRを補助できる。従って、高EGR率が必要な高負荷時においては、EGRと低酸素濃度ガスの吸気マニホールドへの供給とを併用することができるので、EGRシステム、特にEGRクーラーを大きくする必要がなくなる。更に、EGRが必要な場合、新気の酸素濃度が低いと排気から吸気へ還流するEGRガス量が少なくてすむため、低酸素濃度ガスを供給することにより、空気をそのまま供給する場合よりも、幅広い運転領域で、PCI(Premixed Compression Ignition )燃焼を適用できるようになる。   According to this configuration, by introducing the low oxygen concentration gas into the cylinder (inside the cylinder) through the intake system passage such as the intake manifold, it is possible to obtain the same effect as EGR and assist the EGR of the EGR system. . Therefore, at the time of a high load that requires a high EGR rate, EGR and the supply of the low oxygen concentration gas to the intake manifold can be used together, so that it is not necessary to increase the size of the EGR system, particularly the EGR cooler. Furthermore, when EGR is required, since the amount of EGR gas that recirculates from the exhaust to the intake can be reduced if the oxygen concentration of the fresh air is low, by supplying the low oxygen concentration gas, the air is supplied as it is. PCI (Premixed Compression Ignition) combustion can be applied in a wide range of operation.

このPCI燃焼(予混合圧縮着火燃焼)は、予混合を積極的に取り入れて、混合気全体を希薄化して燃焼温度を低温化して、スモークの低減のみならずNOxの低減も図ることができる燃焼である。   In this PCI combustion (premixed compression ignition combustion), premixing is actively introduced and the entire mixture is diluted to lower the combustion temperature, so that not only smoke but also NOx can be reduced. It is.

そして、上記の酸素富化装置を備えた過給器付き内燃機関において、前記内燃機関が予混合圧縮着火燃焼を行う内燃機関であり、アクセル開度の開く速度が所定値より大きいときに高酸素濃度ガスを吸気マニホールド側に導入するように構成する。つまり、アクセルを踏んで、EGR率が高く噴射量が少ない軽負荷運転から高負荷運転に移行する際には、過給器の吸気の応答遅れのため、一時的に燃料の噴射量に見合った酸素量が不足するので、この加速状態の時だけ、高酸素濃度ガスを吸気マニホールド側へ供給する。
Further, in the internal combustion engine with a supercharger equipped with the above oxygen enrichment apparatus, the internal combustion engine is an internal combustion engine that performs premixed compression ignition combustion, and when the opening speed of the accelerator opening is larger than a predetermined value, Concentration gas is configured to be introduced to the intake manifold side. In other words, when shifting from light load operation to high load operation with a high EGR rate and a small injection amount by stepping on the accelerator, the response time of the intake of the turbocharger was temporarily delayed, which was temporarily commensurate with the fuel injection amount Since the amount of oxygen is insufficient, a high oxygen concentration gas is supplied to the intake manifold side only in this acceleration state.

この構成によれば、加速等で、PCI燃焼から従来の燃焼へ移行する等の筒内で酸素を多量に必要とする際には、通路切替手段の切替で、高酸素濃度ガスを吸気マニホールド側に供給して筒内の酸素濃度を速やかに変化できるので、運転性能(ドライバビリティ)を改善できると共に、NOxやスモークの発生を抑制できる。また、通常運転時には、高酸素濃度ガスを酸化触媒に導入することにより、酸化触媒における排気ガス中のHC,PM等の酸化促進を行うことができる。従って、加速時の過渡特性を犠牲にすることなく、排気通路の酸化触媒の性能の向上に寄与できる。   According to this configuration, when a large amount of oxygen is required in the cylinder such as shifting from PCI combustion to conventional combustion due to acceleration or the like, high oxygen concentration gas is supplied to the intake manifold side by switching the passage switching means. Since the oxygen concentration in the cylinder can be rapidly changed by supplying to the fuel cell, the driving performance (drivability) can be improved and the generation of NOx and smoke can be suppressed. Further, during normal operation, by introducing a high oxygen concentration gas into the oxidation catalyst, oxidation of HC, PM, etc. in the exhaust gas in the oxidation catalyst can be promoted. Therefore, the performance of the oxidation catalyst in the exhaust passage can be improved without sacrificing transient characteristics during acceleration.

本発明に係る酸素富化装置を備えた過給器付き内燃機関によれば、簡単な構成で、EGRと低酸素濃度ガスの吸気側への供給の併用により、筒内における低酸素状態を実現でき、NOxと燃費のトレードオフ関係を改善して、全負荷の運転状態において、燃費悪化を最小限にしながら、燃焼温度を低下してNOxの発生を防止できる。   According to the internal combustion engine with a supercharger equipped with the oxygen enrichment apparatus according to the present invention, a low oxygen state in the cylinder is realized by a combination of EGR and supply of low oxygen concentration gas to the intake side with a simple configuration. This can improve the trade-off relationship between NOx and fuel consumption, and can reduce the combustion temperature and prevent the generation of NOx while minimizing the deterioration of fuel consumption under the full load operating condition.

また、加速運転時に、酸素富化装置で発生する高酸素濃度ガスを吸気マニホールド側に導入する構成により、筒内で酸素を多量に必要とする際に筒内の酸素濃度を速やかに変化できるので、運転性能(ドライバビリティ)を改善できると共に、NOxやスモークの発生を抑制できる。また、通常運転時には、高酸素濃度ガスを直接酸化触媒に導入することにより、酸化触媒における排気ガス中のHC,PM等の酸化促進を行うことができる。   In addition, the high oxygen concentration gas generated by the oxygen enricher is introduced into the intake manifold during acceleration operation, so that the oxygen concentration in the cylinder can be changed quickly when a large amount of oxygen is required in the cylinder. The driving performance (drivability) can be improved, and the generation of NOx and smoke can be suppressed. Further, during normal operation, by introducing a high oxygen concentration gas directly into the oxidation catalyst, the oxidation of HC, PM, etc. in the exhaust gas in the oxidation catalyst can be promoted.

以下、本発明に係る実施の形態の酸素富化装置を備えた過給器付き内燃機関について、図面を参照しながら説明する。   Hereinafter, an internal combustion engine with a supercharger provided with an oxygen enrichment device according to an embodiment of the present invention will be described with reference to the drawings.

この酸素富化装置を備えた過給器付き内燃機関1は、ターボチャージャ3付きのディーゼルエンジンであり、図1及び図2に示すように構成される。この内燃機関(エンジン)1の吸気管2には過給器(ターボチャージャ)3のコンプレッサ3aと酸素富化装置4とインタークーラー5と吸気絞り弁6とが設けられ、この吸気管2は吸気マニホールド7に接続されている。   The supercharged internal combustion engine 1 equipped with this oxygen enrichment device is a diesel engine with a turbocharger 3 and is configured as shown in FIGS. An intake pipe 2 of the internal combustion engine (engine) 1 is provided with a compressor 3 a of a supercharger (turbocharger) 3, an oxygen enricher 4, an intercooler 5, and an intake throttle valve 6. The intake pipe 2 is an intake manifold. 7 is connected.

この酸素富化装置4は、その内部に酸素濃度の高いガスと窒素濃度の高いガスとに分離する酸素分離膜(酸素富化膜)4aを有して構成される。この酸素分離膜4aは、図では斜線で示してあるが、実際には、高分子の中空糸膜で形成され、コンプレッサ3aで加圧された空気Aを通過させると、この膜を通過したガスAbの酸素濃度が高くなり、残りのガスAaは窒素の濃度が高く酸素濃度が低くなる。   The oxygen enrichment device 4 includes an oxygen separation membrane (oxygen enrichment membrane) 4a that separates into a gas having a high oxygen concentration and a gas having a high nitrogen concentration. Although this oxygen separation membrane 4a is shown by slanting lines in the figure, it is actually formed of a polymer hollow fiber membrane. When air A pressurized by the compressor 3a is allowed to pass through, the oxygen separation membrane 4a passes through this membrane. The oxygen concentration of Ab increases, and the remaining gas Aa has a high nitrogen concentration and a low oxygen concentration.

そして、酸素富化装置4の低濃度酸素側(Aa側)を吸気管2(吸気系通路)に接続し、酸素富化装置4の高濃度酸素側(Ab側)を第1通路15と切替弁(通路切替手段)18を介して、第2通路16経由で吸気管2(吸気系通路)に接続し、また、第3通路17経由で酸化触媒を担持した排気ガス浄化装置10の上流側の排気管(排気通路)9に接続する。この切替弁18は三方弁等の切替弁で構成できるが、この構成以外にも第2通路16と第3通路17の2つの通路にそれぞれ開閉弁を設けて構成してもよい。また、第2通路16は直接吸気マニホールド7に導入してもよいが、図1に示すように、インタークーラー5等を経由して吸気マニホールド7に導入した方が、筒内に供給される新気の量を増加でき、また、吸気絞り弁6により新気の量の調整が容易となるのでより好ましい。 Then, the low concentration oxygen side (Aa side) of the oxygen enrichment device 4 is connected to the intake pipe 2 (intake system passage), and the high concentration oxygen side (Ab side) of the oxygen enrichment device 4 is switched to the first passage 15. Connected to the intake pipe 2 (intake system passage) via the second passage 16 via the valve (passage switching means) 18 and upstream of the exhaust gas purification device 10 carrying the oxidation catalyst via the third passage 17. The exhaust pipe (exhaust passage) 9 is connected. The switching valve 18 can be constituted by a switching valve such as a three-way valve, but in addition to this configuration, an opening / closing valve may be provided in each of the second passage 16 and the third passage 17. The second passage 16 may be introduced directly into the intake manifold 7, but as shown in FIG. 1, fresh air supplied into the cylinder is introduced into the intake manifold 7 via the intercooler 5 or the like. This is more preferable because the amount of air can be increased and the amount of fresh air can be easily adjusted by the intake throttle valve 6.

また、内燃機関1の排気マニホールド8に接続されている排気管9には、過給器3のタービン3bと、酸化触媒を担持した排気ガス浄化装置10とDPF装置11とが設けられている。   An exhaust pipe 9 connected to the exhaust manifold 8 of the internal combustion engine 1 is provided with a turbine 3b of the supercharger 3, an exhaust gas purification device 10 carrying an oxidation catalyst, and a DPF device 11.

この酸化触媒を担持した排気ガス浄化装置10は、ハニカム状のコージェライトあるいは耐熱鋼からなる担体の表面に、活性酸化アルミニウム(Al2 3 )等の触媒コート層に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属からなる触媒活性成分を担持させて形成する。この排気ガス浄化装置10は流入してくる排気ガス中のHC,CO等を酸化して、排気ガスをを低酸素状態にすると共に燃焼熱により排気温度を上げる。 The exhaust gas purifying apparatus 10 carrying the oxidation catalyst has a catalyst coating layer of active aluminum oxide (Al 2 O 3 ), platinum (Pt), palladium on the surface of a support made of honeycomb cordierite or heat-resistant steel. It is formed by supporting a catalytically active component made of a noble metal such as (Pd) or rhodium (Rh). The exhaust gas purifying apparatus 10 oxidizes HC, CO, etc. in the inflowing exhaust gas to bring the exhaust gas into a low oxygen state and raise the exhaust temperature by combustion heat.

また、DPF装置11は、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成される。この多孔質のセラミックの壁面で排気ガス中のPM(粒子状物質)は捕集される。   The DPF device 11 is formed of a monolith honeycomb wall flow type filter or the like in which the inlets and outlets of the porous ceramic honeycomb channels are alternately plugged. PM (particulate matter) in the exhaust gas is collected by the porous ceramic wall surface.

更に、EGRシステムとして、排気マニホールド8から吸気マニホールド7とを接続するEGR管12が設けられ、このEGR管12には、EGRクーラー13とEGR弁14とが設けられている。   Further, an EGR pipe 12 that connects the exhaust manifold 8 to the intake manifold 7 is provided as an EGR system, and an EGR cooler 13 and an EGR valve 14 are provided in the EGR pipe 12.

この内燃機関1においては、空気Aは、吸気管2の過給器3のコンプレッサ3aにより圧縮昇圧され、インタークーラー5で冷却された後、吸気絞り弁6によりその量を調整されて吸気マニホールド7より筒内(シリンダ内)に入る。そして、筒内で発生した排気ガスGは、排気マニホールド8から排気管9に出て、ターボチャージャ3のタービン3bを駆動した後、酸化触媒を担持した排気ガス浄化装置10とDPF装置11を通過して浄化された排気ガスGcとなって、図示しない消音器を通って大気中に排出される。また、排気ガスGの一部はEGRガスGeとして、排気マニホールド8から出て、EGR管12のEGRクーラー13を通過し、EGR弁14でその量を調整されて吸気マニホールド7側に再循環される。   In the internal combustion engine 1, the air A is compressed and boosted by the compressor 3 a of the supercharger 3 of the intake pipe 2, cooled by the intercooler 5, and then the amount of the air A is adjusted by the intake throttle valve 6, and from the intake manifold 7. Enter the cylinder (inside the cylinder). The exhaust gas G generated in the cylinder exits from the exhaust manifold 8 to the exhaust pipe 9, drives the turbine 3b of the turbocharger 3, and then passes through the exhaust gas purification device 10 carrying the oxidation catalyst and the DPF device 11. As a result, the exhaust gas Gc is purified and discharged into the atmosphere through a silencer (not shown). Further, a part of the exhaust gas G exits from the exhaust manifold 8 as EGR gas Ge, passes through the EGR cooler 13 of the EGR pipe 12, is adjusted in amount by the EGR valve 14, and is recirculated to the intake manifold 7 side. The

そして、内燃機関1の運転の全般的な制御を行うと共に、DPF装置11の浄化能力の回復制御も行う制御装置(ECU:エンジンコントロールユニット)20が設けられる。この制御装置20にはアクセル開度センサ21からの入力に加えて、図示しない空気過剰率センサや温度センサやクランク角センサ等からの検出値が入力され、この制御装置20から吸気絞り弁(吸気スロットル弁)6、EGR弁14、燃料噴射用のコモンレール電子制御燃料噴射装置の燃料噴射弁(図示しない)等を制御する信号が出力される。   A control device (ECU: engine control unit) 20 that performs overall control of the operation of the internal combustion engine 1 and also performs recovery control of the purification capability of the DPF device 11 is provided. In addition to the input from the accelerator opening sensor 21, detection values from an excess air ratio sensor, a temperature sensor, a crank angle sensor, and the like, which are not shown, are input to the control device 20. A throttle valve 6, an EGR valve 14, a fuel injection valve (not shown) of a common rail electronic control fuel injection device for fuel injection, and the like are output.

次に、この内燃機関1の制御方法について説明する。この実施の形態では、切替弁18の制御が、内燃機関1の制御装置20に組み込まれ、EGRシステムの制御と並行して行われる。   Next, a method for controlling the internal combustion engine 1 will be described. In this embodiment, the control of the switching valve 18 is incorporated in the control device 20 of the internal combustion engine 1 and is performed in parallel with the control of the EGR system.

この切替弁18の制御は、図3に示したように、内燃機関1の運転が開始されると上位の制御フローから呼ばれてスタートし、切替弁18をどちらに切り替えるかを決定しては、上位の制御フローに戻り、再度呼ばれることを繰り返し、内燃機関1の運転が停止されるまで、これを繰り返すフローとして示してある。   As shown in FIG. 3, the control of the switching valve 18 is called from the upper control flow when the operation of the internal combustion engine 1 is started, and the switching valve 18 is determined to be switched to. The flow returns to the upper control flow, is called again, and is shown as a flow that repeats until the operation of the internal combustion engine 1 is stopped.

この図3の制御フローがスタートすると、ステップS11で、アクセル開度の開く速度Vをアクセル開度センサ21のアクセル開度信号から計算する。次にステップS12で、アクセル開度の閾値Vcと比較して、加速状態であるか否かを判定する。この閾値Vcは加速状態であるか否かを判定するためのアクセル開度の開く速度の閾値であり、予め実験や計算等により設定される。   When the control flow of FIG. 3 starts, the speed V at which the accelerator opening is opened is calculated from the accelerator opening signal of the accelerator opening sensor 21 in step S11. Next, in step S12, it is compared with the accelerator opening threshold value Vc to determine whether or not the vehicle is in an accelerated state. This threshold value Vc is a threshold value of the opening speed of the accelerator opening for determining whether or not the vehicle is in an acceleration state, and is set in advance through experiments, calculations, or the like.

このステップS12の判定で、速度Vが閾値Vc以下であれば、加速状態では無いと判定し、ステップS13で切替弁18を図4に示すように切り替えて、高酸素濃度ガスAbを第1通路15から第3通路17に流して酸化触媒を担持した排気ガス浄化装置10の上流側に導入する。これにより、非加速状態(通常運転状態)では、高酸素濃度ガスAbを酸化触媒に直接流すことにより、排気ガス中のHC(炭化水素)、CO(一酸化炭素)、PM(粒子状物質)などの酸化触媒における酸化反応を促進し、排気通路の酸化触媒の性能の向上に寄与できる。   If it is determined in step S12 that the speed V is equal to or lower than the threshold value Vc, it is determined that the vehicle is not in an acceleration state. In step S13, the switching valve 18 is switched as shown in FIG. 15 flows into the third passage 17 and is introduced to the upstream side of the exhaust gas purification apparatus 10 carrying the oxidation catalyst. Thus, in the non-accelerated state (normal operation state), the high oxygen concentration gas Ab is allowed to flow directly to the oxidation catalyst, so that HC (hydrocarbon), CO (carbon monoxide), PM (particulate matter) in the exhaust gas. Thus, the oxidation reaction in the oxidation catalyst can be promoted, and the performance of the oxidation catalyst in the exhaust passage can be improved.

また、ステップS12の判定で、速度Vが閾値Vcより大きければ、加速状態で有ると判定し、ステップS14で切替弁18を図5に示すように切り替えて、高酸素濃度ガスAbを第1通路15から第2通路16に流して吸気管2に導入する。つまり、加速状態では、高酸素濃度ガスAbを吸気管2に流すことにより、吸気マニホールド7側に導入して、筒内の酸素量を増加する。 If it is determined in step S12 that the velocity V is greater than the threshold value Vc, it is determined that the vehicle is in an accelerated state . In step S14, the switching valve 18 is switched as shown in FIG. 15 flows into the second passage 16 and is introduced into the intake pipe 2. That is, in the acceleration state, the high oxygen concentration gas Ab is caused to flow into the intake pipe 2 to be introduced to the intake manifold 7 side, thereby increasing the amount of oxygen in the cylinder.

これにより、過渡運転時の急激な吸気組成の変化に追従させることができる。つまり、図6に示すように燃料の噴射量が少なくEGR率が高い軽負荷時から、アクセルを開いて高負荷運転に移行する際に、EGR率を低下させると共に、この加速状態の時だけ、酸素濃度が高い高酸素濃度ガスAbを吸気管2へ供給し、目標噴射量の上昇に合うように、筒内酸素濃度を上昇させる。この加速時においては、従来技術の過給器付き内燃機関1では、吸気の応答遅れのため、燃料の噴射量に見合った酸素量が不足し、過渡性能が悪化するが、本発明の酸素富化装置を備えた過給器付き内燃機関1では、目標噴射量の上昇に合わせて筒内酸素濃度を高めることができるので、運転性能(ドライバビリティ)やスモークを改善することができる。   Thereby, it is possible to follow a sudden change in the intake composition during the transient operation. That is, as shown in FIG. 6, when the accelerator is opened to shift to a high load operation from a light load with a small fuel injection amount and a high EGR rate, the EGR rate is lowered and only in this acceleration state, A high oxygen concentration gas Ab having a high oxygen concentration is supplied to the intake pipe 2, and the in-cylinder oxygen concentration is increased so as to match the increase in the target injection amount. At this time of acceleration, in the internal combustion engine with a supercharger 1 of the prior art, since the response of intake air is delayed, the amount of oxygen corresponding to the fuel injection amount is insufficient and the transient performance deteriorates. In the supercharger-equipped internal combustion engine 1 equipped with the converter, the in-cylinder oxygen concentration can be increased in accordance with the increase in the target injection amount, so that the driving performance (drivability) and smoke can be improved.

そして、ステップS13又はステップS14を終了した後は、リターンして上位の制御フローに戻る。その後は、切替弁18の制御のインターバル、又は、加速状態の判定のインターバルで上位の制御フローから呼ばれた再度スタートする。これを内燃機関1の運転が停止されるまで繰り返す。   And after step S13 or step S14 is complete | finished, it returns and returns to a high-order control flow. Thereafter, the control valve 18 is started again from the upper control flow at the control interval of the switching valve 18 or the acceleration state determination interval. This is repeated until the operation of the internal combustion engine 1 is stopped.

上記の構成の酸素富化装置を備えた過給器付き内燃機関1によれば、空気中の酸素と窒素を分離可能な分子膜(酸素富化膜)4aをコンプレッサー3aの下流の吸気管2に設置し、酸素富化膜4aで発生した低酸素濃度ガスAaを吸気マニホールド7側に供給する。これによりEGRと同様のNOx低減効果を得ることができ、全負荷の運転領域で過度の燃費悪化無しに、筒内を低酸素濃度にできる。特に、筒内で低酸素量の条件が必要な場合、新気の酸素濃度が低いと排気から吸気へ還流するEGRガス量が少なくて済むため、普通の空気の場合よりも幅広い運転領域でPCI燃焼の適用が可能となる。   According to the supercharged internal combustion engine 1 equipped with the oxygen enrichment device having the above-described configuration, a molecular film (oxygen enriched film) 4a capable of separating oxygen and nitrogen in the air is connected to the intake pipe 2 downstream of the compressor 3a. The low oxygen concentration gas Aa generated in the oxygen-enriched film 4a is supplied to the intake manifold 7 side. As a result, the same NOx reduction effect as that of EGR can be obtained, and the in-cylinder can be reduced to a low oxygen concentration without excessive fuel consumption deterioration in the full load operation region. In particular, when a low oxygen amount condition is required in the cylinder, if the oxygen concentration of fresh air is low, the amount of EGR gas that recirculates from the exhaust to the intake can be reduced. Therefore, PCI can be used in a wider operating range than in the case of normal air. Combustion can be applied.

つまり、PCI燃焼の高負荷運転は激しいディーゼルノック、騒音、スモークによって制限される。また、EGR量が多く、且つ、高負荷になると吸気温度が上昇するため、激しいディーゼルノックとなりやすい。少ないEGRガス量で、低酸素濃度にできれば、吸気温度の上昇は抑制される。従って、PCI燃焼は拡大できる。   In other words, high load operation of PCI combustion is limited by severe diesel knock, noise, and smoke. Further, when the EGR amount is large and the load is high, the intake air temperature rises, so that it is likely to be a severe diesel knock. If a low oxygen concentration can be achieved with a small amount of EGR gas, an increase in intake air temperature is suppressed. Thus, PCI combustion can be expanded.

そのため、この過給器付き内燃機関1によれば、PCI燃焼領域を拡大でき、NOx低減することができる。また、EGRと低酸素濃度ガスAaとを併用することで、EGRシステムの巨大化の抑制と、EGRクーラー13による排熱量の抑制による熱損失を低減できる。   Therefore, according to the supercharger-equipped internal combustion engine 1, the PCI combustion region can be expanded and NOx can be reduced. Moreover, by using EGR and the low oxygen concentration gas Aa in combination, it is possible to reduce heat loss due to suppression of enlarging the EGR system and suppression of exhaust heat amount by the EGR cooler 13.

そして、通常運転時には、酸素富化膜4aで発生した高酸素濃度ガスAbを排気管9へ供給することができるので、後処理の酸化触媒におけるHC,COの酸化促進を行うことができる。特に、従来技術のEGRシステムだけの場合では、多量EGR状態では排気中の酸素が不足するので、酸化触媒における酸化反応があまり進まず酸化触媒が暖まらないが、高酸素濃度ガスAbを送ることで、このような運転条件でも酸化触媒の温度が維持され、この温度昇温によっても酸化触媒での排気浄化率を向上できる。また、高酸素濃度ガスAbによりDPF装置11に堆積されたPMを酸化除去する再生反応も促進される。   During normal operation, the high oxygen concentration gas Ab generated in the oxygen-enriched film 4a can be supplied to the exhaust pipe 9, so that the oxidation of HC and CO in the post-treatment oxidation catalyst can be promoted. In particular, in the case of only the EGR system of the prior art, oxygen in the exhaust gas is insufficient in a large amount of EGR state, so the oxidation reaction in the oxidation catalyst does not progress so much and the oxidation catalyst does not warm, but by sending a high oxygen concentration gas Ab Even under such operating conditions, the temperature of the oxidation catalyst is maintained, and the exhaust gas purification rate at the oxidation catalyst can be improved by increasing the temperature. In addition, the regeneration reaction of oxidizing and removing PM deposited on the DPF device 11 by the high oxygen concentration gas Ab is also promoted.

更に、加速時のEGR率が急激に変化し、PCI燃焼から従来のディーゼル燃焼へ移行する際等の酸素を多量に必要とする場合に、高酸素濃度ガスAbを吸気マニホールド7側へと供給することで、筒内の酸素濃度を速やかに変化できるので、吸気組成の制御性の向上を図ることができ、NOxやスモークを抑制できる。   Further, when the EGR rate at the time of acceleration changes rapidly and a large amount of oxygen is required when shifting from PCI combustion to conventional diesel combustion, the high oxygen concentration gas Ab is supplied to the intake manifold 7 side. Thus, since the oxygen concentration in the cylinder can be changed quickly, the controllability of the intake composition can be improved, and NOx and smoke can be suppressed.

従って、NOxの低減やHC,CO、PMの酸化促進により、後処理装置での排気浄化負担を軽減でき、酸化触媒を担持した排気ガス浄化装置10の小型化が可能となる。   Therefore, by reducing NOx and promoting oxidation of HC, CO, and PM, the burden of exhaust purification in the aftertreatment device can be reduced, and the exhaust gas purification device 10 carrying the oxidation catalyst can be downsized.

本発明に係る実施の形態の酸素富化装置を備えた過給器付き内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine with a supercharger provided with the oxygen enrichment apparatus of embodiment which concerns on this invention. 酸素富化装置の周辺の構成を示す図である。It is a figure which shows the structure of the periphery of an oxygen enrichment apparatus. 切替弁の制御を示す制御フローチャート図である。It is a control flowchart figure which shows control of a switching valve. 高酸素濃度ガスを排気通路側に導入する場合の切替弁と流れの状態を示す酸素富化装置の周辺の構成図である。It is a block diagram of the periphery of the oxygen enrichment device showing the switching valve and the flow state when introducing a high oxygen concentration gas into the exhaust passage. 高酸素濃度ガスを吸気通路側に導入する場合の切替弁と流れの状態を示す酸素富化装置の周辺の構成図である。It is a block diagram of the periphery of the oxygen enrichment apparatus which shows the switching valve and flow state when introducing a high oxygen concentration gas into the intake passage side. EGRと目標噴射量と筒内酸素濃度の時系列を示す模式的な図である。It is a schematic diagram showing a time series of EGR, target injection amount and in-cylinder oxygen concentration.

符号の説明Explanation of symbols

1 内燃機関(ディーゼルエンジン)
2 吸気管(吸気通路)
3 過給器(ターボチャージャ)
3a コンプレッサ
3b タービン
4 酸素富化装置
4a 酸素富化膜
5 インタークーラー
7 吸気マニホールド
8 排気マニホールド
9 排気管(排気通路)
10 酸化触媒を担持した排気ガス浄化装置
12 EGR管(EGR通路)
13 EGRクーラー
14 EGR弁
15 第1通路
16 第2通路
17 第3通路
18 切替弁(通路切替手段)
20 制御装置
21 アクセル開度センサ
A 空気
Aa 低酸素濃度ガス
Ab 高酸素濃度ガス
G 排気ガス
Gc 浄化された排気ガス
Ge EGRガス
V アクセル開度の開く速度
Vc アクセル開度の閾値
1 Internal combustion engine (diesel engine)
2 Intake pipe (intake passage)
3 Supercharger (turbocharger)
3a Compressor 3b Turbine 4 Oxygen enrichment device 4a Oxygen enrichment membrane 5 Intercooler 7 Intake manifold 8 Exhaust manifold 9 Exhaust pipe (exhaust passage)
10 Exhaust gas purification device carrying oxidation catalyst 12 EGR pipe (EGR passage)
13 EGR cooler 14 EGR valve 15 1st passage 16 2nd passage 17 3rd passage 18 Switching valve (passage switching means)
20 Control device 21 Accelerator opening sensor A Air Aa Low oxygen concentration gas Ab High oxygen concentration gas G Exhaust gas Gc Purified exhaust gas Ge EGR gas V Accelerator opening speed Vc Accelerator opening threshold

Claims (2)

EGRシステムと排気通路に酸化触媒を担持した排気ガス浄化装置を備え、吸気を低酸素濃度ガスと高濃度酸素ガスとに分ける酸素富化装置を吸気通路に設けると共に、過給器のコンプレッサを前記酸素富化装置の上流側の吸気通路に設けている過給器付き内燃機関において、前記酸素富化装置により分けられた低濃度酸素ガスを吸気系通路に供給すると共に、前記酸素富化装置により分けられた高濃度酸素ガスを前記排気ガス浄化装置の上流側の排気通路と吸気系通路のどちらかを選択して供給する通路切替手段を有し、該通路切替手段は、アクセル開度の開く速度が所定値以下のときに高酸素濃度ガスを前記排気ガス浄化装置の上流側の排気通路に供給することを特徴とする酸素富化装置を備えた過給器付き内燃機関。 The exhaust gas purifying device having an EGR system and an exhaust passage carrying an oxidation catalyst, an oxygen enriching device for separating the intake air into a low oxygen concentration gas and a high concentration oxygen gas is provided in the intake passage, and the compressor of the supercharger is In the internal combustion engine with a supercharger provided in the intake passage on the upstream side of the oxygen enrichment device, the low concentration oxygen gas divided by the oxygen enrichment device is supplied to the intake system passage, and the oxygen enrichment device There is a passage switching means for selectively supplying the divided high-concentration oxygen gas to either the exhaust passage or the intake passage on the upstream side of the exhaust gas purification device, and the passage switching means opens the accelerator opening. An internal combustion engine with a supercharger equipped with an oxygen enrichment device, wherein a high oxygen concentration gas is supplied to an exhaust passage upstream of the exhaust gas purification device when the speed is equal to or less than a predetermined value . 前記内燃機関が予混合圧縮着火燃焼を行う内燃機関であり、アクセル開度の開く速度が所定値より大きいときに高酸素濃度ガスを吸気マニホールド側に導入することを特徴とする請求項1記載の酸素富化装置を備えた過給器付き内燃機関。 The internal combustion engine is an internal combustion engine that performs premixed compression ignition combustion, and the high oxygen concentration gas is introduced to the intake manifold side when the opening speed of the accelerator opening is larger than a predetermined value . An internal combustion engine with a supercharger equipped with an oxygen enrichment device.
JP2006116774A 2006-04-20 2006-04-20 Supercharged internal combustion engine with oxygen enrichment device Expired - Fee Related JP4735390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116774A JP4735390B2 (en) 2006-04-20 2006-04-20 Supercharged internal combustion engine with oxygen enrichment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116774A JP4735390B2 (en) 2006-04-20 2006-04-20 Supercharged internal combustion engine with oxygen enrichment device

Publications (2)

Publication Number Publication Date
JP2007285281A JP2007285281A (en) 2007-11-01
JP4735390B2 true JP4735390B2 (en) 2011-07-27

Family

ID=38757282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116774A Expired - Fee Related JP4735390B2 (en) 2006-04-20 2006-04-20 Supercharged internal combustion engine with oxygen enrichment device

Country Status (1)

Country Link
JP (1) JP4735390B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999865B1 (en) 2008-07-01 2010-12-09 한국기계연구원 Aftertreatment System Oxidation Catalyst Activation Method of Low Temperature Diesel Combustion Engine
JP5287282B2 (en) * 2009-01-20 2013-09-11 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
GB0912081D0 (en) * 2009-07-11 2009-08-19 Tonery David Combustion method and apparatus
JP5678835B2 (en) 2011-08-01 2015-03-04 株式会社デンソー Gas supply device for internal combustion engine
GB2500598B (en) * 2012-03-26 2017-12-20 Ford Global Tech Llc Method and apparatus for injecting oxygen within an engine
US9745927B2 (en) * 2015-03-10 2017-08-29 Denso International America, Inc. Emissions reduction system for an internal combustion engine
US9903323B2 (en) 2015-03-10 2018-02-27 Denso International America, Inc. Emissions reduction system for an internal combustion engine
US10378427B2 (en) * 2017-03-31 2019-08-13 Saudi Arabian Oil Company Nitrogen enriched air supply for gasoline compression ignition combustion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441659U (en) * 1987-09-08 1989-03-13
JP2005113689A (en) * 2003-10-02 2005-04-28 Toyota Motor Corp Premix compression ignition internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441659A (en) * 1987-08-08 1989-02-13 Mitsubishi Electric Corp Starter motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441659U (en) * 1987-09-08 1989-03-13
JP2005113689A (en) * 2003-10-02 2005-04-28 Toyota Motor Corp Premix compression ignition internal combustion engine

Also Published As

Publication number Publication date
JP2007285281A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4735390B2 (en) Supercharged internal combustion engine with oxygen enrichment device
JP5037263B2 (en) Control device for internal combustion engine
JP4333725B2 (en) Exhaust gas recirculation device for internal combustion engine
JP3951899B2 (en) Diesel engine exhaust purification system
JP4363395B2 (en) Exhaust gas purification device for internal combustion engine
WO2007066835A1 (en) Exhaust gas purification system for internal combustion engine
JP2002276405A (en) Exhaust emission control device of diesel engine
JP2008128028A (en) Exhaust gas recirculation system for internal combustion engine
JP4333671B2 (en) Exhaust device for internal combustion engine
US6453893B1 (en) Intake air separation system for an internal combustion engine
JP2006233947A (en) Egr device
JP5269174B2 (en) Exhaust gas purification device in internal combustion engine
JP2009002275A (en) Control system of internal combustion engine
JP2007263033A (en) Engine with supercharger
JP4012043B2 (en) Particulate filter regeneration method
JP4857220B2 (en) Exhaust gas purification device for internal combustion engine
JP2009191737A (en) Supercharger for engine
JP2006046252A (en) Exhaust emission control method and engine provided with exhaust emission control device
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP2010116817A (en) Exhaust emission control device of engine
JP5050903B2 (en) Engine supercharger
JP4107017B2 (en) Engine control device
JP4083478B2 (en) Internal combustion engine
JP2006097469A (en) Pm continuous regenerating method under low load on diesel engine
JP2010116818A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees