JP2011091791A - 移動体用電力線通信方法 - Google Patents

移動体用電力線通信方法 Download PDF

Info

Publication number
JP2011091791A
JP2011091791A JP2010183175A JP2010183175A JP2011091791A JP 2011091791 A JP2011091791 A JP 2011091791A JP 2010183175 A JP2010183175 A JP 2010183175A JP 2010183175 A JP2010183175 A JP 2010183175A JP 2011091791 A JP2011091791 A JP 2011091791A
Authority
JP
Japan
Prior art keywords
transmission
power line
transceiver
communication method
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010183175A
Other languages
English (en)
Inventor
Masaki Takanashi
昌樹 高梨
Tsuguyuki Shibata
伝幸 柴田
Teru Takahashi
輝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2010183175A priority Critical patent/JP2011091791A/ja
Priority to US12/888,497 priority patent/US20110069766A1/en
Priority to CN2010102928789A priority patent/CN102035573A/zh
Publication of JP2011091791A publication Critical patent/JP2011091791A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5458Monitor sensor; Alarm systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Abstract

【課題】移動体用電力線通信における通信精度の向上と送信電力の低減。
【解決手段】市販の自家用車の電力線網の伝送特性として、周波数に対する伝送強度を測定した。送信点はジャンクションボックスとシガレットソケットとし、受信点は後部座席ルームランプとリアハッチテールランプとした。ジャンクションボックスから後部座席ルームランプへを□で示し、ジャンクションボックスからリアハッチテールランプへを△で示し、シガレットソケットから後部座席ルームランプへを◇で示し、シガレットソケットからリアハッチテールランプへを○で示した。
この結果に基づき誤り率特性のシミュレーションを実施した。送受信点を2×2としてMIMO伝送法(送信選択ダイバーシチ法)を適用した場合、送受信点を1つずつとして送受信共にダイバーシチを行わない場合よりも約9dBの送信電力低減が見込める。
【選択図】図3

Description

本発明は移動体用電力線通信方法に関する。本発明は、バッテリーからジャンクションボックスを介して枝分かれした、複数の電力線が束となって配置されることの多い、移動体に特に有効である。
自動車等の移動体の、エンジン制御やブレーキ制御のような安全に関わる制御においては、複数のECUが通信精度の高い高速LANを構成している。一方、例えばカーナビゲーションシステムにおいて、車両後方の画像をモニタに映写する場合は、通信精度はそれほど高くなくても良いが、車両後方のカメラで撮像された大量の画像データが、運転席のモニタ装置に比較的高速に送信される必要がある。即ち、車両の安全に関わる高速LANとは別系統の高速通信回路網が必要とされている。
そこで、移動体のDCバッテリと、このDCバッテリで駆動される移動体の各部に配置された装置とを繋ぐ電力線を、高周波通信手段として用いることが検討されている。
この電力線通信方法としては、例えば特許文献1が挙げられる。特許文献1には、送信機が1箇所で電力線と接続され、受信機が2箇所で電力線と接続された、電力線通信装置が開示されている。特許文献1の技術は、受信ダイバーシチを実現するものである。
特許第4104394号
特許文献1の技術は受信ダイバーシチを実現するに止まるものであり、ノイズが非常に多いことが知られる移動体用電力線通信方法としては更なる通信精度の向上が求められている。例えば、大きなダイバーシチ利得を達成するためには複数の受信線路を必要とする場合がある。また、受信ダイバーシチのみでは線路を確保できない可能性もあり、更には受信装置の回路規模が大きくなるという問題がある。
また、電力線通信においては、漏洩電磁波が周囲の機器に大きな影響を与えるので、送信電力を低減する必要もある。
本発明者らは、自動車等の電力線網において、任意の位置に設定された複数(m個)の送信点と、任意の位置に設定された複数(n個)の受信点と間により、m×n個の仮想伝送路を用いた通信が可能であることを見出した。たとえば、自動車等の移動体におけるDCバッテリと、このDCバッテリで駆動される装置とを繋ぐ電力線が、移動体内部で束(バンドル)となっており、電力線間の電磁誘導が生じうる。本発明者らはこれらのことに着目し、MIMO技術の適用が可能であると着想した。
即ち本願発明の目的は、移動体用電力線通信における通信精度の向上と送信電力の低減である。
請求項1に係る発明は、移動体内に設けられた送信機と受信機とを用いる通信方法であって、送信機は、複数の電力線から成る移動体内電力線網に設けられた複数個の送信点と接続され、受信機は、移動体内電力線網に設けられた複数個の受信点と接続され、
受信機において、複数個の受信点を介して受信された複数個の受信波により受信ダイバーシチを実施することを特徴とする移動体用電力線通信方法である。
ここで複数個の送信点と複数個の受信点は、電力線に適当なフィルタ等を介して高周波信号専用線が接続された箇所を言うものとする。複数個の送信点と複数個の受信点は、言わば屋外通信における複数個の送信アンテナと複数個の受信アンテナに相当する。
また、移動体内電力線網とは、移動体内で電源と複数個の装置を接続する、任意個の分岐及びスイッチその他を介した電力線を言う。この移動体内電力線網が、上述の通り、例えばm個の送信点と、例えばn個の受信点とにより、それらの個数の積であるmn個の仮想の高周波線路が想定される。例えば、バッテリから分岐とスイッチとを介して複数個の電力線が設けられている場合に、直流的にはスイッチがオープン(オフ)であっても高周波は伝送しうる。更に、高周波は、隣り合う電力線の電磁誘導や静電誘導により他の電力線に伝送しうる。するとこのような移動体内電力線網に複数個の送信点と複数個の受信点とを設けると、送信点の個数と受信点の個数を乗じた個数の高周波線路が想定されることになる。
一般的に、線路間の高周波結合がある線路においては、ある任意の1つの送信点から各受信点への伝達関数が存在することになる。よって、例えばm個の送信点の全てから例えばn個の受信点の全てに対して伝達関数が存在する。即ちm個の送信信号から成るm次ベクトルと、n行m列の伝達行列の積により、n個の受信信号から成るn次ベクトルが生成される。このn行m列の伝達行列の各成分がわかれば、n個の受信信号から成るn次ベクトルからm個の送信信号から成るm次ベクトルが復調できる。また、n行m列の伝達行列の各成分の周波数特性から、通信に用いるべきでない周波数帯域が決定できるので、通信に用いないサブキャリアを決定することもできる。
請求項2に係る発明は、移動体内に設けられた第1の送受信機と第2の送受信機とを用いる通信方法であって、第1の送受信機から第2の送受信機へ情報を送信するために、第1の送受信機は、複数の電力線から成る移動体内電力線網に設けられた複数個の第1の接続点と接続され、第2の送受信機は、移動体内電力線網に設けられた複数個の第2の接続点と接続され、第2の送受信機は第1の送受信機に伝送特性に関する情報を送信し、第1の送受信機は第2の送受信機から送信された伝送特性に関する情報に基づき、複数個の第1の接続点に対して送信ダイバーシチを実行し、第2の送受信機において、複数個の第2の接続点を介して受信された複数個の受信波により受信ダイバーシチを実施することを特徴とする移動体用電力線通信方法である。
ここで複数個の第1及び第2の接続点は、電力線に適当なフィルタ等を介して高周波信号専用線が接続された箇所を言うものとする。複数個の第1及び第2の接続点は、各々、屋外通信における複数個の送受信アンテナに相当する。
また、移動体内電力線網とは、複数個の第1及び第2の接続点により、第1の接続点の個数と第2の接続点の個数を乗じた個数の高周波線路が想定されるものを言うものとし、その他は請求項1の移動体内電力線網と同様である。
また、伝送特性に関する情報とは、伝送路の伝達関数(減衰特性)やノイズの振幅情報などの伝送路の品質を表す情報や、これらの伝送路の品質に関する情報に基づいて、第1の送受信機が採用すべき変調方法などの通信方法に係る指令情報を意味する。例えば、第1の送受信機から、第2の送受信機において既知のデータであるサウンディングパケットを送信して、第2の送受信機において、このパケットの受信状態から伝送路の減衰特性やノイズの振幅情報などの伝送路の品質を測定することができる。そして、第2の送受信機は、この伝送路の品質に関する情報を、伝送特性に関する情報として、第1の送受信機に送信する。第1の送受信機は、この伝送特性に関する情報を受信して、適性な1又は2以上の伝送路を選択したり、データを送信するための変調方式などの通信方法を選択する。一方、伝送路に関する品質の情報を測定した第2の送受信機において、第1の送受信機が採用すべき適性な1又は2以上の伝送路や通信方法などを決定することもできる。したがって、第2の送受信機は、決定したこれらの伝送路や通信方法の指令を、伝送特性に関する情報として、第1の送受信機に送信し、第1の送受信機が、その指令に基づいて、伝送路の選択や通信方法の選択をすることができる。したがって、伝送特性に関する情報には、伝送路の伝達関数やノイズレベルなどの、直接的に、伝送特性を示す情報の他、この伝送特性により選択されるべき伝送路や変調方式などの通信方法などの伝送特性に関連する情報も含むものとする。
請求項3に係る発明は、第1の送受信機において、第2の送受信機から送信された伝送特性に関する情報に基づき、伝送路特性の監視及び判定と、送信に用いるべきサブキャリア及びその電力を決定する。ここで、伝送路特性とは、伝送路の伝達関数(周波数特性、減衰特性)やノイズレベルや、その比であるS/N比(S/N比の周波数特性も含む)などの伝送路の品質に関する特性を意味する。したがって、伝送路特性は、上述した伝送特性に関する情報に含まれる。また、サブキャリアは、OFDMでの変調に使用される多数のサブキャリアの他、スペクトル拡散方式に使用されるキャリア、その他、全ての周波数分割多重方式に使用されるキャリアを含む。したがって、サブキャリアの決定は、使用する周波数帯域を決定することも含む概念である。
請求項4に係る発明は、第2の送受信機において、伝送路特性の監視及び判定と、送信に用いるべきサブキャリア及びその電力を決定して、それを伝送特性に関する情報として第1の送受信機に送信することを特徴とする。
請求項5に係る発明は、スペクトル拡散方式を用いることを特徴とする。
請求項6に係る発明は、直交周波数分割多重方式を用いることを特徴とする。
請求項7に係る発明は、スペクトル拡散方式と直交周波数分割多重方式を切り替えて用いることを特徴とする。
請求項8に係る発明は、各送信点又は各第1の接続点ごとに直交周波数分割多重方式において使用するサブキャリアを可変とする。ここで使用するサブキャリアを可変とするとは、必要に応じ、使用するサブキャリアと使用しないサブキャリアを決定することを意味する。
請求項9に係る発明は、各サブキャリアごと及び/又は各送信点ごと若しくは各第1の接続点ごとに、直交周波数分割多重方式において使用するデジタル一次変調方式を可変とする。ここでデジタル一次変調方式とは、例えばBPSK、QPSK、16QAM、64QAMを挙げることができる。これを可変とするとは、各サブキャリアごと及び/又は各送信点ごとにそれらのいずれかを選択することを意味する。
請求項10に係る発明は、送信ダイバーシチ及び受信ダイバーシチはMIMO技術により実現されることを特徴とする。MIMOとはMulti Input Multi Outputを意味する。
請求項11に係る発明は、MIMO技術は送信選択ダイバーシチ法により実現されることを特徴とする。
移動体内電力線網に、複数個の送信点又は複数個の第1の接続点と、複数個の受信点又は複数個の第2の接続点を設けることにより、送信ダイバーシチと受信ダイバーシチを併存させることができ、更にはMIMO技術を適用することができる。これにより、送信電力を低減しながら、誤り率特性の良い通信方法を確立することができる(請求項1、2)。こうして、電力線通信において最も大きな問題と考えられる漏洩信号量を軽減することが可能となる。
第1の送受信機から第2の送受信機にデータを伝送するにあたり、第2の送受信機での受信状況から第1の送受信機における送信方法を可変とすることで、データ速度を可変として誤り率特性を一定水準以上に保つことができる。このとき、第2の送受信機での受信状況から第1の送受信機において当該送信方法を選択しても(請求項3)、第2の送受信機において当該送信方法を選択して第1の送受信機に指令を送っても良い(請求項4)。
送信方法は、スペクトル拡散方式(SS)や直交周波数分割多重方式(OFDM)を用いることができ、これらを切り替えても良い(請求項5、6、7)。受信状況によりSSとOFDMを切り替えると尚良い(請求項7)。即ち、SSはOFDMよりもデータレートが小さいが、伝送特性の悪化に対して耐性が強いからである。
OFDMを用いる場合には、各送信点又は各第1の接続点ごとに直交周波数分割多重方式において使用するサブキャリアを可変とすることで、各送信点又は各第1の接続点ごとに伝送特性の悪いサブキャリアを使用しないことが可能となる。この判定には、例えばサブキャリアごとの誤り率特性や平均受信電力を用いると良い。これにより送信電力を一定としながら伝送特性の悪化を抑制できる(請求項8)。
OFDMを用いる場合には、各サブキャリアごと及び/又は各送信点若しくは各第1の接続点ごとに、直交周波数分割多重方式において使用するデジタル一次変調方式を可変とすると良い。即ち使用するデジタル一次変調方式が例えばBPSK、QPSK、16QAM、64QAMの4通りの場合、64QAMでの誤り率特性が十分低ければ64QAMを用い、64QAMでの誤り率特性が閾値よりも悪くなると、16QAMに切り替え、16QAMでの誤り率特性が閾値よりも悪くなると、QPSKに切り替え、QPSKでの誤り率特性が閾値よりも悪くなると、BPSKに切り替える。例えば誤り率特性に替えて、サブキャリアごとの平均受信電力を用いても良い。このような切り替えにより、送信電力を一定としながら各サブキャリアごと及び/又は各送信点若しくは各第1の接続点ごとに誤り率特性を一定水準以上に保つことが可能となる(請求項9)。
本願発明は任意のMIMO技術を適用することができ(請求項10)、とくに送信選択ダイバーシチ法を用いると好適である(請求項11)。これにより、送信電力を一定としながら誤り率特性を一定水準以上を保つことができる。
請求項3に係る移動体用電力線通信方法の作用の一例を示す構成図。 請求項4に係る移動体用電力線通信方法の作用の一例を示す構成図。 第1の送受信機と第2の送受信機と移動体内電力線網との接続関係を示した配線図。 2つの送信点と2つの受信点と移動体内電力線網との関係を示した車内配置図。 自家用車の電力線網の周波数に対する伝送強度の測定結果を示すグラフ。 図3の測定結果に基づき行ったシミュレーション結果を示すグラフ図。 第1の送受信機の処理手順を示したフローチャート。 第2の送受信機の処理手順を示したフローチャート。 他の周波数分割多重化方式を示した周波数配置図。
図1.Aは、請求項3に係る移動体用電力線通信方法の作用の一例を示す構成図、図1.Bは、請求項4に係る移動体用電力線通信方法の作用の一例を示す構成図である。
請求項3に係る移動体用電力線通信方法の作用は、図1.Aのように、第2の送受信機20から第1の送受信機10に、既知信号(サウンディングパケット)と第2の送受信機20のノイズ状態を送信する。次に第1の送受信機10において伝送路特性を推定し、伝送に用いるサブキャリア及びその電力を決定する。次に第1の送受信機10から第2の送受信機20に、情報信号を送信する。
請求項4に係る移動体用電力線通信方法の作用は、図1.Bのように、第2の送受信機20において、ノイズ状態と伝送路状態を監視し、送信に用いるサブキャリア及びその電力を決定する。次に第2の送受信機20から第1の送受信機10に、送信方法や使用するサブキャリア及びその電力を決定するための情報をフィードバックする。次に第1の送受信機10は、送信方法や使用するサブキャリア及びその電力を決定して、その方式により第1の送受信機10から第2の送受信機20に、情報信号を送信する。
請求項1に係る発明における受信機又は請求項2に係る発明における第2の送受信機20においては、MIMOの他、最大比合成ダイバーシチを用いることもできる。
本実施例における第1の送受信機と第2の送受信機と移動体内電力線網との関係は、図2.A及び図2.Bに示されている通りである。本実施例は、移動体内において実現される2×2のMIMO通信システムである。図2.Aに示されているように、第1の送受信機101の2端子は、それぞれ、移動体内電力線網108に対して、ジャンクションボックス102およびシガレット103との2箇所に設けられた2つの端子に接続されている。また、第2の送受信機104の2端子は、それぞれ、移動体内電力線網108に対して、ルームランプ105およびリアハッチテールランプ106との2箇所に設けられた2つの端子に接続されている。なお、本実施例では、通信方式は、直交周波数分割多重方式(OFDM)を採用している。第1の送受信機101は、RF変調器、RF復調器、増幅器などのアナログ回路の他、離散的フーリエ逆変換、離散的フーリエ変換などのデジタル変調、復調を行い、各回路を制御するためのコンピュータシステムを有している。また、第2の送受信機104も、同様に、RF復調器、RF変調器、増幅器などのアナログ回路の他、離散的フーリエ変換、離散的フーリエ逆変換などのデジタル復調、変調を行い、各回路を制御するためのコンピュータシステムを有している。
移動体内電源線網108は、図2.Bに示されている。ジャンクションボックス102及びシガレットソケット103は移動体内の前方に設置されている。そのジャンクションボックス102は、電力線108aにより、給電するためのバッテリー107に接続され、電力線108bにより、シガレットソケット103に接続されている。後部座席ルームランプ105及びリアハッチテールランプ106は移動体内の後方に設置されている。後部座席ルームランプ105は、電力線108cにより、ジャンクションボックス102に接続され、リアハッチテールランプ106は、電力線108dにより、ジャンクションボックス102に接続されている。これらの電力線108a、108b、108c、108d、ジャンクションボックス102、シガレットソケット103、バッテリー107、後部座席ルームランプ105及びリアハッチテールランプ106により、移動体内電力線網108が構成されている。もちろん、移動体内電力線網108には、この他に、他の機器や、他の機器を接続する電力線が含まれていても良い。また、ジャンクションボックス102、シガレットソケット103、後部座席ルームランプ105及びリアハッチテールランプ106には、第1の送受信機101の2端子、第2の受信機104の2端子を接続するための端子が設けられている。
本発明の効果を示すため、以下の測定とシミュレーションを行った。
図3は市販の自家用車の電力線網の伝送特性として、周波数に対する伝送強度を測定した結果を示すグラフ図である。送信点は運転手のダッシュボードに近い位置にある、ジャンクションボックス102とシガレットソケット103とし、受信点は後部座席ルームランプ105とリアハッチテールランプ106とした。
送信点をジャンクションボックス102とし、受信点を後部座席ルームランプ105とした場合を白抜き四角(□)で示した。
送信点をジャンクションボックス102とし、受信点をリアハッチテールランプ106とした場合を白抜き三角(△)で示した。
送信点をシガレットソケット103とし、受信点を後部座席ルームランプ105とした場合を白抜き菱形(◇)で示した。
送信点をシガレットソケット103とし、受信点をリアハッチテールランプ106とした場合を白抜き丸(○)で示した。
尚、図3のグラフにおけるこれらを白抜き四角(□)、白抜き三角(△)、白抜き菱形(◇)、白抜き丸(○)は、単に視覚的に明確に区別するために付したものであり、それらを付した位置の周波数に特別の意味を持たせるものではない。
シガレットソケット103、後部座席ルームランプ105及びリアハッチテールランプ106への電力線108b、108c、108dは、ジャンクションボックス102内部でスイッチや、その他の機器を介して、電力線108aにより、バッテリ107まで繋がっている。即ち、これらの4つの送受信点の組み合わせにより仮想的に形成される伝送路は、必ずしも直接的に、即ちスイッチがオンの状態の線路だけで構成されるわけではない。
即ち、スイッチがオフでも、ジャンクションボックス102近傍でシガレットソケット103に設けた送信点からの送信信号とジャンクションボックス102に設けた送信点からの送信信号が、それぞれジャンクションボックス102付近で直接又は電磁誘導により、後部座席ルームランプ105への電力線108c及びリアハッチテールランプ106への電力線108dに伝送される。
或いは、シガレットソケット103に設けた送信点からの送信信号とジャンクションボックス102に設けた送信点からの送信信号が、例えばスイッチオンとなっている後部座席ルームランプ105への電力線108cに直接伝送される。これらの2つの送信信号は、スイッチオフとなっているリアハッチテールランプ106への電力線108dには直接伝送されないとしても、後部座席ルームランプ105への電力線108cとリアハッチテールランプ106への電力線108dとの間に電磁誘導が生ずる区間において、後部座席ルームランプ105への電力線108cからリアハッチテールランプ106への電力線108dに伝送される。
こうして、自家用車の比較的前部にあるジャンクションボックス102とシガレットソケット103を送信点とし、比較的後部にある後部座席ルームランプ105とリアハッチテールランプ106を受信点としたことで、ジャンクションボックス102付近で直接又は電磁誘導により、2個の送信点のいずれからも2個の受信点のいずれへも信号が送信されうる状態となっている。すなわち、2×2の4つの異なる伝送路が構成されることになる。
図3の測定結果から次のことがわかる。
送信点をジャンクションボックス102とし、受信点を後部座席ルームランプ105又はリアハッチテールランプ106とした場合は、減衰量が−30dBを越える帯域が多く、周波数によっては−40dBを越えることもあった。
送信点をシガレットソケット103とし、受信点を後部座席ルームランプ105又はリアハッチテールランプ106とした場合は、減衰量が−35dBを越えず、概ね−30dB乃至−20dBの範囲にある。
図3の測定結果を元に、送信点をジャンクションボックス102とシガレットソケット103とし、受信点を後部座席ルームランプ105とリアハッチテールランプ106とした場合のMIMO技術を用いた誤り率特性のシミュレーションを実施した。
シミュレーションの条件は次のようにした。
1次変調方式は16QAMとした。
2次変調方式はOFDMとした。
サブキャリア数は180、キャリア間隔は156.25kHzとした。これは現在家庭用に認可されている電力線通信(PLC)の使用周波数帯域である2〜30MHz帯域の全てを使用することとしたものである。尚、帯域は正確には2〜29.96875MHzである。
誤り訂正符号は畳み込み符号とし、符号化率を1/2、拘束長を7とした。これは無線LAN用のIEEE802.11a規格と同様としたものである。
誤り復号法にはビタビアルゴリズムを用いた。
MIMO伝送法は、送信側でそれぞれのサブキャリアにおいて良好な伝送路を得ることのできる送信点を選択し、信号を送信する方法(送信選択ダイバーシチ法)を用いることとし、送受信点は2×2とした。
雑音には加法的白色ガウス雑音を想定した。
図4は、図3の測定結果に基づき上記条件で行ったシミュレーション結果を示すグラフ図である。実施例1の結果には白抜き菱形(◇)を付した。
尚、合わせて、送信点をジャンクションボックス102のみとし、受信点を後部座席ルームランプ105のみの場合(比較例1、白抜き四角(□)を付した)と後部座席ルームランプ105及びリアハッチテールランプ106とした場合(比較例2、白抜き三角(△)を付した)についても誤り率特性のシミュレーションを実施した。実施例1と比較列2は、受信側では2つの受信信号を最大比合成している。尚、比較例2においてはMIMO(送信選択ダイバーシチ法)は用いていないことになるが、送信側は言わば送信アンテナを1本省略する(送信電力を0とする)他は実施例1と同様の構成としてシミュレーションを実施した。また、比較例1においてはダイバーシチを行っていないが、その際、受信側は言わば受信アンテナを1本省略する(受信電力を0とする)他は比較例2と同様の構成としてシミュレーションを実施した。
図4に示されるとおり、送受信点を2×2としてMIMO伝送法(送信選択ダイバーシチ法)を適用した本実施例1(◇)は、送信Eb/N0が33dBでBERが約10-3となり、送信Eb/N0が35dBでBERが約10-5となった。
一方、送受信共にダイバーシチを行わない比較例1(□)においては送信Eb/N0が35dBでBERが約1/2であり、送信Eb/N0が42dBでBERが約10-3となった。
また、受信ダイバーシチのみの構成である比較例2(△)においては送信Eb/N0が35dBでBERが約2×10-2であり、送信Eb/N0が37dBでBERが約10-3となった。
このように、MIMO伝送法(送信選択ダイバーシチ法)を適用した本実施例1(◇)は、受信ダイバーシチの比較例2(△)に比較して約4dB、送受信共にダイバーシチを行わない比較例1(□)に比較して約9dBの送信電力低減が見込める。
本実施例でMIMO技術の効果が表れた理由は、自家用車の比較的前部にあるジャンクションボックス102とシガレットソケット103を送信点とし、比較的後部にある後部座席ルームランプ105とリアハッチテールランプ106を受信点としたことである。即ち、シガレットソケット103、後部座席ルームランプ105及びリアハッチテールランプ106への電力線はジャンクションボックス102内部でスイッチその他を介してバッテリ107まで繋がっている。ジャンクションボックス102近傍でシガレットソケット103に設けた送信点からの送信信号とジャンクションボックス102に設けた送信点からの送信信号が、ジャンクションボックス102付近で直接又は電磁誘導により、後部座席ルームランプ105への電力線及びリアハッチテールランプ106への電力線に伝送されうる。
或いは、シガレットソケット103に設けた送信点からの送信信号とジャンクションボックス102に設けた送信点からの送信信号が、例えばスイッチオンとなっている後部座席ルームランプ105への電力線108cに直接伝送され、スイッチオフとなっているリアハッチテールランプ106への電力線108dには直接伝送されないとしても、後部座席ルームランプ105への電力線108cとリアハッチテールランプ106への電力線108dとの間に電磁誘導が生ずる区間において、後部座席ルームランプ105への電力線108cからリアハッチテールランプ106への電力線108dに上記2つの送信信号が伝送されうる。
こうして、自家用車の比較的前部にあるジャンクションボックス102とシガレットソケット103を送信点とし、比較的後部にある後部座席ルームランプ105とリアハッチテールランプ106を受信点としたことで、ジャンクションボックス102付近で直接又は電磁誘導により、2個の送信点のいずれからも2個の受信点のいずれへも信号が送信される状態となっている。
次に、上記の2×2のMIMO−OFDM伝送方式による装置について具体的に説明する。第1の送受信機101の有するコンピュータシステムによる処理手順を図5、第2の受信機104の有するコンピュータシステムによる処理手順を図6を用いて説明する。まず、各伝送路の伝送路特性(伝達関数や雑音レベル)が測定される。ステップ200において、第1の送受信機101からパケットデータを送信する前に、既知のデータ列が、MIMO−OFDM方式により変調されて、第2の受信機104に送出される。
第2の受信機104では、ステップ300において、この既知のデータ列が受信されるまで待機状態にある。この待機状態において、ステップ302において、各伝送路の雑音レベルが各周波数毎に測定される。データ列が受信されると、ステップ304において、MIMO−OFDM方式によるデータ列を復調して、各伝送路を伝搬したデータの振幅と位相が求められる。このデータ列の送信時の振幅と位相は既知である。したがって、復調された複素データの、送信時の複素データに対する比により各伝送路の各複素伝達関数を求めることができる。ステップ306においては、各伝送路毎の伝達関数が求められる。すなわち、伝達関数の絶対値は、図3に示す特性として求めることができる。
次に、ステップ308において、既に測定されている周波数毎の雑音レベルと、伝達関数の絶対値(伝送路による減衰量)から、一定値以上のS/N比が得られる送信レベルと、サブキャリアの周波数が決定される。すなわち、得られた図3の特性から、送信レベルを決定すると受信レベルの周波数特性が決定され、送信レベルに対応する受信信号のS/N比が、各周波数毎に決定される。そして、S/N比が所定値を越えるサブキャリアの周波数が決定される。このサブキャリアの周波数の決定は、2つの送信点の、それぞれに対して、実行される。すなわち、一つの送信点に対して、受信点は2つ存在し、伝送路は2つ存在する。そこで、サブキャリアの各周波数毎に、S/N比が小さい方の伝送路のS/N比が所定値を越える周波数が決定されることになる。また、送信レベルを高くすれば、受信信号のS/Nは向上するが、電力損失が大きくなる。そのため、所定のS/N比が得られる所定数のサブキャリアが確保される範囲において、送信電力は最低値に決定される。このようにして、各送信点毎に決定されたサブキャリアの周波数群と、送信レベルとの情報は、制御情報として、ステップ310において、第1の送受信機101に向けて送信される。この場合の制御情報は、ステップ308において、決定された送信レベルと、サブキャリアの周波数群を用いて、MIMO−OFDM変調して、送信すれば良い。この制御情報が、伝送特性に関する情報に該当する。制御情報を第1の送受信機101へ送信する場合には、最も伝送品質の高い一つの伝送路を用いて、伝送しても良い。また、制御情報の先頭に既知のデータを含めることで、第1の送受信機101において、伝送路の伝達関数を得ることができるので、制御情報の復調を可能とすることができる。
第1の送受信機101では、ステップ202において、この制御情報を第2の受信機104から、受信すると、ステップ204において、MIMO−OFDM変調して、送信すべき情報であるパケットデータを第2の送受信機104に向けて送信する。この時、2つ存在する各送信点毎に、変調に使用するサブキャリアの周波数が、受信した制御情報から決定される。そして、各送信点毎に、第1の送受信機101から送信される信号レベルが、制御情報から決定される送信レベルに一致するように、増幅器の増幅度が調整されて、パケットデータが移動体内電力線網108に送信される。この時、FFT演算の関係上、サブキャリアの数は、2n となるが、使用しないサブキャリアはヌルキャリアとして、演算される。
第2の送受信機104は、このパケットデータが受信されるまで、待機状態にある。パケットデータが受信されると、ステップ314において、そのパケットデータは、ステップ306で既に求められている各伝送路の伝達関数(伝達行列)を用いて、MIMO−OFDM方式により復調される。これにより、2つの送信点から、それぞれ、独立して送信されたデータを、独立して復調することができる。伝送路の伝達関数が求められた後は、ステップ204において、第2の送受信機104から送信される制御情報に基づいて、パケットデータの送信が繰返し実行されることになる。また、第2の受信機104は、ステップ312、314において、一連のパケットデータが受信される毎に、受信信号の復調が実行されることになる。
また、第1の送受信機101にけおるステップ200、202による伝送路の伝達関数を求めるための既知データの第2の送受信機104への送信処理、第2の受信機104におけるステップ302〜310での、伝送路の伝達関数を求め、制御情報を第1の送受信機101へ送信する処理は、伝送路の特性が変化したタイミングで、ステップ200、ステップ300からの割込み処理が係るようにして、実施するようにすれば良い。このようにして、各サブキャリア毎に、送信点を選択する送信選択ダイバーシチによるMIMOを実現することができる。
[変形例]
上記実施例において、以下の変更を行うことも可能である。
上記の実施例では、第2の送受信機104において、各送信点毎に使用するサブキャリアの周波数と送信レベルとを決定して、これらを制御情報として第1の送受信機101に送信している。これに対して、第2の送受信機104で測定されたノイズレベルと、各伝送路の伝達関数の絶対値とを、第1の送受信機101に送信して、第1の送受信機101において、各送信点毎に送信レベルと使用するサブキャリアの周波数とを決定しても良い。
また、第2の送受信機104から、伝送路の伝達関数を求めるための、既知のデータとノイズレベルとを第1の送受信機101へ送信するようにしても良い。第1の送受信機101では、この既知のデータを復調することで、各伝送路の伝達関数を求めることができる。これにより、各送信点毎に、使用するサブキャリアの周波数、送信レベルとを決定することができる。
また、上記実施例は、各サブキャリア毎に送信点を決定している。もちろん、複数の送信点間において、共通するサブキャリアが存在しても良い。また、上記実施例では、空間分割多重方式により、4つの伝送路を全て用いて伝送する方式である。すなわち、一つの送信点に対して、2つの伝送路を用いた伝送である。これを、2つの受信点における受信信号のうち、各サブキャリアにおいて、S/N比が大きい方の信号が、S/Nの基準値を越えるように、送信レベルと使用するサブキャリアを決定しても良い。この場合には、選択受信ダイバーシチにより、2つの伝送路のうち、S/N比が大きい方の伝送路が採用されることになる。また、2つの受信点における受信信号を例えば最大比合成などのダイバーシチ合成の手法により合成した後の信号に関して、各サブキャリアにおいて、S/N比が基準値を越えるように、各送信点毎に、送信レベルと使用するサブキャリアを決定しても良い。
また、2つの送信点のうち、各サブキャリアの周波数毎に、伝送品質が良好な一方の送信点を決定して、各サブキャリア毎に、何れかの送信点を選択して、選択された送信点に分割して、一つのパケットデータを送信するようにしても良い。この場合には、送信点を周波数毎に、選択する送信選択ダイバーシチとなる。この場合も、FFTに関しては、使用しないサブキャリアは、ヌルキャリアとして扱われる。
また、第2の送受信機104においては、各サブキャリア毎に、同一データが、2つの受信点に受信されることになるので、この2つのデータを、各サブキャリア毎に最大比合成すれば良い。
又は、2つの受信点の内で、サブキャリア毎に、受信レベルの高い方のデータを採用しても良い。また、上記の実施例では、各送信点毎に、使用するサブキャリアの周波数群を決定しているが、全ての使用するサブキャリアに対して、所定のS/N比が得られるように、サブキャリアの周波数群を共通に選択しても良い。
また、上記の変調方式のMIMOにおいては、各送信点毎に、異なる送信遅延時間を与える遅延ダイバーシチ法や、複数の送信点を用いて符号化を行なう時空間ブロック符号化(STBC)を用いても良い。
受信に際しての、受信ダイバーシチ法としては、最大比合成の他、受信電力を同一の振幅と位相にそろえ合成する等利得合成や、最もS/N比が良好な受信点の信号のみを受信する選択合成ダイバーシチを用いても良い。
また、上記実施例では、OFDM方式を用いた例であるが、これを図7に示すように、異なる周波数帯域毎に、異なる変調方式を採用しても良い。例えば、図7において、CDMA伝送方式、シングルキャリア伝送方式では、キャリアは1本である。周波数分割多重化されているので、各帯域において使用されるキャリアを、本明細書では、サブキャリアとしている。したがって、サブキャリアは、OFDM方式だけではなく、周波数分割多重化された各変調方式に用いるキャリアもサブキャリアである。図7の例では、CDMA、OFDM、OFDM、シングルキャリア伝送の方式が周波数多重化されている。各送信点毎に且つ、各周波数帯域や、各サブキャリアの周波数毎に、変調方式を変更しても良い。各送信点毎に変調方式を変更したり、同一送信点であっても周波数毎に変調方式を変更しても、周波数帯域で変調方式が分離されているので、受信側で混信が起こることは防止される。
上記実施例においては2次変調方式としてOFDMを用いたが、スペクトル拡散方式(SS)を用いても良い。この場合も、MIMO伝送法(例えば送信選択ダイバーシチ法)を適用した本発明の方が、受信ダイバーシチのみの場合や、送受信共にダイバーシチを行わない場合に比較して送信電力を低減させることが可能である。
上記実施例では第1の送受信機101の2端子を、それぞれ、ジャンクションボックス102の端子とシガレットソケット103の端子に接続し、第2の送受信機104の2端子を、それぞれ、後部座席ルームランプ105の端子とリアハッチテールランプ106の端子に接続する構成を示したが、主たるデータを後方から前方に送信する場合には、第1の送受信機の2端子を、それぞれ、を後部座席ルームランプ105の端子とリアハッチテールランプ106の端子に接続し、第2の送受信機104の2端子を、それぞれ、ジャンクションボックス102の端子とシガレットソケット103の端子に接続すれば良い。
尚、図3の測定結果から、次のことも言える。
即ち、受信電力が例えば図3の◇印のように全周波数帯域で閾値以上であれば、第1の送受信機101から第2の送受信機104への送信時の2次変調方式をOFDMとし、且つ全ての一次変調方式を例えば64QAMとする。
一部又は全文のサブキャリアについて受信電力が悪化した場合、当該一部又は全文のサブキャリアについては順次一次変調方式を例えば64QAMから16QAM、QPSK、BPSKと切り替える。更には使用できないサブキャリアを設定する。又は、誤り訂正符号のビット長を可変としておき、受信電力が悪化した場合に冗長量を増加させる。
更に、使用できないサブキャリア数が一定数を超えた場合は、第1の送受信機から受信機への送信時の2次変調方式をOFDMからSSに切り替える。
例えば図3の□印のような伝送特性が悪い場合にこれらを実行すると良い。
以上は、公知の適応変調技術等により実行可能である。
本発明では移動体内電力線網に設けられた複数個の送信点と複数個の受信点に、送信機、受信機を接続し(請求項1)、或いは移動体内電力線網に設けられた複数個の第1及び第2の接続点に、第1の送受信機、第2の送受信機を接続するものである。しかし、変形例として、主たるデータの受信側である受信機(請求項1)の端子は、この移動体内電力伝送網に、直接接続されている必要はない。すなわち、受信機(請求項1)の端子、又は第2の送受信機(請求項2)の端子の全て又は一部は、高周波信号の移動体内電力線網内の伝達経路と十分な電磁誘導を生ずる伝送線路に接続されたり、電磁結合されていれば良い。この時、当該移動体内電力線網内の伝達経路とその外部の伝送線路とは、直接的に電磁誘導を生じても良く、移動体を構成する任意の金属部分を介して電磁誘導を生じても良い。
移動体各部のデジタルモニタ画像を、例えば運転手のカーナビゲーションモニタに映写する場合に好適である。
10,101:第1の送受信機
20,104:第2の送受信機
102:ジャンクションボックス
103:シガレットソケット
105:後部座席ルームランプ
106:リアハッチテールランプ
107:バッテリ
108:移動体内電力線網
108a,108b,108c,108d:電力線

Claims (11)

  1. 移動体内に設けられた送信機と受信機とを用いる通信方法であって、
    前記送信機は、複数の電力線から成る移動体内電力線網に設けられた複数個の送信点と接続され、
    前記受信機は、前記移動体内電力線網に設けられた複数個の受信点と接続され、
    前記受信機において、前記複数個の受信点を介して受信された複数個の受信波により受信ダイバーシチを実施することを特徴とする移動体用電力線通信方法。
  2. 移動体内に設けられた第1の送受信機と第2の送受信機とを用いる通信方法であって、
    前記第1の送受信機から前記第2の送受信機へ情報を送信するために、
    前記第1の送受信機は、複数の電力線から成る移動体内電力線網に設けられた複数個の第1の接続点と接続され、
    前記第2の送受信機は、前記移動体内電力線網に設けられた複数個の第2の接続点と接続され、
    前記第2の送受信機は前記第1の送受信機に伝送特性に関する情報を送信し、
    前記第1の送受信機は前記第2の送受信機から送信された前記伝送特性に関する情報に基づき、前記複数個の送信点に対して送信ダイバーシチを実行し、
    前記第2の送受信機において、前記複数個の第2の接続点を介して受信された複数個の受信波により受信ダイバーシチを実施することを特徴とする移動体用電力線通信方法。
  3. 前記第1の送受信機において、前記第2の送受信機から送信された前記伝送特性に関する情報に基づき、伝送路特性の監視及び判定と、送信に用いるべきサブキャリア及びその電力を決定することを特徴とする請求項2に記載の移動体用電力線通信方法。
  4. 前記第2の送受信機において、伝送路特性の監視及び判定と、送信に用いるべきサブキャリア及びその電力を決定して、それを前記伝送特性に関する情報として前記第1の送受信機に送信することを特徴とする請求項2に記載の移動体用電力線通信方法。
  5. スペクトル拡散方式を用いることを特徴とする請求項1乃至請求項4のいずれか1項に記載の移動体用電力線通信方法。
  6. 直交周波数分割多重方式を用いることを特徴とする請求項1乃至請求項4のいずれか1項に記載の移動体用電力線通信方法。
  7. スペクトル拡散方式と直交周波数分割多重方式を切り替えて用いることを特徴とする請求項1乃至請求項4のいずれか1項に記載の移動体用電力線通信方法。
  8. 各送信点又は各第1の接続点ごとに直交周波数分割多重方式において使用するサブキャリアを可変とすることを特徴とする請求項6又は請求項7に記載の移動体用電力線通信方法。
  9. 各サブキャリアごと及び/又は各送信点若しくは各第1の接続点ごとに直交周波数分割多重方式において使用するデジタル一次変調方式を可変とすることを特徴とする請求項6乃至請求項8のいずれか1項に記載の移動体用電力線通信方法。
  10. 前記送信ダイバーシチ及び前記受信ダイバーシチはMIMO技術により実現されることを特徴とする請求項1乃至請求項9のいずれか1項に記載の移動体用電力線通信方法。
  11. 前記MIMO技術は送信選択ダイバーシチ法により実現されることを特徴とする請求項10に記載の移動体用電力線通信方法。
JP2010183175A 2009-09-24 2010-08-18 移動体用電力線通信方法 Pending JP2011091791A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010183175A JP2011091791A (ja) 2009-09-24 2010-08-18 移動体用電力線通信方法
US12/888,497 US20110069766A1 (en) 2009-09-24 2010-09-23 Method of communicating with using electric power line for mobile body
CN2010102928789A CN102035573A (zh) 2009-09-24 2010-09-25 利用用于移动体的电力线路进行通信的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009218728 2009-09-24
JP2010183175A JP2011091791A (ja) 2009-09-24 2010-08-18 移動体用電力線通信方法

Publications (1)

Publication Number Publication Date
JP2011091791A true JP2011091791A (ja) 2011-05-06

Family

ID=43756601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183175A Pending JP2011091791A (ja) 2009-09-24 2010-08-18 移動体用電力線通信方法

Country Status (3)

Country Link
US (1) US20110069766A1 (ja)
JP (1) JP2011091791A (ja)
CN (1) CN102035573A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045566A1 (ja) * 2012-09-20 2014-03-27 アイシン精機株式会社 電力線通信用トランシーバ及び電力線通信方法
JP2014233044A (ja) * 2013-05-30 2014-12-11 株式会社デンソー 電力線通信システム、マスタ及びスレーブ
JP2018503999A (ja) * 2014-11-20 2018-02-08 エイ・ティ・アンド・ティ インテレクチュアル プロパティ アイ,エル.ピー. チャネル等化及び制御用いる送信デバイス並びにそれとともに使用する方法
US11025460B2 (en) 2014-11-20 2021-06-01 At&T Intellectual Property I, L.P. Methods and apparatus for accessing interstitial areas of a cable

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074992B2 (en) * 2011-02-23 2018-09-11 Sony Corporation Battery device, battery management method, and electronic apparatus
CN103138805B (zh) * 2013-02-01 2015-02-18 北京曼若科技有限公司 电力线载波的传输方法、装置以及系统
US9130658B2 (en) * 2013-05-06 2015-09-08 Qualcomm Incorporated Selection diversity in a powerline communication system
US9137004B2 (en) * 2013-12-12 2015-09-15 Qualcomm Incorporated Neighbor network channel reuse with MIMO capable stations
US20150196970A1 (en) * 2014-01-10 2015-07-16 Illinois Tool Works Inc. Devices and methods for communicating in a welding system
US10543554B2 (en) 2014-12-05 2020-01-28 Lincoln Global, Inc. Welding assembly for high-bandwidth data communication
US20160158868A1 (en) * 2014-12-05 2016-06-09 Lincoln Global, Inc. Welding assembly for high-bandwidth data communication
US20160158867A1 (en) * 2014-12-05 2016-06-09 Lincoln Global, Inc. Welding assembly for high-bandwidth data communication
US20160175972A1 (en) * 2014-12-18 2016-06-23 Illinois Tool Works Inc. Systems and methods for providing a welding system access to a network via power lines
US10828713B2 (en) 2014-12-18 2020-11-10 Illinois Tool Works Inc. Systems and methods for adaptively controlling physical layers for weld cable communications
US10449614B2 (en) 2014-12-18 2019-10-22 Illinois Tool Works Inc. Systems and methods for solid state sensor measurements of welding cables
US11198190B2 (en) 2014-12-18 2021-12-14 Illinois Tool Works Inc. Systems and methods for duplex communications over a welding cable
US10906119B2 (en) * 2014-12-18 2021-02-02 Illinois Tool Works Inc. Systems and methods for communication via a welding cable
DE112019004662T5 (de) * 2018-09-18 2021-06-17 Tactual Labs Co. Biometrische frequenz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064405A (ja) * 2002-07-29 2004-02-26 Denso Corp 電力線通信方法及び装置
JP2004289695A (ja) * 2003-03-24 2004-10-14 Tdk Corp 電力線通信システムおよび方法、ならびに電力線通信用受信機および電力線通信用送信機
JP2008511184A (ja) * 2004-08-24 2008-04-10 松下電器産業株式会社 電力線通信システム
JP2008301408A (ja) * 2007-06-04 2008-12-11 Denso Corp 車両用通信装置及び制御情報生成装置
JP2009194570A (ja) * 2008-02-13 2009-08-27 Sony Corp 通信システム並びに通信装置
JP2010136409A (ja) * 2001-05-11 2010-06-17 Qualcomm Inc チャネル状態情報を利用する多元入力−多元出力(mimo)通信システムにおけるデータを処理するための方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279277B2 (ja) * 1999-02-19 2002-04-30 三菱電機株式会社 マルチキャリア通信方法およびマルチキャリア通信装置
GB2383724B (en) * 2001-12-15 2005-03-09 Univ Lancaster Communications system
JP2004289661A (ja) * 2003-03-24 2004-10-14 Tdk Corp 電力線通信システムおよび方法、ならびに電力線通信用受信機および電力線通信用送信機
US7269403B1 (en) * 2004-06-03 2007-09-11 Miao George J Dual-mode wireless and wired power line communications
JP2008141224A (ja) * 2005-02-09 2008-06-19 Sumitomo Electric Ind Ltd 有線通信におけるダイバーシチ受信方法及び受信装置
CA2500699A1 (fr) * 2005-03-16 2006-09-16 Domosys Corporation Powerline communication system
CN1937435A (zh) * 2006-09-30 2007-03-28 东南大学 电力线通信系统的数字信号处理方法
US8209677B2 (en) * 2007-05-21 2012-06-26 Sony Corporation Broadcast download system via broadband power line communication
EP2393214B1 (en) * 2007-08-22 2020-06-17 Sony Corporation Method for transmitting a signal via a power line network, transmitter, receiver, power line communication modem and power line communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136409A (ja) * 2001-05-11 2010-06-17 Qualcomm Inc チャネル状態情報を利用する多元入力−多元出力(mimo)通信システムにおけるデータを処理するための方法及び装置
JP2004064405A (ja) * 2002-07-29 2004-02-26 Denso Corp 電力線通信方法及び装置
JP2004289695A (ja) * 2003-03-24 2004-10-14 Tdk Corp 電力線通信システムおよび方法、ならびに電力線通信用受信機および電力線通信用送信機
JP2008511184A (ja) * 2004-08-24 2008-04-10 松下電器産業株式会社 電力線通信システム
JP2008301408A (ja) * 2007-06-04 2008-12-11 Denso Corp 車両用通信装置及び制御情報生成装置
JP2009194570A (ja) * 2008-02-13 2009-08-27 Sony Corp 通信システム並びに通信装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045566A1 (ja) * 2012-09-20 2014-03-27 アイシン精機株式会社 電力線通信用トランシーバ及び電力線通信方法
JP2014233044A (ja) * 2013-05-30 2014-12-11 株式会社デンソー 電力線通信システム、マスタ及びスレーブ
JP2018503999A (ja) * 2014-11-20 2018-02-08 エイ・ティ・アンド・ティ インテレクチュアル プロパティ アイ,エル.ピー. チャネル等化及び制御用いる送信デバイス並びにそれとともに使用する方法
US10411921B2 (en) 2014-11-20 2019-09-10 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US11025460B2 (en) 2014-11-20 2021-06-01 At&T Intellectual Property I, L.P. Methods and apparatus for accessing interstitial areas of a cable

Also Published As

Publication number Publication date
CN102035573A (zh) 2011-04-27
US20110069766A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP2011091791A (ja) 移動体用電力線通信方法
US9848352B2 (en) Apparatus and method for saving power consumption in broadband wireless communication system
US7440412B2 (en) Link quality prediction
US20070268973A1 (en) Data communications system and method of data transmission
US20120269231A1 (en) Antenna selection and training using a spatial spreading matrix for use in a wireless mimo communication system
JP4167464B2 (ja) 車載デジタル通信受信装置
US8254434B2 (en) OFDM wireless mobile communication system and method for estimating SNR of channel thereof
AU2009213094A1 (en) Multi-mode terminal in a wireless MIMO system with spatial multiplexing
JP2008546256A (ja) 直交周波数分割無線通信システムにおけるソフターおよびソフトハンドオフ
CN108092702B (zh) 智能天线自适应调整方法、智能天线装置及智能电视
JP5951925B2 (ja) 無線通信システムのリモートノードによるランダムアクセスチャネルを介して信号を送信するための方法及びリモートノード装置
KR20090056206A (ko) 무선 통신 시스템에서 시변 순환 지연 다이버시티 방법 및 장치
KR101106684B1 (ko) 다중 안테나 시스템의 수신 장치 및 방법
JP2009518929A (ja) サブバンド毎の受信器アンテナ選択を伴うマルチバンドofdmシステムのためのシステム、装置、及び方法
JP2007134911A (ja) 信号復号装置、信号復号方法、プログラム並びに情報記録媒体
EP2523382A2 (en) Frequency selective transmit signal weighting for multiple antenna communication systems
US9100073B2 (en) Wireless communications system and method
JP3818078B2 (ja) ダイバーシティ無線機
US9641358B2 (en) Adaptive modulation
JP2009118388A (ja) 受信装置
KR100710891B1 (ko) 차세대 휴대 인터넷에서의 적응형 다중 송수신 방법 및 그장치
JP2007274726A (ja) 車載デジタル信号受信装置、およびダイバーシティシステム
JP2009060176A (ja) 無線通信装置および無線受信方法
WO2008088194A1 (en) Method and apparatus for transmitting and receiving a signal in a communication system
JP2007209041A (ja) 車載デジタル信号受信装置、およびダイバーシティシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701