JP2011091414A - 発光装置 - Google Patents
発光装置 Download PDFInfo
- Publication number
- JP2011091414A JP2011091414A JP2010254758A JP2010254758A JP2011091414A JP 2011091414 A JP2011091414 A JP 2011091414A JP 2010254758 A JP2010254758 A JP 2010254758A JP 2010254758 A JP2010254758 A JP 2010254758A JP 2011091414 A JP2011091414 A JP 2011091414A
- Authority
- JP
- Japan
- Prior art keywords
- light
- phosphor
- emitting device
- light emitting
- wavelength conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
- Luminescent Compositions (AREA)
Abstract
【課題】高効率かつ良好な温度特性を持つだけでなく色再現性(NTSC比)にも優れた発光装置を提供する。
【解決手段】一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の波長を有する二次光を発する波長変換部とを備える発光装置であって、前記波長変換部は複数の一般式:EuaSibAlcOdNeで実質的に表されるβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体からなる緑色系発光蛍光体、および、一般式:(MI1-fEuf)MIISiN3で実質的に表される2価のユーロピウム付活窒化物蛍光体からなる赤色系発光蛍光体を含む。
【選択図】図1
【解決手段】一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の波長を有する二次光を発する波長変換部とを備える発光装置であって、前記波長変換部は複数の一般式:EuaSibAlcOdNeで実質的に表されるβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体からなる緑色系発光蛍光体、および、一般式:(MI1-fEuf)MIISiN3で実質的に表される2価のユーロピウム付活窒化物蛍光体からなる赤色系発光蛍光体を含む。
【選択図】図1
Description
本発明は、一次光を発する発光素子と、一次光を吸収して二次光を発する波長変換部とを備えた発光装置に関する。
一次光を発する発光素子と、一次光を吸収して二次光を発する波長変換部とを組み合わせた発光装置は、低消費電力、小型、高輝度かつ広範囲な色再現性が期待される次世代の発光装置として注目され、活発に研究、開発が行なわれている。発光素子から発せられる一次光は、通常、長波長の紫外線から青色の範囲、すなわち380nmから480nmのものが用いられる。また波長変換部に、用途に適した様々な蛍光体が用いられる。
最近では、この種の発光装置に対して変換効率(明るさ)のみならず、入力のエネルギをより高くし、さらに明るくしようとする試みがなされている。入力エネルギを高くした場合、波長変換部を含めた発光装置全体の効率的な放熱が必要となってくる。このために、発光装置全体の構造、材質などの開発も進められているが、動作時における発光素子の発熱と発光素子の発熱から受ける波長変換部の温度上昇は避けられないのが現状である。
現在、白色発光を呈する発光装置としては、青色発光の発光素子(ピーク波長:450nm前後)とその青色により励起され黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体または2価のユーロピウムで付活された(Sr,Ba,Ca)2SiO4蛍光体を用いた波長変換部とを組み合わせた発光装置が主として用いられている。
しかしながら上述した白色発光を呈する発光装置の中でも、特に、3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体を用いた発光装置では、100℃では25℃での輝度(明るさ)を100%としたときに、その輝度は85%前後に低下するために、入力エネルギを高く設定できないという技術課題を有している。したがって、この種の発光装置に対して、用いられる蛍光体の温度特性の改善も急務となっている。
この種の発光装置において、耐熱性に着目したものとしては、特許文献1(特開2004−182780号公報)がある。その中で、発光効率が高く、化学的・熱的に安定な蛍光体を提供することが記載されている。すなわち、500nm以下にピーク波長を有する第1の発光スペクトルの少なくとも一部を波長変換し、520〜780nmの波長範囲に少なくとも1以上のピーク波長を有する第2の発光スペクトルを有する、一般式LxMyN((2/3)x+(4/3)y):RもしくはLxMyOzN((2/3)x+(4/3)y-(2/3)z):R(LはMg、Ca、Sr、Ba、Znからなる第Ii族元素から選ばれる少なくとも1種以上を有する。MはC、Si、CeのうちSiを必須とする第IV族元素から選ばれる少なくとも1種以上を有する。RはY、La、Ge、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、LuのうちEuを必須とする希土類元素から選ばれる少なくとも1種以上を有する。)なる蛍光体が記載されている。さらに具体的には、特許文献1の第13頁、第26頁において青色LED+3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体+発明の窒化物蛍光体の組合せが推奨されている。しかしながら、上述のように3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体は温度特性に技術課題を抱えており、さらには、赤色系発光蛍光体(Sr2Si5N8:EuあるいはCa2Si5N8:Eu)を添加することにより、白色光の効率が低下するという問題を有している。
また近年では、小型LCD(Liquid Crystal Display)用バックライトの開発競争が激化している。この分野においては、様々な方式が提案されているが、明るさと色再現性(NTSC比)とを同時に満足する方式は見つかっていない。なお、NTSC比とは、NTSC(National Television System Committee)が定めた赤、緑、青、各色のXYZ表色式色度図における色度座標(x,y)(赤(0.670,0.330)、緑(0.210,0.710)、青(0.140,0.080))を結んで得られる三角形の面積に対する比率を指す。
しかしながら、上述したような青色発光の発光素子とその青色により励起され黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)5O12蛍光体または2価のユーロピウムで付活された(Sr,Ba,Ca)2SiO4蛍光体を用いた波長変換部とを組み合わせた、白色発光を呈する発光装置では、色再現性(NTSC比)は50%弱である。このような背景の中、小型LCD用バックライトの色再現性(NTSC比)の改善についても急務となっている。
LCDにおける色再現性(NTSC比)に着目した従来技術としては、たとえば特開2003−121838号公報(特許文献2)が挙げられる。その中で、バックライト光源として、505〜535nmの範囲にスペクトルピークを有すること、およびその光源に使用する緑蛍光体の付活剤としてユーロピウム、タングステン、スズ、アンチモン、マンガンのいずれかを含むこと、さらには実施例には緑蛍光体として、MgGa2O4:Mn、Zn2SiO4:Mnを用いることが記載されている。
しかしながら、発光素子のピーク波長が430〜480nmの範囲の場合には、ユーロピウム、タングステン、スズ、アンチモン、マンガンのいずれかを含む蛍光体が全て適用されるものではない。すなわち、特許文献2の実施例に記載されているMgGa2O4:Mn、Zn2SiO4:Mnは430〜480nmの範囲の励起光では、その発光効率は著しく低い。
また特開2004−287323号公報(特許文献3)には、バックライトとして、赤発光LEDチップと緑発光LEDチップと青発光LEDチップとが1パッケージとなったRGB−LEDの他に、3波長型蛍光管、紫外光LED+RGB蛍光体、有機EL光源などがあると記載されている。しかしながら特許文献3には、青色光を励起源とするRG蛍光体に関する具体的な記述はない。
本発明は、上記課題を解決するためになされたものであって、その目的とするところは、半導体発光素子からの430〜480nmの範囲の光によって、高効率で発光し、かつ温度特性の良好な特定の蛍光体を用いることにより、高効率かつ動作時においても安定した特性を有する発光装置、好ましくはさらに色再現性(NTSC比)にも優れた発光装置を提供することである。
本発明の発光装置は、一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の波長を有する二次光を発する波長変換部とを備える発光装置であって、前記波長変換部は複数の緑色系発光蛍光体および赤色系発光蛍光体を含み、
前記緑色系発光蛍光体は、
一般式:EuaSibAlcOdNe
(式中、0.005≦a≦0.4、b+c=12、d+e=16である。)
で実質的に表されるβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体からなり、前記赤色系発光蛍光体は、
一般式:(MI1-fEuf)MIISiN3
(式中、MIは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、MIIはAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦f≦0.05である。)
で実質的に表される2価のユーロピウム付活窒化物蛍光体からなり、前記緑色系発光蛍光体および前記赤色系発光蛍光体の平均粒径が略同一であることを特徴とする。
前記緑色系発光蛍光体は、
一般式:EuaSibAlcOdNe
(式中、0.005≦a≦0.4、b+c=12、d+e=16である。)
で実質的に表されるβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体からなり、前記赤色系発光蛍光体は、
一般式:(MI1-fEuf)MIISiN3
(式中、MIは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、MIIはAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦f≦0.05である。)
で実質的に表される2価のユーロピウム付活窒化物蛍光体からなり、前記緑色系発光蛍光体および前記赤色系発光蛍光体の平均粒径が略同一であることを特徴とする。
また、上述した本発明の発光装置は、前記緑色系発光蛍光体の平均粒径が、2〜8μmであることが好ましい。
また、上述した本発明の発光装置は、前記赤色系発光蛍光体の平均粒径が、3〜10μmであることが好ましい。
さらに、上述した本発明の発光装置は、前記赤色系発光蛍光体として、上記一般式中、MIIがAl、GaおよびInから選ばれる少なくとも1種の元素である、2価のユーロピウム付活窒化物蛍光体を用いたものであることが好ましい。
本発明の発光装置は、前記波長変換部に用いられる複数の蛍光体は、波長変換部の一次光の入射側から出射側に向かって、二次光の波長の長い蛍光体順に積層されたものであることが好ましい。
本発明の発光装置は、発光素子が430〜480nmのピーク波長を有する一次光を発する窒化ガリウム(GaN)系半導体であることが好ましい。
本発明の発光装置は、白色LEDであることが好ましい。また、LCD用バックライト光源に用いられるものであることが好ましい。
本発明の発光装置は、発光素子からの発光を効率よく吸収して、高効率な白色光を発光するとともに、温度特性に優れる。また、本発明では、温度特性に加えて、色再現性(NTSC比)が著しく良好な白色を得ることができ、さらには、平均演色評価数(Ra)も優れており、一般照明用としても良好な白色を得ることができる発光装置も提供することができる。
図1は、本発明の発光装置1の好ましい一例を模式的に示す断面図である。本発明の発光装置1は、一次光を発する発光素子2と、前記一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発する波長変換部3とを基本的に備える。本発明の発光装置1における波長変換部3は、複数の緑色系発光蛍光体4および赤色系発光蛍光体5を含む。
本発明の発光装置1における波長変換部3に用いられる緑色系発光蛍光体4は、以下の一般式で実質的に表されるβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体である。
一般式:EuaSibAlcOdNe
上記一般式中、aの値は、0.005≦a≦0.4であり、0.01≦a≦0.2であるのが好ましい。aの値が0.005未満であると、十分な明るさが得られないという不具合があり、またaの値が0.4を超えると、濃度消光により、明るさが大きく低下するという不具合がある。また、上記一般式中、b+c=12であり、d+e=16である。
上記一般式中、aの値は、0.005≦a≦0.4であり、0.01≦a≦0.2であるのが好ましい。aの値が0.005未満であると、十分な明るさが得られないという不具合があり、またaの値が0.4を超えると、濃度消光により、明るさが大きく低下するという不具合がある。また、上記一般式中、b+c=12であり、d+e=16である。
このようなβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体としては、具体的には、Eu0.05Si11.50Al0.50O0.05N15.95、Eu0.10Si11.00Al1.00O0.10N15.90、Eu0.30Si9.80Al2.20O0.30N15.70、Eu0.15Si10.00Al2.00O0.20N15.80、Eu0.01Si11.60Al0.40O0.01N15.90、Eu0.005Si11.70Al0.30O0.03N15.97などを挙げることができるが、勿論これらに限定されるものではない。
また、本発明の発光装置1の波長変換部3における緑色系発光蛍光体4の粒径(平均粒径、通気法にて測定)についても特に制限されるものではないが、2〜8μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。緑色系発光蛍光体4の粒径が2μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、8μmを超えると、異常成長した粗大粒子が生成し易く実用的ではない。
本発明の発光装置1において、波長変換部3における緑色系発光蛍光体4の含有率は特に制限されるものではないが、30〜98重量%の範囲内であることが好ましく、60〜95重量%の範囲内であることがより好ましい。波長変換部3における緑色系発光蛍光体4の含有率が30重量%未満である場合には、赤色成分の寄与が大きすぎ、良好な白色発光が得られないという傾向にあり、また、波長変換部3における緑色系発光蛍光体4の含有率が98重量%を超える場合には、緑色成分の寄与が大きすぎ、良好な白色発光が得られないという傾向にあるためである。
また本発明の発光装置1における波長変換部3に用いられる赤色系発光蛍光体5は、以下の一般式で実質的に表される2価のユーロピウム付活窒化物蛍光体である。
一般式:(MI1-fEuf)MIISiN3
上記一般式中、MIはアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。
上記一般式中、MIはアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。
また一般式中、MIIは3価の金属元素であり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示す。中でも、より一層高効率に赤色系を発光することができることから、MIIはAl、GaおよびInから選ばれる少なくとも1種の元素であることが好ましい。
また上記一般式中、fの値は、0.001≦f≦0.05であり、0.005≦f≦0.02であるのが好ましい。fの値が0.001未満であると、十分な明るさが得られないという不具合があり、fの値が0.05を越えると、濃度消光等により、明るさが大きく低下するという不具合がある。
2価のユーロピウム付活窒化物蛍光体としては、具体的には、(Ca0.98Eu0.02)AlSiN3、(Ca0.94Mg0.05Eu0.01)(Al0.99In0.01)SiN3、(Ca0.94Mg0.05Eu0.01)(Al0.99Ga0.01)SiN3、(Ca0.97Mg0.01Eu0.02)(Al0.99Ga0.01)SiN3、(Ca0.97Sr0.01Eu0.02)(Al0.98In0.02)SiN3、(Ca0.995Eu0.005)AlSiN3、(Ca0.989Sr0.010Eu0.001)(Al0.98Ga0.02)SiN3、(Ca0.93Mg0.02Eu0.05)AlSiN3、(Ca0.99Eu0.01)AlSiN3、(Ca0.985Eu0.015)(Al0.99Ga0.01)SiN3、(Ca0.97Mg0.02Eu0.01)(Al0.99In0.01)SiN3、(Ca0.99Eu0.01)(Al0.99Ga0.01)SiN3、(Ca0.97Mg0.02Eu0.01)(Al0.99Ga0.01)SiN3などを挙げることができるが、勿論これらに限定されるものではない。
また、本発明の発光装置1の波長変換部3における赤色系発光蛍光体5の粒径(平均粒径、通気法にて測定)についても特に制限されるものではないが、3〜10μmの範囲内であるのが好ましく、4〜7μmの範囲内であるのがより好ましい。赤色系発光蛍光体5の粒径が3μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、10μmを超える粒径のものを調製する場合には、異常成長した粗大粒子が生成しやすく、実用的ではない。
本発明の発光装置1において、波長変換部3における赤色系発光蛍光体5の含有率は特に制限されるものではないが、1〜60重量%の範囲内であることが好ましく、5〜30重量%の範囲内であることがより好ましい。波長変換部3における赤色系発光蛍光体5の含有率が1重量%未満である場合には、緑色成分の寄与が大きすぎ、良好な白色発光が得られないという傾向にあり、また、波長変換部3における赤色系発光蛍光体5の含有率が60重量%を超える場合には、赤色成分の寄与が大きすぎ、良好な白色発光が得られないという傾向にあるためである。
本発明の発光装置において用いられる上述した緑色系発光蛍光体および赤色系発光蛍光体は、セラミックス材料であるので耐熱性が高く、また、熱膨張係数が小さい材料なので、バンドギャップの差異が小さい。本発明の発光装置では、このような蛍光体を用いることで、温度に対する蛍光発光の効率低下が小さく、従来と比較して温度特性が格段に改善された発光装置を実現することができる。
また本発明の発光装置において用いられる上述した緑色系発光蛍光体は、発光スペクトルの半値幅が狭いため、上述した温度特性が良好であると同時に、色再現性(NTSC比)も良好である。したがって、本発明の発光装置は、発光素子からの発光を効率よく吸収して、高効率な白色光を発光するとともに、色再現性(NTSC比)が著しく良好な白色を得ることができ、さらには、平均演色評価数(Ra)も優れており、一般照明用としても良好な白色を得ることができる。このような本発明の発光装置は、白色LEDとして実現されることが好ましく、中でも、LCD用のバックライト用光源として特に好適に用いることができるものである。
ここで、図2は、本発明の発光装置11の好ましい他の例を模式的に示す断面図である。なお、図2に示す例の発光装置11は、一部を除いては図1に示した例の発光装置1と同様の構造を備えるものであり、同様の構造を備える部分については同一の参照符を付して説明を省略する。本発明の発光装置において前記波長変換部に用いられる複数の蛍光体は、波長変換部の一次光の入射側から出射側に向かって、二次光の波長の長い蛍光体順に積層されたものであることが好ましい。このように積層されてなることによって、蛍光体層から発せられた可視光はその上に積層された蛍光体層に殆ど吸収されることなく、良好に外部に取り出すことができるという効果を発揮する発光装置を提供することができる。図2には、たとえば、赤色系発光蛍光体5を含む層13、緑色系発光蛍光体4を含む層14の順で、波長変換部12の一次光の入射側から出射側に向かって積層されてなる例の発光装置11を示している。なお、緑色系発光蛍光体4を含む層14の上にさらに青色系発光蛍光体を含む層を積層して波長変換部を形成するようにしてもよい。
また図3は、本発明の発光装置21の好ましい一例を模式的に示す断面図である。なお、図3に示す例の発光装置21は、一部を除いては図1に示した例の発光装置1と同様の構造を備えるものであり、同様の構造を備える部分については同一の参照符を付して説明を省略する。本発明の発光装置21は、一次光を発する発光素子2と、前記一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発する波長変換部22とを基本的に備え、当該波長変換部22が、黄色系発光蛍光体23のみを含むことを特徴とする。
本発明の発光装置21における波長変換部22に用いられる黄色系発光蛍光体23は、以下の一般式で実質的に表されるα型SIALONである2価のユーロピウム付活酸窒化物蛍光体である。
一般式:MIIIgEuhSijAlkOmNn
上記一般式中、MIIIはアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。中でも、Caを用いることにより、より明るいものが得られることから、MIIIはCaであることが好ましい。
上記一般式中、MIIIはアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。中でも、Caを用いることにより、より明るいものが得られることから、MIIIはCaであることが好ましい。
また上記一般式中、gの値は、0<g≦3.0であり、0.1≦g≦2.0であるのが好ましい。gの値が0である(すなわち、アルカリ土類金属であるMIIIが含まれない)場合、またgの値が3.0を超える場合には、十分な明るさが得られないという不具合がある。
また上記一般式中、hの値は0.005≦h≦0.4であり、0.02≦h≦0.2であるのが好ましい。hの値が0.005未満である場合には、十分な明るさが得られないという不具合があり、hの値が0.4を超える場合には濃度消光により、明るさが著しく低下するという不具合がある。
また、上記一般式中、j+k=12であり、m+n=16である。
このようなα型SIALONである2価のユーロピウム付活酸窒化物蛍光体としては、具体的には、Ca0.6Eu0.05Si10.50Al1.50O0.80N15.20、Ca1.0Eu0.06Si10.70Al1.30O1.20N14.80、Ca0.2Sr0.1Eu0.10Si10.20Al1.80O0.40N15.60、Ca0.4Mg0.1Eu0.03Si10.00Al2.00O1.10N14.90、Ca1.5Eu0.3Si10.70Al1.30O2.20N13.80、Ca0.1Sr0.05Eu0.08Si10.40Al1.60O0.50N13.50、Ca2.0Eu0.15Si10.85Al1.15O2.50N13.50、Ca0.05Eu0.02Si11.20Al0.80O0.20N15.80などを挙げることができるが、勿論これらに限定されるものではない。
また、本発明の発光装置21の波長変換部22における黄色系発光蛍光体23の粒径(平均粒径、通気法にて測定)についても特に制限されるものではないが、2〜8μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。黄色系発光蛍光体23の粒径が2μm未満であると、結晶成長が不十分であり、明るさが大きく低下する傾向にある。一方、8μmを超えると、異常成長した粗大粒子が生成しやすく、実用的ではないという傾向にある。
本発明の発光装置において用いられる上述した黄色系発光蛍光体も、セラミックス材料であるので耐熱性が高く、また、熱膨張係数が小さい材料なので、バンドギャップの差異が小さいものである。したがって、本発明の発光装置でも、このような蛍光体を用いることで、温度に対する蛍光発光の効率低下が小さく、従来と比較して温度特性が格段に改善された発光装置を実現することができる。
本発明の発光装置における波長変換部は、上述した複数の蛍光体((1)緑色系発光蛍光体および赤色系発光蛍光体、または、(2)黄色系発光蛍光体)を含有し、発光素子2から発せられる一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発し得るものであれば、その媒質6は特に制限されるものではない。媒質(透明樹脂)6としては、たとえばエポキシ樹脂、シリコーン樹脂、尿素樹脂等を用いることができるが、これらに限定されるものではない。
また、波長変換部は、上述した蛍光体および媒質以外に、本発明の効果を阻害しない範囲で、適宜のSiO2、TiO2、ZrO2、Al2O3、Y2O3などの添加剤を含有してい
ても勿論よい。
ても勿論よい。
本発明の発光装置1,11,21に用いられる発光素子2としては、効率の観点から、窒化ガリウム(GaN)系半導体を好ましく用いることができる。
本発明の発光装置1,11,21を効率的に発光させる観点から、本発明の発光装置1,11,21に用いられる発光素子2はピーク波長が430nm〜480nmの範囲の一次光を発するものであることが好ましく、440nm〜470nmの範囲の一次光を発するものであることがより好ましい。発光素子2が発する一次光のピーク波長が430nm未満の場合には、演色性が悪くなり、実用的ではない。また、480nmを超えると、白色での明るさが低下し、実用的でなくなる傾向にある。
本発明の発光装置に用いられる緑色系発光蛍光体、赤色系発光蛍光体および黄色系発光蛍光体は、従来公知の適宜の方法にて作製したものを用いてもよいし、また市販のものを用いても勿論よい。また、本発明の発光装置における波長変換部は、上述した複数の蛍光体((1)緑色系発光蛍光体および赤色系発光蛍光体、または、(2)黄色系発光蛍光体)を適宜の樹脂中に分散させ、適宜の条件で成形することによって作製することが可能であり、その作製方法は特に制限されるものではない。
以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
発光素子として、450nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.05Si11.50Al0.50O0.05N15.95(β型SIALON)(粒径:3.6μm)、赤色系発光蛍光体として(Ca0.99Eu0.01)AlSiN3(粒径:4.5μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.25の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例1の発光装置を作製した。
発光素子として、450nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.05Si11.50Al0.50O0.05N15.95(β型SIALON)(粒径:3.6μm)、赤色系発光蛍光体として(Ca0.99Eu0.01)AlSiN3(粒径:4.5μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.25の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例1の発光装置を作製した。
<比較例1>
(Y0.40Gd0.45Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例1と同様にして発光装置を作製した。
(Y0.40Gd0.45Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例1と同様にして発光装置を作製した。
実施例1、比較例1についての結果を表1に示す。
<実施例2>
発光素子として、440nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.10Si11.00Al1.00O1.10N15.90(β型SIALON)(粒径:3.1μm)、赤色系発光蛍光体として(Ca0.985Eu0.015)(Al0.99Ga0.01)SiN3(粒径:4.0μm)を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
発光素子として、440nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.10Si11.00Al1.00O1.10N15.90(β型SIALON)(粒径:3.1μm)、赤色系発光蛍光体として(Ca0.985Eu0.015)(Al0.99Ga0.01)SiN3(粒径:4.0μm)を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
<実施例3>
また、実施例2との比較として、同じ緑色系発光蛍光体と赤色系発光蛍光体とを1:0.26の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。
また、実施例2との比較として、同じ緑色系発光蛍光体と赤色系発光蛍光体とを1:0.26の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。
実施例2、3についての結果を表2に示す。
<実施例4>
発光素子として、430nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.30Si9.80Al2.20O3.30N15.70(β型SIALON)(粒径:3.3μm)、赤色系発光蛍光体として(Ca0.97Mg0.02Eu0.01)(Al0.99In0.01)SiN3(粒径:3.9μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.23の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例4の発光装置を作製した。
発光素子として、430nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.30Si9.80Al2.20O3.30N15.70(β型SIALON)(粒径:3.3μm)、赤色系発光蛍光体として(Ca0.97Mg0.02Eu0.01)(Al0.99In0.01)SiN3(粒径:3.9μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.23の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例4の発光装置を作製した。
<比較例2>
2(Sr0.92Ba0.06Eu0.02)O・SiO2で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例4と同様にして発光装置を作製した。
2(Sr0.92Ba0.06Eu0.02)O・SiO2で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例4と同様にして発光装置を作製した。
<実施例5>
発光素子として、480nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.15Si10.00Al2.00O0.20N15.80(β型SIALON)(粒径:3.8μm)、赤色系発光蛍光体として(Ca0.98Eu0.02)AlSiN3(粒径:4.3μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.28の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例5の発光装置を作製した。
発光素子として、480nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.15Si10.00Al2.00O0.20N15.80(β型SIALON)(粒径:3.8μm)、赤色系発光蛍光体として(Ca0.98Eu0.02)AlSiN3(粒径:4.3μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.28の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例5の発光装置を作製した。
<比較例3>
(Y0.40Gd0.40Ce0.20)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例5と同様にして発光装置を作製した。
(Y0.40Gd0.40Ce0.20)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例5と同様にして発光装置を作製した。
<実施例6>
発光素子として、460nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.01Si11.60Al0.40O0.01N15.99(β型SIALON)(粒径:3.5μm)、赤色系発光蛍光体として(Ca0.99Eu0.01)(Al0.99Ga0.01)SiN3(粒径:4.1μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.29の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例6の発光装置を作製した。
発光素子として、460nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.01Si11.60Al0.40O0.01N15.99(β型SIALON)(粒径:3.5μm)、赤色系発光蛍光体として(Ca0.99Eu0.01)(Al0.99Ga0.01)SiN3(粒径:4.1μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.29の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例6の発光装置を作製した。
<比較例4>
(Y0.40Gd0.45Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例6と同様にして発光装置を作製した。
(Y0.40Gd0.45Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例6と同様にして発光装置を作製した。
<実施例7>
発光素子として、470nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.005Si11.70Al0.30O0.03N15.97(β型SIALON)(粒径:3.6μm)、赤色系発光蛍光体として(Ca0.98Eu0.02)AlSiN3(粒径:4.3μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.21の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例7の発光装置を作製した。
発光素子として、470nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.005Si11.70Al0.30O0.03N15.97(β型SIALON)(粒径:3.6μm)、赤色系発光蛍光体として(Ca0.98Eu0.02)AlSiN3(粒径:4.3μm)を含むものを用いた。これらの緑色系発光蛍光体と赤色系発光蛍光体とを1:0.21の重量比で混合したものをエポキシ樹脂中に分散し、成形して波長変換部を作製した。このようにして実施例7の発光装置を作製した。
<比較例5>
(Y0.40Gd0.45Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例7と同様にして発光装置を作製した。
(Y0.40Gd0.45Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例7と同様にして発光装置を作製した。
実施例4〜7、比較例2〜5についての結果を表3に示す。
なお、上述した特性評価において、明るさは順電流(IF)20mAの条件にて点灯し、発光装置からの白色光を光電流に変換することにより求めた。また、Tc−duv、平均演色評価数(Ra)および特殊演色評価数(R9)については、順電流(IF)20mAの条件にて点灯し、発光装置からの白色光を大塚電子製MCPD−2000にて測定し、その値を求めた。
<実施例8>
発光素子として、450nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa0.6Eu0.05Si10.50Al1.50O0.80N15.20(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
発光素子として、450nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa0.6Eu0.05Si10.50Al1.50O0.80N15.20(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
<比較例6>
(Y0.45Gd0.40Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例8と同様にして発光装置を作製した。
(Y0.45Gd0.40Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例8と同様にして発光装置を作製した。
実施例8および比較例6について、上述したTc−duvおよび順電流(IF)20mAにおける明るさ(相対値)を測定し、さらに順電流100mAにおける明るさ(相対値)も測定した。なお、明るさ(相対値)(100mA)は、下記の式から求めた。
明るさ(相対値)(100mA)
={明るさ(実測値)(100mA)/明るさ(実測値)(20mA)×5}×100
実施例8および比較例6についての結果を表4に示す。
={明るさ(実測値)(100mA)/明るさ(実測値)(20mA)×5}×100
実施例8および比較例6についての結果を表4に示す。
<実施例9>
発光素子として、460nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.05Si11.50Al0.50O0.50N15.90(β型SIALON)(粒径:3.6μm)、赤色系発光蛍光体として(Ca0.99Eu0.01)AlSiN3(粒径:4.5μm)を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
発光素子として、460nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.05Si11.50Al0.50O0.50N15.90(β型SIALON)(粒径:3.6μm)、赤色系発光蛍光体として(Ca0.99Eu0.01)AlSiN3(粒径:4.5μm)を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
実施例9についてのTc−duv、順電流20mA、100mAの各場合における明るさ(相対値)の測定結果を表5に示す。なお、比較として上述した比較例4について同様に測定した結果も表5に示している。
<実施例10>
発光素子として、440nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa1.0Eu0.06Si10.70Al1.30O1.20N14.80(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
発光素子として、440nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa1.0Eu0.06Si10.70Al1.30O1.20N14.80(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
<比較例7>
(Y0.38Gd0.45Ce0.17)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例10と同様にして発光装置を作製した。
(Y0.38Gd0.45Ce0.17)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例10と同様にして発光装置を作製した。
実施例10、比較例7についてのTc−duv、順電流20mA、100mAの各場合における明るさ(相対値)の測定結果を表6に示す。
<実施例11>
発光素子として、430nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa0.2Sr0.1Eu0.10Si10.20Al1.80O0.40N15.60(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
発光素子として、430nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa0.2Sr0.1Eu0.10Si10.20Al1.80O0.40N15.60(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
<比較例8>
(Y0.40Gd0.50Ce0.10)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例11と同様にして発光装置を作製した。
(Y0.40Gd0.50Ce0.10)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例11と同様にして発光装置を作製した。
<実施例12>
発光素子として、470nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa0.4Mg0.1Eu0.03Si10.00Al2.00O1.10N14.90(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
発光素子として、470nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてCa0.4Mg0.1Eu0.03Si10.00Al2.00O1.10N14.90(α型SIALON)なる組成のものを用いた。この黄色系発光蛍光体を所定の樹脂中に分散し、波長変換部を作製した。この波長変換部を組み込んだ発光装置について、その特性を評価した。
<比較例9>
(Y0.45Gd0.40Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例12と同様にして発光装置を作製した。
(Y0.45Gd0.40Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例12と同様にして発光装置を作製した。
<実施例13>
発光素子として、480nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.10Si11.00Al1.00O0.10N15.90(β型SIALON)、赤色系発光蛍光体として(Ca0.97Mg0.02Eu0.01)(Al0.99Ga0.01)SiN3を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
発光素子として、480nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.10Si11.00Al1.00O0.10N15.90(β型SIALON)、赤色系発光蛍光体として(Ca0.97Mg0.02Eu0.01)(Al0.99Ga0.01)SiN3を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
<比較例10>
(Y0.45Gd0.45Ce0.10)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例13と同様にして発光装置を作製した。
(Y0.45Gd0.45Ce0.10)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例13と同様にして発光装置を作製した。
<実施例14>
発光素子として、430nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.30Si9.80Al2.20O0.30N15.70(β型SIALON)、赤色系発光蛍光体として(Ca0.99Eu0.01)AlSiN3を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
発光素子として、430nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、緑色系発光蛍光体としてEu0.30Si9.80Al2.20O0.30N15.70(β型SIALON)、赤色系発光蛍光体として(Ca0.99Eu0.01)AlSiN3を含むものを用いた。また、まず最初に赤色系発光蛍光体をエポキシ樹脂中に分散、成形して第1の層を形成し、その上に緑色系発光蛍光体をエポキシ樹脂中に分散、成形して第2の層を形成することで、二層構造の波長変換部を作製した。
<比較例11>
(Y0.45Gd0.40Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例14と同様にして発光装置を作製した。
(Y0.45Gd0.40Ce0.15)3Al5O12で表される黄色系発光蛍光体のみを樹脂中に分散させ、波長変換部を形成した以外は、実施例14と同様にして発光装置を作製した。
実施例11〜14および比較例8〜11についても、上述と同様にTc−duv、順電流20mA、100mAの各場合における明るさ(相対値)を測定した。結果を表7に示す。
今回開示された実施の形態、実施例および比較例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,11,21 発光装置
2 発光素子
3,12,22 波長変換部
4 緑色系発光蛍光体
5 赤色系発光蛍光体
13,14 層
23 黄色系発光蛍光体
2 発光素子
3,12,22 波長変換部
4 緑色系発光蛍光体
5 赤色系発光蛍光体
13,14 層
23 黄色系発光蛍光体
Claims (8)
- 一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の波長を有する二次光を発する波長変換部とを備える発光装置であって、前記波長変換部は複数の緑色系発光蛍光体および赤色系発光蛍光体を含み、
前記緑色系発光蛍光体は、
一般式:EuaSibAlcOdNe
(式中、0.005≦a≦0.4、b+c=12、d+e=16である。)
で実質的に表されるβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体からなり、
前記赤色系発光蛍光体は、
一般式:(MI1-fEuf)MIISiN3
(式中、MIは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、MIIはAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦f≦0.05である。)
で実質的に表される2価のユーロピウム付活窒化物蛍光体からなり、前記緑色系発光蛍光体および前記赤色系発光蛍光体の平均粒径が略同一であることを特徴とする発光装置。 - 前記緑色系発光蛍光体の平均粒径は、2〜8μmであることを特徴とする請求項1に記載の発光装置。
- 前記赤色系発光蛍光体の平均粒径は、3〜10μmであることを特徴とする請求項1または2に記載の発光装置。
- 前記赤色系発光蛍光体として、上記一般式中、MIIがAl、GaおよびInから選ばれる少なくとも1種の元素である、2価のユーロピウム付活窒化物蛍光体を用いたことを特徴とする、請求項1〜3のいずれかに記載の発光装置。
- 前記波長変換部に用いられる複数の蛍光体は、波長変換部の一次光の入射側から出射側に向かって、二次光の波長の長い蛍光体順に積層されたものである、請求項1〜4のいずれかに記載の発光装置。
- 発光素子が430〜480nmのピーク波長を有する一次光を発する窒化ガリウム(GaN)系半導体であることを特徴とする、請求項1〜5のいずれかに記載の発光装置。
- 白色LEDであることを特徴とする請求項1〜6のいずれかに記載の発光装置。
- LCD用バックライト光源に用いられるものである、請求項7に記載の発光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010254758A JP2011091414A (ja) | 2005-11-30 | 2010-11-15 | 発光装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005345884 | 2005-11-30 | ||
JP2010254758A JP2011091414A (ja) | 2005-11-30 | 2010-11-15 | 発光装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006183685A Division JP4769132B2 (ja) | 2005-11-30 | 2006-07-03 | 発光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011091414A true JP2011091414A (ja) | 2011-05-06 |
Family
ID=44109320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010254758A Pending JP2011091414A (ja) | 2005-11-30 | 2010-11-15 | 発光装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011091414A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018109674A (ja) * | 2016-12-28 | 2018-07-12 | 堺化学工業株式会社 | 蛍光体含有多層膜シート、並びに発光装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004048040A (ja) * | 2003-08-26 | 2004-02-12 | Toshiba Electronic Engineering Corp | 半導体発光装置 |
JP2004179644A (ja) * | 2002-11-12 | 2004-06-24 | Nichia Chem Ind Ltd | 蛍光体積層構造及びそれを用いる光源 |
WO2005052087A1 (ja) * | 2003-11-26 | 2005-06-09 | Independent Administrative Institution National Institute For Materials Science | 蛍光体と蛍光体を用いた発光器具 |
WO2005067068A1 (en) * | 2004-01-02 | 2005-07-21 | Mediana Electronics Co., Ltd. | White led device comprising dual-mold and manufacturing method for the same |
JP2005255895A (ja) * | 2004-03-12 | 2005-09-22 | National Institute For Materials Science | 蛍光体とその製造方法 |
JP2005268431A (ja) * | 2004-03-17 | 2005-09-29 | Nichia Chem Ind Ltd | 発光装置及びその製造方法 |
JP2005328080A (ja) * | 2002-05-27 | 2005-11-24 | Nichia Chem Ind Ltd | 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置 |
JP2007180483A (ja) * | 2005-11-30 | 2007-07-12 | Sharp Corp | 発光装置 |
-
2010
- 2010-11-15 JP JP2010254758A patent/JP2011091414A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005328080A (ja) * | 2002-05-27 | 2005-11-24 | Nichia Chem Ind Ltd | 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置 |
JP2004179644A (ja) * | 2002-11-12 | 2004-06-24 | Nichia Chem Ind Ltd | 蛍光体積層構造及びそれを用いる光源 |
JP2004048040A (ja) * | 2003-08-26 | 2004-02-12 | Toshiba Electronic Engineering Corp | 半導体発光装置 |
WO2005052087A1 (ja) * | 2003-11-26 | 2005-06-09 | Independent Administrative Institution National Institute For Materials Science | 蛍光体と蛍光体を用いた発光器具 |
WO2005067068A1 (en) * | 2004-01-02 | 2005-07-21 | Mediana Electronics Co., Ltd. | White led device comprising dual-mold and manufacturing method for the same |
JP2005255895A (ja) * | 2004-03-12 | 2005-09-22 | National Institute For Materials Science | 蛍光体とその製造方法 |
JP2005268431A (ja) * | 2004-03-17 | 2005-09-29 | Nichia Chem Ind Ltd | 発光装置及びその製造方法 |
JP2007180483A (ja) * | 2005-11-30 | 2007-07-12 | Sharp Corp | 発光装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018109674A (ja) * | 2016-12-28 | 2018-07-12 | 堺化学工業株式会社 | 蛍光体含有多層膜シート、並びに発光装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4769132B2 (ja) | 発光装置 | |
US9455381B2 (en) | Light-emitting device | |
JP4832995B2 (ja) | 発光装置 | |
JP5566423B2 (ja) | 燐光変換発光装置 | |
JP5367218B2 (ja) | 蛍光体の製造方法および発光装置の製造方法 | |
US20070052342A1 (en) | Light-emitting device | |
JP5547756B2 (ja) | 蛍光体粒子群およびそれを用いた発光装置 | |
US20090014741A1 (en) | Group of phosphor particles for light-emitting device, light-emitting device and backlight for liquid crystal display | |
JP5331089B2 (ja) | 蛍光体およびそれを用いた発光装置 | |
JP2008081631A (ja) | 発光装置 | |
JP2009280763A (ja) | 蛍光体調製物およびそれを用いた発光装置 | |
JP2014209660A (ja) | 蛍光体、発光装置およびそれを用いた液晶表示装置 | |
JP2013187358A (ja) | 白色発光装置 | |
KR101250838B1 (ko) | 형광체 입자 군 및 이를 사용한 발광 장치, 액정 텔레비젼 수상기 | |
JP4890152B2 (ja) | 発光装置 | |
JP2021502446A (ja) | 蛍光体組み合わせ体、変換素子、オプトエレクトロニクス装置 | |
JP4785711B2 (ja) | 蛍光体およびそれを用いた発光装置 | |
JP2011091414A (ja) | 発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20130131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |