JP2011091110A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2011091110A5 JP2011091110A5 JP2009241818A JP2009241818A JP2011091110A5 JP 2011091110 A5 JP2011091110 A5 JP 2011091110A5 JP 2009241818 A JP2009241818 A JP 2009241818A JP 2009241818 A JP2009241818 A JP 2009241818A JP 2011091110 A5 JP2011091110 A5 JP 2011091110A5
- Authority
- JP
- Japan
- Prior art keywords
- layer
- oxide semiconductor
- protective layer
- electrode layer
- storage capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Description
本発明の回路は、基板の上に、ゲート電極層と蓄積容量下部電極層とが形成され、前記基板と前記ゲート電極層と前記蓄積容量下部電極層の上に、ゲート絶縁層が形成され、前記ゲート絶縁層の上に、酸化物半導体層が形成され、前記酸化物半導体層の上に、チャネル保護層が前記ゲート電極層に対して自己整合的に形成され、前記酸化物半導体層と前記チャネル保護層の上に、水素含有保護層が形成され、前記ゲート電極層は所定波長の光の透過率が30%以下であり、前記蓄積容量下部電極層は前記所定波長の光の透過率が70%以上であり、前記酸化物半導体層が、前記チャネル保護層で覆われたチャネル領域と、前記水素含有保護層に接するソース領域、ドレイン領域及び蓄積容量上部電極層とを有することを特徴とする。 In the circuit of the present invention, a gate electrode layer and a storage capacitor lower electrode layer are formed on a substrate, and a gate insulating layer is formed on the substrate, the gate electrode layer, and the storage capacitor lower electrode layer, An oxide semiconductor layer is formed on the gate insulating layer, and a channel protective layer is formed on the oxide semiconductor layer in a self-aligned manner with respect to the gate electrode layer. A hydrogen-containing protective layer is formed on the channel protective layer, the gate electrode layer has a light transmittance of a predetermined wavelength of 30% or less, and the storage capacitor lower electrode layer has a light transmittance of the predetermined wavelength. is 70% or more, the oxide semiconductor layer, a channel region covered by the channel protective layer, a source region in contact with the hydrogen-containing protective layer, in that a drain territory Iki及 beauty storage capacitor upper electrode layer Features.
(第5工程)
次に酸化物半導体層14の上にスパッタ法によりチャネル保護層15を形成する。酸化物半導体層14と直接接するチャネル保護層15にはチャネル保護層形成の際に酸化物半導体を低抵抗化させない機能が要求される。さらにチャネル保護層15の上に水素を含有する絶縁層(水素含有保護層16)を形成した際にチャネル保護層の膜厚で水素の透過量を制御し、酸化物半導体の抵抗率を制御できる機能も必要である。具体的にはシリコン酸化膜やシリコン酸窒化膜などのOを含有する絶縁層が望ましい。また、これらの絶縁層の組成がストイキオメトリーから外れていても何ら問題はない。チャネル保護層15は、裏面露光を用いたフォトリソグラフィー法とエッチング法を用いてパターニングされる。このとき、ゲート電極層11をマスクとして裏面露光が行われるので、チャネル保護層15はゲート電極層11が存在する領域上のみに自己整合的に形成される。
(5th process)
Next, the channel protective layer 15 is formed on the oxide semiconductor layer 14 by sputtering. The channel protective layer 15 that is in direct contact with the oxide semiconductor layer 14 is required to have a function of reducing the resistance of the oxide semiconductor when the channel protective layer is formed. Furthermore, when an insulating layer containing hydrogen ( hydrogen-containing protective layer 16) is formed on the channel protective layer 15, the amount of hydrogen permeation can be controlled by the thickness of the channel protective layer, and the resistivity of the oxide semiconductor can be controlled. A function is also necessary. Specifically, an insulating layer containing O such as a silicon oxide film or a silicon oxynitride film is desirable. Further, there is no problem even if the composition of these insulating layers is out of stoichiometry. The channel protective layer 15 is patterned by using a photolithography method using backside exposure and an etching method. At this time, since the back surface exposure is performed using the gate electrode layer 11 as a mask, the channel protective layer 15 is formed in a self-aligned manner only on the region where the gate electrode layer 11 exists.
(第6工程)
次に水素含有保護層16を成膜し、酸化物半導体層の所定領域を低抵抗化する。水素含有保護層16には、酸化物半導体層上に直接形成した際に酸化物半導体層を低抵抗化させる機能が要求される。酸化物半導体は水素を添加することにより低抵抗化させることが可能である。よって、酸化物半導体層の上に水素を含む絶縁層を形成する。具体的には、水素を含むシリコン窒化膜、シリコン酸化膜、シリコン酸窒化膜、シリコン炭化膜およびこれらの積層膜などが望ましい。また、これらの絶縁層の組成がストイキオメトリーから外れていても何ら問題はない。
(6th process)
Next, a hydrogen-containing protective layer 16 is formed to reduce the resistance of a predetermined region of the oxide semiconductor layer. The hydrogen-containing protective layer 16 is required to have a function of reducing the resistance of the oxide semiconductor layer when directly formed on the oxide semiconductor layer. The resistance of an oxide semiconductor can be reduced by adding hydrogen. Therefore, an insulating layer containing hydrogen is formed over the oxide semiconductor layer. Specifically, a silicon nitride film containing hydrogen, a silicon oxide film, a silicon oxynitride film, a silicon carbide film, and a laminated film thereof are desirable. Further, there is no problem even if the composition of these insulating layers is out of stoichiometry.
形成方法としては水素を含む原料ガスを用いるプラズマCVD法が、プラズマによる酸化物半導体への水素拡散の促進効果もあるため望ましい。この際、原料中の水素が酸化物半導体層に拡散し、チャネル保護層がない領域の酸化物半導体層が低抵抗化する。これにより、ソース領域・ドレイン領域、酸化物半導体配線層および蓄積容量上部電極14aが形成される。また、自己整合的に形成されたチャネル保護層15をマスクとしてドレイン領域・ソース領域14aが形成されるので、ゲート電極に対するドレイン領域・ソース領域の重なりを小さくすることができる。これにより、寄生容量の小さいTFTの作製が可能である。また、ゲート電極層11が存在しない領域上の酸化物半導体層の上にはチャネル保護層15は形成されていないため、その領域上の酸化物半導体層はすべて低抵抗化する。
最後に外部と電気的な接続を行うために、フォトリソグラフィー法とエッチング法により、水素含有保護層16にコンタクトホールを形成する。
As a formation method, a plasma CVD method using a source gas containing hydrogen is preferable because it has an effect of promoting diffusion of hydrogen into an oxide semiconductor by plasma. At this time, hydrogen in the raw material diffuses into the oxide semiconductor layer, and the resistance of the oxide semiconductor layer in the region where there is no channel protective layer is reduced. Thereby, the source region / drain region, the oxide semiconductor wiring layer, and the storage capacitor upper electrode 14a are formed. Further, since the drain region / source region 14a is formed using the channel protective layer 15 formed in a self-aligned manner as a mask, the overlap of the drain region / source region with the gate electrode can be reduced. Thereby, a TFT with a small parasitic capacitance can be manufactured. In addition, since the channel protective layer 15 is not formed over the oxide semiconductor layer in the region where the gate electrode layer 11 does not exist, the resistance of all the oxide semiconductor layers in the region is reduced.
Finally, in order to make an electrical connection with the outside, a contact hole is formed in the hydrogen-containing protective layer 16 by photolithography and etching.
さらに水素含有保護層16として、プラズマCVD法により、膜厚300nmのシリコン窒化膜を成膜する。このプラズマCVD法によるシリコン窒化膜の形成時の基板温度は150℃とする。また、プロセスガスには、SiH4、NH3、N2を用い、ガス流量比はSiH4:NH3:N2=1:2.5:25とする。また、投入RFパワー密度と圧力はそれぞれ0.9W/cm2、150Paとする。
水素含有保護層16の形成と同時にチャネル保護層15の無い領域の酸化物半導体層が、水素添加処理によって低抵抗化し、ソース領域・ドレイン領域、酸化物半導体配線層および蓄積容量上部電極14aとなる。
Further, as the hydrogen-containing protective layer 16, a silicon nitride film having a thickness of 300 nm is formed by plasma CVD. The substrate temperature during the formation of the silicon nitride film by this plasma CVD method is set to 150.degree. Further, SiH4, NH3, and N2 are used as the process gas, and the gas flow rate ratio is SiH4: NH3: N2 = 1: 2.5: 25. The input RF power density and pressure are 0.9 W / cm 2 and 150 Pa, respectively.
Simultaneously with the formation of the hydrogen-containing protective layer 16, the oxide semiconductor layer in the region without the channel protective layer 15 is reduced in resistance by the hydrogenation treatment, and becomes the source region / drain region, the oxide semiconductor wiring layer, and the storage capacitor upper electrode 14a. .
最後に外部と電気的な接続を行うために、フォトリソグラフィー法とエッチング法により、水素含有保護層16にコンタクトホール(図示せず)を形成する。
以上の工程により、本発明の酸化物半導体TFTを有する回路が完成する。
本発明の回路の構成により、電気特性や寄生容量の基板内でのバラツキが小さい酸化物半導体TFTを有する回路を作製することが可能である。
Finally, in order to make an electrical connection with the outside, a contact hole (not shown) is formed in the hydrogen-containing protective layer 16 by photolithography and etching.
Through the above steps, a circuit having the oxide semiconductor TFT of the present invention is completed.
With the circuit configuration of the present invention, a circuit including an oxide semiconductor TFT in which variation in electric characteristics and parasitic capacitance in a substrate is small can be manufactured.
次にフォトリソグラフィー法とエッチング法により、ゲート絶縁層13に第1のコンタクトホール18を形成する。(図9(d))
その後、酸化物半導体層14、チャネル保護層15及び水素含有保護層16を実施例1と同様に形成する。(図9(e))
次にフォトリソグラフィー法とエッチング法により、水素含有保護層16に第2のコンタクトホール19を形成する。
Next, a first contact hole 18 is formed in the gate insulating layer 13 by photolithography and etching. (Fig. 9 (d))
Thereafter, the oxide semiconductor layer 14, the channel protective layer 15, and the hydrogen-containing protective layer 16 are formed in the same manner as in Example 1. (Fig. 9 (e))
Next, a second contact hole 19 is formed in the hydrogen-containing protective layer 16 by photolithography and etching.
(実施例3)
本実施例ではボトムゲート型コプラナー構造の酸化物半導体TFTを用いた図4の表示装置について説明する。酸化物半導体TFTを有する回路(駆動回路)の製造工程は、前記実施例1と同様である。実施例1と同様の方法で、プラスチック基板110の上に酸化物半導体TFT121を有する回路120を形成後、フォトリソグラフィー法とエッチング法により、水素含有保護層16にコンタクトホールを形成する。
さらに、画素電極140をスパッタ法により成膜する。電極材料には、ITOを用い、膜厚は100nmである。この上にポリイミド膜150を塗布し、ラビング工程を施す。
(Example 3)
In this embodiment, the display device in FIG. 4 using an oxide semiconductor TFT having a bottom gate type coplanar structure will be described. The manufacturing process of the circuit having the oxide semiconductor TFT (driving circuit) is the same as that of the first embodiment. After forming the circuit 120 having the oxide semiconductor TFT 121 on the plastic substrate 110 by the same method as in the first embodiment, a contact hole is formed in the hydrogen-containing protective layer 16 by photolithography and etching.
Further, the pixel electrode 140 is formed by sputtering. ITO is used for the electrode material, and the film thickness is 100 nm. A polyimide film 150 is applied thereon and a rubbing process is performed.
(実施例4)
本実施例ではボトムゲート型コプラナー構造の酸化物半導体TFTを有する回路を用いた図5の表示装置について説明する。酸化物半導体TFTを有する回路の製造工程は、前記実施例2と同様である。まず本発明の酸化物半導体TFTを有する回路120の上に平坦化層310を形成する。平坦化層310にはポリイミド膜を用いる。そして、保護層16および平坦化層310にフォトリソグラフィー法とエッチング法を用いてコンタクトホールを形成する。そして、酸化物半導体配線層300上に水素含有保護層16および絶縁層310に形成されたコンタクトホールを介して電極320を形成する。電極320にはスパッタ法により形成したITOを用いる。次に電極320の上に正孔輸送層330、発光層340を蒸着法により形成する。正孔輸送層330、発光層340にはそれぞれα‐NPD(4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl)、Alq3(tris(8-hydroxyquinoline))を用いる。さらに発光層340の上に電極350を蒸着法により形成する。電極材料にはAlを用いる。このようにして、図5に示す、ボトムエミッション型の有機EL素子を表示素子とする表示装置を作製する。
本発明の回路の構成では、画素回路内はゲート電極層以外、可視光に対して透明な材料で形成されているため、非常に開口率の高い画素回路を実現することが可能である。
Example 4
In this embodiment, the display device in FIG. 5 using a circuit having an oxide semiconductor TFT having a bottom-gate coplanar structure will be described. The manufacturing process of the circuit having the oxide semiconductor TFT is the same as that of the second embodiment. First, the planarization layer 310 is formed over the circuit 120 including the oxide semiconductor TFT of the present invention. A polyimide film is used for the planarization layer 310. Then, contact holes are formed in the protective layer 16 and the planarizing layer 310 by using a photolithography method and an etching method. Then, an electrode 320 is formed on the oxide semiconductor wiring layer 300 through a contact hole formed in the hydrogen-containing protective layer 16 and the insulating layer 310. For the electrode 320, ITO formed by sputtering is used. Next, a hole transport layer 330 and a light emitting layer 340 are formed on the electrode 320 by a vapor deposition method. Α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl) and Alq3 (tris (8-hydroxyquinoline)) are used for the hole transport layer 330 and the light emitting layer 340, respectively. Use. Further, an electrode 350 is formed on the light emitting layer 340 by an evaporation method. Al is used as the electrode material. In this manner, a display device using the bottom emission type organic EL element shown in FIG. 5 as a display element is manufactured.
In the circuit configuration of the present invention, the pixel circuit is formed of a material transparent to visible light other than the gate electrode layer, so that a pixel circuit with a very high aperture ratio can be realized.
10 基板
11 ゲート電極層
11a ゲート配線層
12a ゲート配線層および画素内配線層
12b 蓄積容量下部電極
13 ゲート絶縁層
14 酸化物半導体層
14a ソース・ドレイン領域、酸化物半導体配線層および蓄積容量上部電極
15 チャネル保護層
16 水素含有保護層
DESCRIPTION OF SYMBOLS 10 Substrate 11 Gate electrode layer 11a Gate wiring layer 12a Gate wiring layer and in-pixel wiring layer 12b Storage capacitor lower electrode 13 Gate insulating layer 14 Oxide semiconductor layer 14a Source / drain region, oxide semiconductor wiring layer and storage capacitor upper electrode 15 Channel protective layer 16 Hydrogen-containing protective layer
Claims (5)
前記基板と前記ゲート電極層と前記蓄積容量下部電極層の上に、ゲート絶縁層が形成され、
前記ゲート絶縁層の上に、酸化物半導体層が形成され、
前記酸化物半導体層の上に、チャネル保護層が前記ゲート電極層に対して自己整合的に形成され、
前記酸化物半導体層と前記チャネル保護層の上に、水素含有保護層が形成され、
前記ゲート電極層は所定波長の光の透過率が30%以下であり、前記蓄積容量下部電極層は前記所定波長の光の透過率が70%以上であり、
前記酸化物半導体層が、前記チャネル保護層で覆われたチャネル領域と、前記水素含有保護層に接するソース領域、ドレイン領域及び蓄積容量上部電極とを有することを特徴とする回路。 On the substrate, a gate electrode layer and a storage capacitor lower electrode layer are formed,
A gate insulating layer is formed on the substrate, the gate electrode layer, and the storage capacitor lower electrode layer,
An oxide semiconductor layer is formed on the gate insulating layer,
A channel protective layer is formed on the oxide semiconductor layer in a self-aligned manner with respect to the gate electrode layer,
A hydrogen-containing protective layer is formed on the oxide semiconductor layer and the channel protective layer,
The gate electrode layer has a light transmittance of a predetermined wavelength of 30% or less, the storage capacitor lower electrode layer has a light transmittance of the predetermined wavelength of 70% or more,
Circuit wherein the oxide semiconductor layer, to a channel region covered by the channel protective layer, a source region in contact with the hydrogen-containing protective layer, characterized in that a drain territory Iki及 beauty storage capacitor upper electrode.
前記基板の上に、前記所定波長の光の透過率が70%以上である蓄積容量下部電極層を形成する工程と、
前記基板と前記ゲート電極層と前記蓄積容量下部電極層の上に、ゲート絶縁層を形成する工程と、
前記ゲート絶縁層の上に、酸化物半導体層を形成する工程と、
前記酸化物半導体層の上に、第1の保護層を形成し、前記所定波長の光を裏面露光し、
前記第1の保護層をエッチングして、前記ゲート電極層に対して自己整合的なチャネル保護層を形成する工程と、
前記チャネル保護層と前記酸化物半導体層の上に水素含有保護層を形成する工程と、
を含むことを特徴とする回路の製造方法。 Forming a gate electrode layer having a light transmittance of a predetermined wavelength of 30% or less on a substrate;
Forming a storage capacitor lower electrode layer having a light transmittance of 70% or more on the substrate;
Forming a gate insulating layer on the substrate, the gate electrode layer, and the storage capacitor lower electrode layer;
Forming an oxide semiconductor layer on the gate insulating layer;
A first protective layer is formed on the oxide semiconductor layer, and the light having the predetermined wavelength is back-exposed,
Etching the first protective layer to form a channel protective layer self-aligned with the gate electrode layer;
Forming a hydrogen-containing protective layer on the channel protective layer and the oxide semiconductor layer;
A method of manufacturing a circuit comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009241818A JP2011091110A (en) | 2009-10-20 | 2009-10-20 | Circuit using oxide semiconductor element and method of manufacturing the same, and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009241818A JP2011091110A (en) | 2009-10-20 | 2009-10-20 | Circuit using oxide semiconductor element and method of manufacturing the same, and display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011091110A JP2011091110A (en) | 2011-05-06 |
JP2011091110A5 true JP2011091110A5 (en) | 2012-11-29 |
Family
ID=44109122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009241818A Pending JP2011091110A (en) | 2009-10-20 | 2009-10-20 | Circuit using oxide semiconductor element and method of manufacturing the same, and display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011091110A (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103189970B (en) * | 2011-10-28 | 2016-09-28 | 株式会社日本有机雷特显示器 | Thin film semiconductor device and the manufacture method of thin film semiconductor device |
JP6122275B2 (en) * | 2011-11-11 | 2017-04-26 | 株式会社半導体エネルギー研究所 | Display device |
US8907392B2 (en) * | 2011-12-22 | 2014-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device including stacked sub memory cells |
JP6019330B2 (en) * | 2012-02-09 | 2016-11-02 | 株式会社Joled | THIN FILM TRANSISTOR, METHOD FOR PRODUCING THIN FILM TRANSISTOR, DISPLAY DEVICE, AND ELECTRONIC DEVICE |
KR102213518B1 (en) * | 2012-06-29 | 2021-02-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
KR20150040873A (en) | 2012-08-03 | 2015-04-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
JP2014199899A (en) * | 2012-08-10 | 2014-10-23 | 株式会社半導体エネルギー研究所 | Semiconductor device |
TWI575663B (en) * | 2012-08-31 | 2017-03-21 | 半導體能源研究所股份有限公司 | Semiconductor device |
KR102006273B1 (en) | 2012-11-19 | 2019-08-02 | 삼성디스플레이 주식회사 | Display substrate and method of manufacturing the same |
JP6490914B2 (en) * | 2013-06-28 | 2019-03-27 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP6097653B2 (en) | 2013-08-05 | 2017-03-15 | 株式会社ジャパンディスプレイ | Thin film transistor circuit and display device using the same |
KR102148957B1 (en) | 2013-09-02 | 2020-08-31 | 삼성디스플레이 주식회사 | Display substrate and method of manufacturing a display substrate |
KR102294507B1 (en) * | 2013-09-06 | 2021-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
WO2015087586A1 (en) * | 2013-12-10 | 2015-06-18 | シャープ株式会社 | Semiconductor device and method for manufacturing same |
JP6506545B2 (en) | 2013-12-27 | 2019-04-24 | 株式会社半導体エネルギー研究所 | Semiconductor device |
US9766517B2 (en) * | 2014-09-05 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Display device and display module |
JP6425508B2 (en) * | 2014-11-25 | 2018-11-21 | 株式会社ジャパンディスプレイ | Thin film transistor |
CN110651358A (en) | 2017-05-19 | 2020-01-03 | 株式会社半导体能源研究所 | Semiconductor device, display device, and method for manufacturing semiconductor device |
JP2020027862A (en) * | 2018-08-10 | 2020-02-20 | 株式会社ジャパンディスプレイ | Display and method for manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317809A (en) * | 1993-05-07 | 1994-11-15 | Fujitsu Ltd | Production of thin-film transistor matrix |
JP5250944B2 (en) * | 2006-04-28 | 2013-07-31 | 凸版印刷株式会社 | Structure, transmissive liquid crystal display device, semiconductor circuit manufacturing method, and transmissive liquid crystal display device manufacturing method |
JP2009099887A (en) * | 2007-10-19 | 2009-05-07 | Hitachi Displays Ltd | Display device |
JP5213422B2 (en) * | 2007-12-04 | 2013-06-19 | キヤノン株式会社 | Oxide semiconductor element having insulating layer and display device using the same |
KR101518091B1 (en) * | 2007-12-13 | 2015-05-06 | 이데미쓰 고산 가부시키가이샤 | Field effect transistor using oxide semiconductor and method for manufacturing the same |
-
2009
- 2009-10-20 JP JP2009241818A patent/JP2011091110A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011091110A5 (en) | ||
US10020352B2 (en) | Substrate structure | |
KR102180037B1 (en) | Flexible display and manufacturing method thereof | |
CN105575997B (en) | Transparent display substrate and transparent display device | |
US8679904B2 (en) | Method for manufacturing a thin film transistor including a channel protecting layer | |
KR101413655B1 (en) | Fabrication method of oxide semiconductor thin film transistor | |
US9768323B2 (en) | Manufacture method of dual gate oxide semiconductor TFT substrate and structure thereof | |
US10090337B2 (en) | Thin film transistor with a reaction layer creating oxygen vacancies in an oxide semiconductor | |
US10811631B2 (en) | Thin film transistor element substrate, method of producing the substrate, and organic EL display device including the thin film transistor element substrate | |
US9799677B2 (en) | Structure of dual gate oxide semiconductor TFT substrate | |
KR102389622B1 (en) | Transparent display devices and methods of manufacturing transparent display devices | |
US9245937B2 (en) | Thin film transistor substrates, display devices and methods of manufacturing display devices | |
KR100918404B1 (en) | Organic thin film transistor and a flat panel display employing the same | |
JP2011091110A (en) | Circuit using oxide semiconductor element and method of manufacturing the same, and display device | |
JP2009272427A (en) | Thin-film transistor and method of manufacturing the same | |
KR20170074252A (en) | Transparent display devices | |
US20200303428A1 (en) | Manufacturing method of flexible thin film transistor backplate and flexible thin film transistor backplate | |
KR20110134685A (en) | Display device and method for manufacturing the same | |
JP2012104566A (en) | Thin-film transistor circuit board and method of manufacturing the same | |
US9224831B2 (en) | Method of manufacturing an oxide semiconductor device and method of manufacturing a display device having the same | |
KR20140003893A (en) | Transistor having oxynitride channel layer and method of manufacturing the same | |
US20110127533A1 (en) | Organic light-emitting display device and method of manufacturing the same | |
JP6142300B2 (en) | Thin film transistor manufacturing method | |
US20140312315A1 (en) | Back plane of flat panel display and method of manufacturing the same | |
WO2013008360A1 (en) | Display device, thin-film transistor used in display device, and thin-film transistor manufacturing method |