JP2011090806A - Electrode for lithium secondary battery, and lithium secondary battery equipped with the same - Google Patents

Electrode for lithium secondary battery, and lithium secondary battery equipped with the same Download PDF

Info

Publication number
JP2011090806A
JP2011090806A JP2009241414A JP2009241414A JP2011090806A JP 2011090806 A JP2011090806 A JP 2011090806A JP 2009241414 A JP2009241414 A JP 2009241414A JP 2009241414 A JP2009241414 A JP 2009241414A JP 2011090806 A JP2011090806 A JP 2011090806A
Authority
JP
Japan
Prior art keywords
lithium
electrode
secondary battery
lithium secondary
layered polysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009241414A
Other languages
Japanese (ja)
Other versions
JP5471284B2 (en
Inventor
Yoko Nakai
葉子 中居
Hideyuki Nakano
秀之 中野
Hirotaka Okamoto
浩孝 岡本
Yusuke Sugiyama
佑介 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009241414A priority Critical patent/JP5471284B2/en
Publication of JP2011090806A publication Critical patent/JP2011090806A/en
Application granted granted Critical
Publication of JP5471284B2 publication Critical patent/JP5471284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium secondary battery and a lithium secondary battery equipped with the same with cycle characteristics further enhanced in one containing silicon. <P>SOLUTION: A coin-type battery 20 is provided with a positive electrode 22 containing an amorphous silane compound obtained by doping lithium in stratified polysilane as an active material, a negative electrode 23 containing an active material capable of occluding/releasing lithium, and an ion conductive medium for conducting lithium ion, intervening between the positive electrode 22 and the negative electrode 23. The amorphous silane compound can be obtained by doping lithium up to the vicinity of 0V in terms of a lithium reference potential. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池用電極及びそれを備えたリチウム二次電池に関する。   The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery including the same.

リチウム二次電池の電極として、シリコンは室温において約3600mAh/gという高いエネルギー密度を有することが知られており、近年、リチウム二次電池の電極材料として注目されている。しかしながら、シリコンは、理論容量が高いものの、充放電過程での体積膨張率が非常に大きいことがある。この体積変化により、例えば、活物質粒子の割れ、活物質と集電体との接触不良等が生じ、充放電サイクル寿命が短くなるという問題があった。また、同じ原因により、不可逆容量が著しく大きくなり、電池容量の低減を招くことがあった。こうしたことから、シリコンを活物質として利用するものの改良につていくつか報告されている。   As an electrode of a lithium secondary battery, silicon is known to have a high energy density of about 3600 mAh / g at room temperature, and has recently attracted attention as an electrode material for a lithium secondary battery. However, although silicon has a high theoretical capacity, the volume expansion coefficient during the charge / discharge process may be very large. Due to this volume change, for example, cracks in the active material particles, poor contact between the active material and the current collector, and the like occur, resulting in a short charge / discharge cycle life. In addition, due to the same cause, the irreversible capacity is remarkably increased, and the battery capacity may be reduced. For these reasons, several reports have been made on improvements of silicon that uses silicon as an active material.

例えば、特許文献1には、集電体上にシリコン粒子を含む層と、このシリコン層上に形成された表面被覆層とを有し、厚さ方向へ伸びた微細空間が表面被覆層に形成されたリチウム二次電池が提案されている。この電池では、表面被覆層によりシリコン層を押さえ込み、且つ微細空間により体積変化に由来する応力を緩和することができる。また、特許文献2には、不活性ガス雰囲気下でシリコン含有原料の溶融蒸発を伴って集電体上にシリコンの薄膜を形成したリチウム二次電池が提案されている。この電池では、合成条件を制御することによって、薄膜の厚さ方向に切れ目を発生させ、体積変化に由来する応力を緩和することができる。   For example, Patent Document 1 has a layer containing silicon particles on a current collector and a surface coating layer formed on the silicon layer, and a fine space extending in the thickness direction is formed in the surface coating layer. An improved lithium secondary battery has been proposed. In this battery, the silicon layer can be pressed by the surface coating layer, and the stress resulting from the volume change can be relieved by the fine space. Patent Document 2 proposes a lithium secondary battery in which a silicon thin film is formed on a current collector by melting and evaporating a silicon-containing raw material in an inert gas atmosphere. In this battery, by controlling the synthesis conditions, it is possible to generate a break in the thickness direction of the thin film and relieve the stress resulting from the volume change.

なお、非特許文献1には、集電体上に結晶性シリコンを形成し、0V近傍まで電極を還元してリチウムをドープすると非晶質LixSi(xは任意の数)を経由して結晶性のLi15Si4が生成するリチウム二次電池が記載されている。この二次電池では、充放電によってこの結晶性Li15Si4と非晶質LixSiとを繰り返して変質することになり、体積の大きな変化を伴うことから、集電体から活物質が剥離したり、あるいは電気的な接続が絶たれ、電池容量の低減が起きることがある。これに対しては、0.05Vを超える範囲でリチウムをドープすると、非晶質LixSiの状態に保持することができると提案されている。 In Non-Patent Document 1, when crystalline silicon is formed on a current collector and the electrode is reduced to near 0 V and doped with lithium, it passes through amorphous Li x Si (x is an arbitrary number). A lithium secondary battery produced by crystalline Li 15 Si 4 is described. In this secondary battery, the crystalline Li 15 Si 4 and the amorphous Li x Si are repeatedly altered by charging and discharging, and the active material is peeled off from the current collector because of a large change in volume. Or the electrical connection is cut off, and the battery capacity may be reduced. On the other hand, it has been proposed that when lithium is doped in a range exceeding 0.05 V, it can be maintained in an amorphous Li x Si state.

特開2005−44672号公報JP 2005-44672 A 特開2007−123096号公報JP 2007-123096 A

Electrochemical Solid−State Letters 7,A93−A96,(2004)Electrochemical Solid-State Letters 7, A93-A96, (2004)

しかしながら、上述の特許文献1,2のリチウム二次電池では、シリコンの体積変化をより抑制しているものの、シリコンの体積変化自体は依然として存在しており、更なるサイクル特性の向上が望まれていた。また、上述の非特許文献1のリチウム二次電池では、充放電の電位範囲が限られるため、電池容量を十分出せないという問題があり、更なるサイクル特性の向上が望まれていた。   However, in the lithium secondary batteries of Patent Documents 1 and 2 described above, although the volume change of silicon is further suppressed, the volume change of silicon itself still exists, and further improvement in cycle characteristics is desired. It was. Further, the above-described lithium secondary battery of Non-Patent Document 1 has a problem in that the battery capacity cannot be sufficiently obtained because the potential range of charge / discharge is limited, and further improvement in cycle characteristics has been desired.

本発明は、このような課題に鑑みなされたものであり、シリコンを含むものにおいて、サイクル特性をより高めることができるリチウム二次電池用電極及びそれを備えたリチウム二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and provides the electrode for lithium secondary batteries which can improve cycling characteristics more in the thing containing silicon, and a lithium secondary battery provided with the same. Main purpose.

上述した目的を達成するために鋭意研究したところ、本発明者らは、層状ポリシランを電極活物質とし、0V近傍まで電極を還元してリチウムをドープすると、体積変化や結晶構造変化が起きにくい非晶質シラン化合物が生成し、サイクル特性を向上することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors have found that when layered polysilane is used as an electrode active material and the electrode is reduced to near 0 V and doped with lithium, volume change and crystal structure change are unlikely to occur. It has been found that a crystalline silane compound is produced and the cycle characteristics can be improved, and the present invention has been completed.

即ち、本発明のリチウム二次電池用電極は、層状ポリシランにリチウムをドープして得られる非晶質シラン化合物を活物質として含むものである。   That is, the electrode for a lithium secondary battery of the present invention contains an amorphous silane compound obtained by doping lithium into a layered polysilane as an active material.

本発明のリチウム二次電池は、上述のリチウム二次電池用電極と、リチウム二次電池用電極と接触しリチウムイオンを伝導するイオン伝導媒体と、を備えたものである。   The lithium secondary battery of the present invention includes the above-described lithium secondary battery electrode and an ion conductive medium that contacts the lithium secondary battery electrode and conducts lithium ions.

本発明は、活物質としてシリコンを含むものにおいて、サイクル特性をより高めることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、層状ポリシランは、シリコン原子で形成された層の積層体であり、各層の間には空間が存在する。この層状ポリシランでは、リチウムイオンが電解液を介して層間に入りやすいため、充放電反応においてシリコン原子をより多く利用可能であり、高い容量を示すものと推察される。また、シリコン粒子を活物質に用いた場合には、0Vまでのリチウムのドープによって結晶性のLixSiy(x、yは任意の数)などが生成し、大きな体積変化を伴うことにより充放電特性に悪影響が生じると考えられる。これに対して、層状ポリシランでは、0Vまでのリチウムのドープによっても結晶性のLixSiyなどが生成せず、非晶質シラン化合物が生成するものと考えられる。この非晶質シラン化合物は、充放電を繰り返してもその状態を維持してリチウムの吸蔵放出を行うため、大きな体積変化を抑制して、サイクル特性が向上するものと推察される。 The present invention can further improve cycle characteristics in the case of containing silicon as an active material. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, layered polysilane is a stacked body of layers formed of silicon atoms, and there is a space between each layer. In this layered polysilane, lithium ions easily enter the interlayer through the electrolytic solution, so that more silicon atoms can be used in the charge / discharge reaction, and it is assumed that the layered polysilane exhibits a high capacity. In addition, when silicon particles are used as the active material, crystalline Li x Si y (x and y are arbitrary numbers) and the like are generated by doping with lithium up to 0 V, which is filled with a large volume change. It is considered that the discharge characteristics are adversely affected. On the other hand, it is considered that the layered polysilane does not generate crystalline Li x Si y or the like even when doped with lithium up to 0 V, but generates an amorphous silane compound. This amorphous silane compound is presumed to be capable of suppressing the large volume change and improving the cycle characteristics because the amorphous silane compound retains its state even after repeated charge and discharge and occludes and releases lithium.

層状ポリシランの構造の説明図である。It is explanatory drawing of the structure of layered polysilane. コイン型電池20の構成の概略を表す断面図である。2 is a cross-sectional view illustrating a schematic configuration of a coin-type battery 20. FIG. 層状ポリシランのXRDの測定結果結果である。It is a measurement result result of XRD of layered polysilane. 層状ポリシランのIRスペクトル測定結果である。It is an IR spectrum measurement result of layered polysilane. 層状ポリシランのラマンスペクトル測定結果である。It is a Raman spectrum measurement result of layered polysilane. 層状ポリシランのNMRスペクトル測定結果である。It is a NMR spectrum measurement result of layered polysilane. 実施例1の評価セルの充放電サイクルの測定結果である。It is a measurement result of the charging / discharging cycle of the evaluation cell of Example 1. 実施例2の評価セルの初期充放電曲線と作製した電極の電位の説明図である。It is explanatory drawing of the initial stage charge / discharge curve of the evaluation cell of Example 2, and the electric potential of the produced electrode. 初期充放電での実施例2の電極のX線回折スペクトル測定結果である。It is an X-ray-diffraction spectrum measurement result of the electrode of Example 2 in initial stage charge / discharge.

本発明のリチウム二次電池用電極は、層状ポリシランにリチウムをドープして得られる非晶質シラン化合物を活物質として含んでいる。こうすれば、サイクル特性をより高めることができる。この非晶質シラン化合物は、リチウム基準電位において0Vを含む所定の低電位範囲までリチウムをドープして得られるものとしてもよい。こうすれば、層状ポリシランから非晶質シラン化合物を生成しやすい。この所定の低電位範囲は、例えば、リチウム基準電位で0V近傍としてもよく、0V以上0.050V以下の範囲とするのが好ましく、0V以上0.020V以下の範囲とするのがより好ましく、0V以上0.010V以下の範囲とするのが更に好ましい。また、この非晶質シラン化合物は、X線回折における2θが20°以上28°以下の範囲に頂点を有するブロードなピークを示すものとしてもよい。また、この非晶質シラン化合物は、X線回折における2θが13.5°以上16.5°以下の範囲に001面由来のピークの頂点を有する層状ポリシランにリチウムをドープして得られるものとしてもよい。なお、非晶質シラン化合物は、正極に用いた場合には、充電時にはリチウムを放出した状態となり、放電時にはリチウムを吸蔵した状態となる。一方、非晶質シラン化合物は、負極に用いた場合には、充電時にはリチウムを吸蔵した状態となり、放電時にはリチウムを放出した状態となる。また、この非晶質シラン化合物は、非晶質であり具体的構造は不明ではあるが、層状ポリシランに近い構造や特性などを有しているものと推察される。   The electrode for a lithium secondary battery of the present invention contains an amorphous silane compound obtained by doping lithium into a layered polysilane as an active material. In this way, cycle characteristics can be further improved. This amorphous silane compound may be obtained by doping lithium to a predetermined low potential range including 0 V at the lithium reference potential. In this way, it is easy to produce an amorphous silane compound from the layered polysilane. The predetermined low potential range may be, for example, near 0 V at the lithium reference potential, preferably in the range of 0 V to 0.050 V, more preferably in the range of 0 V to 0.020 V, and 0 V More preferably, the range is 0.010 V or less. Further, this amorphous silane compound may exhibit a broad peak having an apex in the range where 2θ in X-ray diffraction is 20 ° or more and 28 ° or less. In addition, this amorphous silane compound is obtained by doping lithium into a layered polysilane having an apex of a peak derived from the 001 plane in the range where 2θ in X-ray diffraction is 13.5 ° or more and 16.5 ° or less. Also good. In addition, when an amorphous silane compound is used for a positive electrode, it will be in the state which discharge | released lithium at the time of charge, and will be in the state which occluded lithium at the time of discharge. On the other hand, when an amorphous silane compound is used for a negative electrode, it is in a state where lithium is occluded during charging and is in a state where lithium is released during discharging. The amorphous silane compound is amorphous and the specific structure is unknown, but it is presumed that the amorphous silane compound has a structure and characteristics similar to those of layered polysilane.

本発明のリチウム二次電池用電極に用いられる層状ポリシランは、ラマン分光分析において、360cm-1以上2200cm-1以下の範囲に複数のピークを示すものとしてもよい。このラマン分光分析におけるピークは、370cm-1近傍、490cm-1近傍、630cm-1近傍、730cm-1近傍、840cm-1近傍及び2100cm-1近傍に存在するものとしてもよい。また、この層状ポリシランは、29Si−NMR測定において、−90ppm以上−110ppm以下の範囲に頂点が存在するピークを示すものとしてもよい。この29Si−NMRスペクトルのピークは、−100ppm近傍に頂点が存在するものとしてもよい。層状ポリシランの構造の説明図を図1に示す。 Layered polysilane used for the lithium secondary battery electrode of the present invention, in Raman spectroscopic analysis, may show a plurality of peak in the range of 360 cm -1 or more 2200 cm -1 or less. Peaks in the Raman spectroscopic analysis, 370 cm -1 vicinity, 490 cm -1 vicinity, 630 cm -1 vicinity, 730 cm -1 vicinity may be those present in the vicinity of 840 cm -1 and near 2100 cm -1. Further, this layered polysilane may exhibit a peak having a peak in a range of −90 ppm to −110 ppm in 29 Si-NMR measurement. The peak of the 29 Si-NMR spectrum may have a vertex in the vicinity of −100 ppm. An explanatory view of the structure of the layered polysilane is shown in FIG.

本発明のリチウム二次電池用電極は、例えば活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の電極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。導電材は、電極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。電極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   The lithium secondary battery electrode of the present invention is, for example, a mixture of an active material, a conductive material, and a binder, and an appropriate solvent is added to form a paste-like electrode material that is applied to the surface of the current collector and dried. However, it may be compressed to increase the electrode density as necessary. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, What mixed 1 type (s) or 2 or more types, such as ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles, for example, a polytetrafluoroethylene (PTFE), a polyvinylidene fluoride (PVDF), a fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. Examples of the solvent for dispersing the active material, conductive material, and binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine. Organic solvents such as ethylene oxide and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors for electrodes include copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池は、上述のリチウム二次電池用電極と、リチウム二次電池用電極と接触しリチウムイオンを伝導するイオン伝導媒体と、を備えたものである。具体的には、本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な正極活物質を含む正極と、上述のリチウム二次電池用電極である負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えているものとしてもよい。また、本発明のリチウム二次電池は、上述のリチウム二次電池用電極である正極と、リチウムを吸蔵・放出可能な負極活物質を含む負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えているものとしてもよい。即ち、本発明のリチウム二次電池用電極は、正極として用いてもよいし負極として用いてもよい。   The lithium secondary battery of the present invention includes the above-described lithium secondary battery electrode and an ion conductive medium that contacts the lithium secondary battery electrode and conducts lithium ions. Specifically, the lithium secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of inserting and extracting lithium, a negative electrode that is an electrode for the lithium secondary battery, and a positive electrode and a negative electrode. And an ion conductive medium that conducts lithium ions. Further, the lithium secondary battery of the present invention includes a positive electrode that is an electrode for the above-described lithium secondary battery, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and a lithium ion interposed between the positive electrode and the negative electrode. It is good also as what has an ion conduction medium which conducts. That is, the electrode for a lithium secondary battery of the present invention may be used as a positive electrode or a negative electrode.

本発明のリチウム二次電池用電極を負極として用いる場合において、本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。また、正極に用いられる導電材、結着材、溶剤などは、それぞれ上述した電極で例示したものを用いることができる。正極の集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、上述した電極で例示したいずれかとすることができる。 When the electrode for the lithium secondary battery of the present invention is used as a negative electrode, the positive electrode of the lithium secondary battery of the present invention is, for example, a paste prepared by mixing a positive electrode active material, a conductive material and a binder, and adding an appropriate solvent. What was made into the shape of a positive electrode material may be applied and dried on the surface of the current collector, and may be compressed to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. Moreover, what was illustrated by the electrode mentioned above can each be used for the electrically conductive material, binder, solvent, etc. which are used for a positive electrode. Current collectors of the positive electrode include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., as well as aluminum and titanium for the purpose of improving adhesion, conductivity and oxidation resistance. What processed the surface of copper etc. with carbon, nickel, titanium, silver, etc. can be used. For these, the surface can be oxidized. The shape of the current collector can be any of those exemplified for the electrodes described above.

本発明のリチウム二次電池用電極を正極として用いる場合において、本発明のリチウム二次電池の負極は、例えば負極活物質を集電体に形成したものとしてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などが挙げられる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、上述した電極と同様のものを用いることができる。   In the case where the electrode for a lithium secondary battery of the present invention is used as a positive electrode, the negative electrode of the lithium secondary battery of the present invention may have a negative electrode active material formed on a current collector, for example. Examples of the negative electrode active material include lithium, a lithium alloy, and a tin compound. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as the electrode described above.

本発明のリチウム二次電池のイオン伝導媒体としては、支持塩を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、
テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。
As the ion conduction medium of the lithium secondary battery of the present invention, a non-aqueous electrolyte solution containing a supporting salt, a non-aqueous gel electrolyte solution, or the like can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane and diethoxyethane, nitriles such as acetonitrile and benzonitrile,
Examples include furans such as tetrahydrofuran and methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can.

本発明のリチウム二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 The supporting salt contained in the lithium secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Examples include LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. The supporting salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. If the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and if it is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte.

また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと非水系電解液とを組み合わせて用いることもできる。また、イオン伝導媒体としては、イオン伝導性ポリマーのほか、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Further, instead of the liquid ion conducting medium, a solid ion conducting polymer may be used as the ion conducting medium. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and a supporting salt can be used. Further, an ion conductive polymer and a non-aqueous electrolyte can be used in combination. In addition to the ion conductive polymer, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used as the ion conductive medium.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。このリチウム二次電池の一例を図2に示す。図2は、コイン型電池20の構成の概略を表す断面図である。このコイン型電池20は、カップ形状の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。このコイン型電池20は、正極22と負極23との空間にリチウム塩を含む非水電解液が満たされている。ここでは、正極22は、0V近傍まで電極を還元することにより、層状ポリシランにリチウムをドープして得られる非晶質シラン化合物を活物質として含んでいる。また、負極23は、リチウム金属を用いている。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. An example of this lithium secondary battery is shown in FIG. FIG. 2 is a cross-sectional view schematically illustrating the configuration of the coin-type battery 20. The coin-type battery 20 includes a cup-shaped battery case 21, a positive electrode 22 having a positive electrode active material provided at a lower portion of the battery case 21, and a negative electrode active material having a positive electrode 22 via a separator 24. A negative electrode 23 provided at a position facing each other, a gasket 25 formed of an insulating material, and a sealing plate 26 disposed in an opening of the battery case 21 and sealing the battery case 21 via the gasket 25. ing. In the coin-type battery 20, the space between the positive electrode 22 and the negative electrode 23 is filled with a non-aqueous electrolyte containing a lithium salt. Here, the positive electrode 22 contains, as an active material, an amorphous silane compound obtained by doping lithium into layered polysilane by reducing the electrode to near 0V. The negative electrode 23 uses lithium metal.

以上詳述した本実施形態のリチウム二次電池によれば、シリコン層の間に空間を有する層状ポリシランを電極に利用しており、リチウムの吸蔵・放出がしやすいことから、高い電池容量を有する。また、層状ポリシランにリチウムをドープすることにより生成する非晶質シラン化合物が、結晶性のLixSiyなどに変化しない安定なものであり、体積変化も抑制されるため、充放電サイクル寿命がより長くなる。したがって、サイクル特性をより高めることができる。 According to the lithium secondary battery of the present embodiment described in detail above, a layered polysilane having a space between silicon layers is used as an electrode, and lithium is easily occluded / released, so that it has a high battery capacity. . In addition, the amorphous silane compound produced by doping lithium into the layered polysilane is stable and does not change to crystalline Li x Si y or the like, and the volume change is also suppressed. It will be longer. Therefore, cycle characteristics can be further improved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のリチウム二次電池用電極を具体的に作製した例を実施例として説明する。   Below, the example which produced the electrode for lithium secondary batteries of this invention concretely is demonstrated as an Example.

[実施例1]
(1)層状ポリシランの合成
層状ポリシラン(Si66)の合成は、以下の条件で行った。この合成は、−30℃に冷却した濃塩酸100ml中へケイ化カルシウム(CaSi2)3gを添加し、1週間、−30℃の暗室で静置した。この処理で、黒色のケイ化カルシウムは黄色へ変化した。この黄色固体をAr雰囲気下で加圧ろ過し、脱気塩酸(−30℃)で洗浄し、脱気HF(フッ化水素)水溶液(−30℃)で洗浄し、さらに脱気アセトン(−30℃)で洗浄し、110℃で一晩減圧乾燥して層状ポリシランを合成した。合成した層状ポリシランを実施例1とした。この層状ポリシランの合成の化学反応式を式(1)に示す。
[Example 1]
(1) Synthesis of layered polysilane The layered polysilane (Si 6 H 6 ) was synthesized under the following conditions. In this synthesis, 3 g of calcium silicide (CaSi 2 ) was added to 100 ml of concentrated hydrochloric acid cooled to −30 ° C., and left in a dark room at −30 ° C. for 1 week. This treatment turned the black calcium silicide to yellow. The yellow solid was filtered under pressure in an Ar atmosphere, washed with degassed hydrochloric acid (−30 ° C.), washed with degassed HF (hydrogen fluoride) aqueous solution (−30 ° C.), and further degassed acetone (−30 The layered polysilane was synthesized by washing at 110 ° C. overnight under reduced pressure. The synthesized layered polysilane was taken as Example 1. The chemical reaction formula for the synthesis of this layered polysilane is shown in Formula (1).

3CaSi2+6HCl→Si66+3CaCl2 …(1) 3CaSi 2 + 6HCl → Si 6 H 6 + 3CaCl 2 (1)

(2)XRD測定
得られた層状ポリシランについて、XRD測定を行った。測定装置はリガク社製RINT−TTRを用いた。線源にはCuKα線を用いた。図3は、層状ポリシランのXRDの測定結果結果である。図3に示すように、実施例1では、層状ポリシランの001面が14.8°であることがわかった。これより、層状ポリシランの層は、0.59nm周期であることがわかった。また、化学構造式作画ソフトのChemDraw(登録商標)を用いて計算したところ、ポリシラン層の厚さは0.43nmであると計算された。これらのことより、層状ポリシランの層間空間は、0.16nmであると計算された。リチウムイオンは、直径が0.146nmであることから、層状ポリシランの層間にリチウムイオンが挿入・脱離することによる体積変化は小さいことが予想された。
(2) XRD measurement The obtained layered polysilane was subjected to XRD measurement. The measuring device used was RINT-TTR manufactured by Rigaku Corporation. CuKα rays were used as the radiation source. FIG. 3 shows the result of XRD measurement of layered polysilane. As shown in FIG. 3, in Example 1, it was found that the 001 plane of the layered polysilane was 14.8 °. From this, it was found that the layered polysilane layer had a period of 0.59 nm. Moreover, when it calculated using ChemDraw (trademark) of chemical structural formula drawing software, the thickness of the polysilane layer was calculated to be 0.43 nm. From these results, the interlayer space of the layered polysilane was calculated to be 0.16 nm. Since lithium ions have a diameter of 0.146 nm, it was expected that the volume change due to insertion / extraction of lithium ions between layers of the layered polysilane was small.

(3)IR測定
得られた層状ポリシランについて、IRスペクトルを測定した。測定装置はニコレー社製Magna760型フーリエ赤外分光計、Nic−Plan型赤外顕微鏡を用いた。図4は、層状ポリシランのIRスペクトル測定結果である。図4に示すように、実施例1では、Si−H伸縮に由来する2100cm-1付近のピークと、Si−OH伸縮に由来する1100cm-1のピークとが観測された。このことから六員環を形成するケイ素原子は、Si−H結合を有していると推察された。なお、層状ポリシランでSi−OH伸縮に由来するピークが検出された理由であるが、大気中で測定した際に水分の影響で発生したものと推測された。
(3) IR measurement The IR spectrum was measured about the obtained layered polysilane. The measuring apparatus used was a Magna 760 type Fourier infrared spectrometer and a Nic-Plan infrared microscope manufactured by Nicorey. FIG. 4 shows the IR spectrum measurement result of the layered polysilane. As shown in FIG. 4, in Example 1, a peak in the vicinity of 2100 cm −1 derived from Si—H stretching and a peak of 1100 cm −1 derived from Si—OH stretching were observed. From this, it was speculated that the silicon atom forming the six-membered ring has a Si—H bond. In addition, although it is the reason which the peak derived from Si-OH expansion-contraction was detected by layered polysilane, when it measured in air | atmosphere, it was estimated that it generate | occur | produced by the influence of the water | moisture content.

(4)ラマンスペクトル測定
得られた層状ポリシランについて、ラマンスペクトルを測定した。測定装置は日本分光製NRS−3300型レーザーラマン分光計を用いた。また、励起波長は532nm、対物レンズは20倍、露光時間は30秒、レーザーパワーは2.2mWとし、石英セル(不活性ガス雰囲気)中で測定した。図5は、層状ポリシランのラマンスペクトル測定結果である。ラマンスペクトルのSi−H由来のピークは、層状ポリシランのラマンスペクトルにつき、Hartree−Fock/6−31G(d)を用いたシミュレーション(モデル構造はSi2436)を行うことにより同定した。その結果、370,490,630cm-1のピークはSi主鎖の振動、730cm-1は隣り合うSi−H同士の首振り振動、840cm-1のピークはH−Si−H変角、2100cm-1はSi−H伸縮であることが推察された。
(4) Raman spectrum measurement The Raman spectrum was measured about the obtained layered polysilane. The measuring device used was an NRS-3300 laser Raman spectrometer manufactured by JASCO. The excitation wavelength was 532 nm, the objective lens was 20 times, the exposure time was 30 seconds, the laser power was 2.2 mW, and measurement was performed in a quartz cell (inert gas atmosphere). FIG. 5 shows the Raman spectrum measurement result of the layered polysilane. The peak derived from Si—H of the Raman spectrum was identified by performing simulation (model structure is Si 24 H 36 ) using Hartley-Fock / 6-31G (d) on the Raman spectrum of the layered polysilane. As a result, the vibration peak Si backbone 370,490,630cm -1, 730cm -1 is swinging vibration of Si-H adjacent peaks of 840 cm -1 is H-Si-H bending, 2100 cm - It was inferred that 1 was Si—H stretching.

(5)NMRスペクトル測定
得られた層状ポリシランについて、NMRスペクトルを測定した。測定装置は日本電子製の超伝導フーリエ変換核磁気共鳴装置(JNM−LA500)を用い、29Si−NMRを測定した。図6は、層状ポリシランのNMRスペクトル測定結果である。図6に示すように、層状ポリシランの29Si−NMRスペクトルでは、−90ppm以上−110ppm以下の範囲に頂点が存在するピークが得られた。このピークは、RHF/6−31G(d)を用いた量子化学計算により、層状ポリシランのHSi(Si)3であると推察された。
(5) NMR spectrum measurement About the obtained layered polysilane, the NMR spectrum was measured. 29 Si-NMR was measured using a JEOL superconducting Fourier transform nuclear magnetic resonance apparatus (JNM-LA500). FIG. 6 shows the NMR spectrum measurement result of the layered polysilane. As shown in FIG. 6, in the 29 Si-NMR spectrum of the layered polysilane, a peak having a peak in the range of −90 ppm to −110 ppm was obtained. This peak was presumed to be HSi (Si) 3 of layered polysilane by quantum chemical calculation using RHF / 6-31G (d).

(6)電極の性能評価
得られた層状ポリシランをリチウム二次電池(評価セル)の活物質として使用し、その特性を調べた。具体的には、活物質としての上述した層状ポリシランと、導電材としてのカーボンブラック(東海カーボン製TB5500)と、結着材としてのテフロンパウダー(ダイキン工業製F104、「テフロン」は登録商標(以下同じ))とを40:55:5の重量比で混合したものを10mg秤量し、直径15mmのステンレスメッシュへ圧着して実施例1のリチウム二次電池用電極とした。対極に金属リチウム、セパレータにポリエチレン製微多孔質膜及び電解液に1MのLiPF6溶液を用い、この実施例1を作用極として実施例1の日本トムセル製2極式セルの評価セルを作製した。電解液の溶媒としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを1:1の体積比で混合したもの(富山薬品製)を用いた。電池性能の評価は、下限電位を0V、上限電位を1.0Vとし、0.7mAの定電流測定を室温で10回繰り返すことにより行った。なお、測定は、同じ2つの評価セルを用いて行った(測定点数n=2)。図7は、実施例1の評価セルの充放電サイクルの測定結果である。なお、図7では、上段に電極重量あたりの充電容量を示し、下段に充電容量を放電容量で除算したもの(充放電効率と称する)を示した。図7に示すように、層状ポリシランを活物質とする電極は、初期容量が約600mAh/gであり、10サイクル後は400mAh/gであった。また、充放電効率は、初回を除き約1.0を示し、良好なサイクル特性を有することがわかった。以上より層状ポリシランはリチウム二次電池の活物質として有用であることがわかった。
(6) Performance evaluation of electrode The obtained layered polysilane was used as an active material of a lithium secondary battery (evaluation cell), and its characteristics were examined. Specifically, the above-described layered polysilane as an active material, carbon black as a conductive material (TB5500 manufactured by Tokai Carbon), and Teflon powder (F104, manufactured by Daikin Industries, “Teflon” as a binder) are registered trademarks (hereinafter referred to as “Teflon”). 10) was mixed at a weight ratio of 40: 55: 5 and weighed on a stainless steel mesh having a diameter of 15 mm to obtain an electrode for a lithium secondary battery of Example 1. Using a metallic lithium as a counter electrode, a polyethylene microporous membrane as a separator, and a 1M LiPF 6 solution as an electrolyte, an evaluation cell of a bipolar cell made in Japan Tomcell of Example 1 was produced using this Example 1 as a working electrode. . As a solvent for the electrolytic solution, a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1 (manufactured by Toyama Pharmaceutical) was used. The battery performance was evaluated by setting the lower limit potential to 0 V, the upper limit potential to 1.0 V, and repeating the constant current measurement at 0.7 mA 10 times at room temperature. The measurement was performed using the same two evaluation cells (number of measurement points n = 2). FIG. 7 shows the measurement results of the charge / discharge cycle of the evaluation cell of Example 1. In FIG. 7, the charge capacity per electrode weight is shown in the upper part, and the charge capacity divided by the discharge capacity (referred to as charge / discharge efficiency) is shown in the lower part. As shown in FIG. 7, the electrode using layered polysilane as the active material had an initial capacity of about 600 mAh / g, and 400 mAh / g after 10 cycles. The charge / discharge efficiency was about 1.0 except for the first time, and it was found that the charge / discharge efficiency had good cycle characteristics. From the above, it was found that the layered polysilane is useful as an active material for a lithium secondary battery.

次に、層状ポリシランの結晶変化を検討した。露点−90℃の不活性ガス雰囲気下において、上述した層状ポリシランと、カーボンブラック(東海カーボン製TB5500)と、テフロンパウダーとを20:75:5の重量比で混合したものを10mg秤量し、直径15mmのステンレスメッシュへ圧着して実施例2のリチウム二次電池用電極とした。対極に金属リチウム、セパレータにポリエチレン製微多孔質膜及び電解液に1MのLiPF6溶液を用い、この実施例2を作用極として実施例2の日本トムセル製2極式セルの評価セルを作製した。電解液の溶媒としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを1:1の体積比で混合したもの(富山薬品製)を用いた。作製した評価セルを用い、0.7mAの定電流で下限電位を0V、上限電位を3.0Vとして放電・充電を行った。具体的には、初回放電において、充放電前(Fresh;No.1)、0.4V(No.2)、0.33V(No.3)、0.0V(No.4)の3段階で各々充放電を終了した電極と、0Vの放電後に3Vまで充電した電極(No.5)とを作製した。図8は、実施例2の評価セルの初期充放電曲線と作製した電極の電位の説明図である。作製したそれぞれの電極は、露点−90℃の不活性ガス雰囲気下において、ジエチルカーボネートで洗浄・乾燥し、この不活性ガス雰囲気下でX線回折測定を行った。X線回折測定は、不活性雰囲気下で、50kV−300mA、発散スリット1/2°、発散縦制限スリット10mm、散乱スリット1/2°、受光スリット0.15mmの条件で行った。図9は、初期充放電での実施例2の電極のX線回折スペクトル測定結果である。図9に示すように、層状ポリシランの周期に由来する2θ=15°のピークは、0.33Vまでのリチウムのドープで検出されるが、0Vにおいては消失することがわかった。また、2θが20°以上28°以下の範囲に頂点を有するブロードピークが現れた。このブロードピークは、非晶質性のLixSi(非晶質シラン化合物とも称する)の生成を裏付けるものと推察された。 Next, the crystal change of layered polysilane was examined. In an inert gas atmosphere with a dew point of −90 ° C., 10 mg of a mixture of the above-described layered polysilane, carbon black (TB5500, manufactured by Tokai Carbon Co., Ltd.) and Teflon powder in a weight ratio of 20: 75: 5 was weighed. A lithium secondary battery electrode of Example 2 was obtained by pressure bonding to a 15 mm stainless steel mesh. Using a metallic lithium as a counter electrode, a polyethylene microporous membrane as a separator, and a 1M LiPF 6 solution as an electrolyte, an evaluation cell of a bipolar cell made in Japan Tom Cell of Example 2 was produced using this Example 2 as a working electrode. . As a solvent for the electrolytic solution, a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1 (manufactured by Toyama Pharmaceutical) was used. Using the produced evaluation cell, discharging and charging were performed at a constant current of 0.7 mA with a lower limit potential of 0 V and an upper limit potential of 3.0 V. Specifically, in the first discharge, before charging / discharging (Fresh; No. 1), 0.4 V (No. 2), 0.33 V (No. 3), and 0.0 V (No. 4). The electrode which completed charging / discharging each and the electrode (No. 5) charged to 3V after discharge of 0V were produced. FIG. 8 is an explanatory diagram of the initial charge / discharge curve of the evaluation cell of Example 2 and the potential of the fabricated electrode. Each of the produced electrodes was washed and dried with diethyl carbonate in an inert gas atmosphere having a dew point of −90 ° C., and X-ray diffraction measurement was performed in this inert gas atmosphere. X-ray diffraction measurement was performed under the conditions of 50 kV-300 mA, divergence slit ½ °, divergence length limiting slit 10 mm, scattering slit ½ °, and light receiving slit 0.15 mm in an inert atmosphere. FIG. 9 shows the results of X-ray diffraction spectrum measurement of the electrode of Example 2 in the initial charge / discharge. As shown in FIG. 9, the 2θ = 15 ° peak derived from the period of the layered polysilane was detected by lithium doping up to 0.33 V, but disappeared at 0 V. In addition, a broad peak having an apex in the range of 2θ between 20 ° and 28 ° appeared. This broad peak was presumed to support the formation of amorphous Li x Si (also referred to as an amorphous silane compound).

ここで、シリコン粒子を活物質に用いた場合には、結晶性のシリコンにリチウムを電気化学的に加える(放電する)とアモルファスのLixSiへ変化し、更にリチウムを電気化学的に加えると結晶性のLixSiyに変化することが報告されている(非特許文献1;Electrochemical Solid−State Letters 7,A93−A96,(2004)参照)。なお、図示しないが、結晶性シリコン粒子を活物質とした評価セルを作製し、電極の性能評価を行ったところ、結晶性のLixSiyが確認された。この結晶性のLixSiyは、一度生成すると充放電サイクルにおいても消滅せず、リチウムの放出性が低いなど、充放電特性に悪影響を与えると考えられる。しかしながら、本発明の実施例2の電極では、シリコン粒子を用いた場合のような結晶性のLixSiyなどは生成せず、非晶質シラン化合物が生成した。そして、充放電を繰り返してもブロードピークを保持していることから、充放電を繰り返しても非晶質シラン化合物の状態を維持していることがわかった。この理由は、層状ポリシランでは、隣接するシリコン層のSi同士の距離(例えば0.46nm)がSi−Si結合距離(例えば0.224nm)よりも広く、隣接するシリコン層のSi同士の結合やリチウムとシリコンとの結晶化を防ぐことができるためであると推察された。このように、非晶質シラン化合物が構造的に安定なため、体積変化も起きにくく、充放電サイクルにおいて高い放電容量を示すと共に、充放電サイクル寿命がより長くなるものと推察された。また、層状構造に準じた安定な構造を有していると推察されるため、急速な充放電にも対応可能であると考えられる。なお、現状では、非晶質シラン化合物の構造については明らかではないが、層状ポリシランがシリコンの六員環を有する層状構造を有していることから、完全なる非晶質状態ではなく、層状ポリシランに近い構造(あるいは特徴)を残しているものと推察された。 Here, when silicon particles are used as the active material, when lithium is electrochemically added (discharged) to crystalline silicon, it changes to amorphous Li x Si, and further lithium is added electrochemically. It has been reported that it changes to crystalline Li x Si y (see Non-Patent Document 1; Electrochemical Solid-State Letters 7, A93-A96, (2004)). Although not shown, when an evaluation cell using crystalline silicon particles as an active material was produced and the performance of the electrode was evaluated, crystalline Li x Si y was confirmed. This crystalline Li x Si y is considered to have an adverse effect on the charge / discharge characteristics, such as once generated, it does not disappear even in the charge / discharge cycle, and the lithium release property is low. However, the electrode of Example 2 of the present invention did not produce crystalline Li x Si y or the like as in the case of using silicon particles, but produced an amorphous silane compound. And since it was maintaining a broad peak even if charging / discharging was repeated, it turned out that the state of an amorphous silane compound is maintained even if charging / discharging is repeated. This is because, in layered polysilane, the distance between adjacent silicon layers (for example, 0.46 nm) is wider than the Si-Si bond distance (for example, 0.224 nm). This was presumed to be because crystallization of silicon and silicon could be prevented. As described above, since the amorphous silane compound is structurally stable, the volume change hardly occurs, and a high discharge capacity is exhibited in the charge / discharge cycle, and it is presumed that the charge / discharge cycle life becomes longer. Moreover, since it is estimated that it has the stable structure according to a layered structure, it is thought that it can respond also to rapid charging / discharging. At present, the structure of the amorphous silane compound is not clear, but since the layered polysilane has a layered structure having a six-membered silicon ring, the layered polysilane is not completely amorphous. It is inferred that the structure (or feature) close to is left.

本発明は、電池産業に利用可能である。   The present invention is applicable to the battery industry.

20 コイン型電池、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板。   20 coin-type battery, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate.

Claims (4)

層状ポリシランにリチウムをドープして得られる非晶質シラン化合物を活物質として含む、リチウム二次電池用電極。   An electrode for a lithium secondary battery, comprising an amorphous silane compound obtained by doping lithium into a layered polysilane as an active material. 前記非晶質シラン化合物は、リチウム基準電位において0Vを含む所定の低電位範囲までリチウムをドープして得られる、請求項1に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein the amorphous silane compound is obtained by doping lithium to a predetermined low potential range including 0 V at a lithium reference potential. 前記非晶質シラン化合物は、X線回折における2θが20°以上28°以下の範囲に頂点を有するブロードなピークを示し、X線回折における2θが13.5°以上16.5°以下の範囲に001面由来のピークの頂点を示す層状ポリシランにリチウムをドープして得られる、請求項1又は2に記載のリチウム二次電池用電極。   The amorphous silane compound shows a broad peak having an apex in the range of 2θ in X-ray diffraction of 20 ° to 28 °, and 2θ in X-ray diffraction of 13.5 ° to 16.5 °. The electrode for a lithium secondary battery according to claim 1, which is obtained by doping lithium into a layered polysilane showing a peak of a peak derived from the 001 plane. 請求項1〜3のいずれか1項に記載のリチウム二次電池用電極と、
前記リチウム二次電池用電極と接触しリチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウム二次電池。
The electrode for a lithium secondary battery according to any one of claims 1 to 3,
An ion conductive medium that is in contact with the lithium secondary battery electrode and conducts lithium ions;
Rechargeable lithium battery.
JP2009241414A 2009-10-20 2009-10-20 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME Expired - Fee Related JP5471284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241414A JP5471284B2 (en) 2009-10-20 2009-10-20 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241414A JP5471284B2 (en) 2009-10-20 2009-10-20 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME

Publications (2)

Publication Number Publication Date
JP2011090806A true JP2011090806A (en) 2011-05-06
JP5471284B2 JP5471284B2 (en) 2014-04-16

Family

ID=44108893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241414A Expired - Fee Related JP5471284B2 (en) 2009-10-20 2009-10-20 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME

Country Status (1)

Country Link
JP (1) JP5471284B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037809A (en) * 2011-08-04 2013-02-21 Toyota Central R&D Labs Inc Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
JP2014047113A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Silicon compound, anode for lithium battery, lithium battery and method of manufacturing silicon compound
WO2014080608A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device
WO2014080603A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Negative electrode active material and electricity storage device
JP2014103128A (en) * 2014-03-10 2014-06-05 Toyota Industries Corp Copper-containing layered polysilane, negative electrode active material and power storage device
JP2014118333A (en) * 2012-12-18 2014-06-30 Toyota Industries Corp Nano-silicon material and method for producing the same
JP2014123537A (en) * 2012-11-21 2014-07-03 Toyota Industries Corp Negative electrode active material, process of manufacturing the same, and power storage device
WO2014128814A1 (en) * 2013-02-22 2014-08-28 株式会社豊田自動織機 Negative-electrode active substance, method for manufacturing same, and electrical storage device in which same is used
WO2014147935A1 (en) * 2013-03-18 2014-09-25 株式会社豊田自動織機 Negative electrode active material, manufacturing method therefor, and power storage device
WO2015097974A1 (en) * 2013-12-25 2015-07-02 株式会社豊田自動織機 Negative electrode active material, method for producing same and electricity storage device
WO2015182120A1 (en) * 2014-05-29 2015-12-03 株式会社豊田自動織機 Copper-containing silicon material, method for manufacturing same, negative-electrode active substance, and secondary cell
WO2016031099A1 (en) * 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material
JP2016047781A (en) * 2014-08-27 2016-04-07 株式会社豊田自動織機 Method for producing silicon material
KR20160103117A (en) 2014-01-31 2016-08-31 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries ; nonaqueous secondary battery ; negative electrode active material ; method for producing negative electrode active material ; composite body comprising nano-silicon, carbon layer and cationic polymer layer ; and method for producing composite body composed of nano-silicon and carbon layer
KR20160143791A (en) 2014-05-29 2016-12-14 가부시키가이샤 도요다 지도숏키 Silicon material and secondary cell negative electrode
KR20160145661A (en) 2014-05-29 2016-12-20 가부시키가이샤 도요다 지도숏키 Nano-silicon material, method for producing same and negative electrode of secondary battery
KR20160145660A (en) 2014-05-29 2016-12-20 가부시키가이샤 도요다 지도숏키 Silicon material and secondary cell negative electrode
DE112016004994T5 (en) 2015-10-29 2018-07-12 Kabushiki Kaisha Toyota Jidoshokki METHOD FOR PRODUCING SILICON MATERIAL
US10135067B2 (en) 2014-09-19 2018-11-20 Kabushiki Kaisha Toyota Jidoshokki MSix-containing silicon material (M is at least one element selected from group 3 to 9 elements. ⅓<=x<=3) and method for producing same
US10308515B2 (en) 2015-06-12 2019-06-04 Kabushiki Kaisha Toyota Jidoshokki Method for producing CaSi2-containing composition and silicon material
US11688852B2 (en) 2017-09-14 2023-06-27 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material including Al- and O-containing silicon material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281317A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2008069301A (en) * 2006-09-15 2008-03-27 Toyota Central R&D Labs Inc Silicon nano-sheet, colloidal solution of the same and method for preparation of silicon nano-sheet
JP2009199761A (en) * 2008-02-19 2009-09-03 Nissan Motor Co Ltd Lithium ion battery
JP2009224145A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Electrode for lithium secondary battery and lithium secondary battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281317A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2008069301A (en) * 2006-09-15 2008-03-27 Toyota Central R&D Labs Inc Silicon nano-sheet, colloidal solution of the same and method for preparation of silicon nano-sheet
JP2009199761A (en) * 2008-02-19 2009-09-03 Nissan Motor Co Ltd Lithium ion battery
JP2009224145A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Electrode for lithium secondary battery and lithium secondary battery using the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037809A (en) * 2011-08-04 2013-02-21 Toyota Central R&D Labs Inc Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
JP2014047113A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Silicon compound, anode for lithium battery, lithium battery and method of manufacturing silicon compound
WO2014080603A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Negative electrode active material and electricity storage device
JP2014103025A (en) * 2012-11-21 2014-06-05 Toyota Industries Corp Negative electrode active material and power storage device
JP2014123537A (en) * 2012-11-21 2014-07-03 Toyota Industries Corp Negative electrode active material, process of manufacturing the same, and power storage device
WO2014080608A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device
US9831494B2 (en) 2012-11-21 2017-11-28 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode active material and electric storage apparatus
US9527748B2 (en) 2012-11-21 2016-12-27 Kabushiki Kaisha Toyota Jidoshokki Production process for nanometer-size silicon material
JP2014118333A (en) * 2012-12-18 2014-06-30 Toyota Industries Corp Nano-silicon material and method for producing the same
US20150349337A1 (en) * 2013-02-22 2015-12-03 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode active material, production process for the same and electric storage apparatus
US10230100B2 (en) * 2013-02-22 2019-03-12 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode active material, production process for the same and electric storage apparatus
WO2014128814A1 (en) * 2013-02-22 2014-08-28 株式会社豊田自動織機 Negative-electrode active substance, method for manufacturing same, and electrical storage device in which same is used
CN105122510A (en) * 2013-02-22 2015-12-02 株式会社丰田自动织机 Negative-electrode active substance, method for manufacturing same, and electrical storage device in which same is used
US10141563B2 (en) 2013-03-18 2018-11-27 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode active material, production process for the same and electric storage apparatus
JP2014182890A (en) * 2013-03-18 2014-09-29 Toyota Industries Corp Negative electrode active material, process of manufacturing the same, and power storage device
WO2014147935A1 (en) * 2013-03-18 2014-09-25 株式会社豊田自動織機 Negative electrode active material, manufacturing method therefor, and power storage device
DE112014006065B4 (en) 2013-12-25 2019-01-10 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material, method of manufacturing the same and electric storage device
WO2015097974A1 (en) * 2013-12-25 2015-07-02 株式会社豊田自動織機 Negative electrode active material, method for producing same and electricity storage device
US10333139B2 (en) 2013-12-25 2019-06-25 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material, method for producing same, and electrical storage device
JPWO2015097974A1 (en) * 2013-12-25 2017-03-23 株式会社豊田自動織機 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
KR20160079910A (en) 2013-12-25 2016-07-06 가부시키가이샤 도요다 지도숏키 Negative electrode active material, method for producing same and electricity storage device
KR20160103117A (en) 2014-01-31 2016-08-31 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries ; nonaqueous secondary battery ; negative electrode active material ; method for producing negative electrode active material ; composite body comprising nano-silicon, carbon layer and cationic polymer layer ; and method for producing composite body composed of nano-silicon and carbon layer
US10446838B2 (en) 2014-01-31 2019-10-15 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery, negative electrode active material and method for producing same, complex including nano silicon, carbon layer, and cationic polymer layer, and method for producing complex formed of nano silicon and carbon layer
KR20180072856A (en) 2014-01-31 2018-06-29 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
JP2014103128A (en) * 2014-03-10 2014-06-05 Toyota Industries Corp Copper-containing layered polysilane, negative electrode active material and power storage device
US10347910B2 (en) 2014-05-29 2019-07-09 Kabushiki Kaisha Toyota Jidoshokki Nano silicon material, method for producing same, and negative electrode of secondary battery
KR20160145660A (en) 2014-05-29 2016-12-20 가부시키가이샤 도요다 지도숏키 Silicon material and secondary cell negative electrode
KR20160145661A (en) 2014-05-29 2016-12-20 가부시키가이샤 도요다 지도숏키 Nano-silicon material, method for producing same and negative electrode of secondary battery
KR20160143791A (en) 2014-05-29 2016-12-14 가부시키가이샤 도요다 지도숏키 Silicon material and secondary cell negative electrode
US10164255B2 (en) 2014-05-29 2018-12-25 Kabushiki Kaisha Toyota Jidoshokki Silicon material and negative electrode of secondary battery
JPWO2015182116A1 (en) * 2014-05-29 2017-05-25 株式会社豊田自動織機 Nanosilicon material, method for producing the same, and negative electrode of secondary battery
US10217990B2 (en) 2014-05-29 2019-02-26 Kabushiki Kaisha Toyota Jidoshokki Silicon material and negative electrode of secondary battery
CN106458605B (en) * 2014-05-29 2020-05-19 株式会社丰田自动织机 Silicon material and negative electrode for secondary battery
WO2015182120A1 (en) * 2014-05-29 2015-12-03 株式会社豊田自動織機 Copper-containing silicon material, method for manufacturing same, negative-electrode active substance, and secondary cell
CN106458605A (en) * 2014-05-29 2017-02-22 株式会社丰田自动织机 Silicon material and secondary cell negative electrode
WO2016031099A1 (en) * 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material
JP2016047781A (en) * 2014-08-27 2016-04-07 株式会社豊田自動織機 Method for producing silicon material
US10135067B2 (en) 2014-09-19 2018-11-20 Kabushiki Kaisha Toyota Jidoshokki MSix-containing silicon material (M is at least one element selected from group 3 to 9 elements. ⅓<=x<=3) and method for producing same
US10308515B2 (en) 2015-06-12 2019-06-04 Kabushiki Kaisha Toyota Jidoshokki Method for producing CaSi2-containing composition and silicon material
DE112016004994T5 (en) 2015-10-29 2018-07-12 Kabushiki Kaisha Toyota Jidoshokki METHOD FOR PRODUCING SILICON MATERIAL
US10800660B2 (en) 2015-10-29 2020-10-13 Kabushiki Kaisha Toyota Jidoshokki Method for producing silicon material
US11688852B2 (en) 2017-09-14 2023-06-27 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material including Al- and O-containing silicon material

Also Published As

Publication number Publication date
JP5471284B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5471284B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
TWI506838B (en) Nonaqueous electrolyte storage battery and manufacturing method thereof
WO2013118661A1 (en) Lithium-ion battery and method for producing same
JP2007188861A (en) Battery
JP2013540352A (en) Positive electrode active material for lithium ion capacitor and method for producing the same
JP2015053152A (en) Nonaqueous electrolytic secondary battery
JP2012009458A (en) Lithium secondary battery
JP5381199B2 (en) Lithium secondary battery
JP2019091615A (en) Nonaqueous electrolyte secondary battery
JP2017174648A (en) Power storage device
JP2012169132A (en) Electrode material, power storage device and method for utilizing power storage device
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
US8377598B2 (en) Battery having an electrolytic solution containing difluoroethylene carbonate
KR101646994B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
WO2016031085A1 (en) Anode material for lithium ion battery
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
US8808913B2 (en) Composite positive electrode active material, electrode for lithium secondary battery including composite positive electrode active material, and lithium secondary battery
JP2011071017A (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP5272810B2 (en) Capacitors
JP7432607B2 (en) Positive electrode piece, electrochemical device and electronic device including the positive electrode piece
JP6668848B2 (en) Lithium ion secondary battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JP4581503B2 (en) Non-aqueous electrolyte battery
JP2006156021A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees