JP5169181B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5169181B2
JP5169181B2 JP2007310585A JP2007310585A JP5169181B2 JP 5169181 B2 JP5169181 B2 JP 5169181B2 JP 2007310585 A JP2007310585 A JP 2007310585A JP 2007310585 A JP2007310585 A JP 2007310585A JP 5169181 B2 JP5169181 B2 JP 5169181B2
Authority
JP
Japan
Prior art keywords
layer
lithium
silicon oxide
containing silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007310585A
Other languages
Japanese (ja)
Other versions
JP2009135010A (en
Inventor
次郎 入山
竜一 笠原
達治 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2007310585A priority Critical patent/JP5169181B2/en
Publication of JP2009135010A publication Critical patent/JP2009135010A/en
Application granted granted Critical
Publication of JP5169181B2 publication Critical patent/JP5169181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、蓄電デバイスに関するものであり、特にニトロキシドラジカル重合体の酸化還元反応を利用した非水電解液二次電池に関するものである。   The present invention relates to an electricity storage device, and more particularly to a non-aqueous electrolyte secondary battery using a redox reaction of a nitroxide radical polymer.

携帯電話をはじめとした携帯型の電池使用機器の小型軽量化はますます進展し、これらの機器に使用される二次電池に対しても小型化が要求されている。また、ノート型パソコン、携帯電話、電気自動車などにおいては高出力の二次電池が求められている。
携帯型の電池使用機器で広く用いられているリチウムイオン二次電池は、電極反応速度が小さいために大電流の充放電が困難であるという問題がある。
これに対して、ラジカル構造を有する化合物の有する酸化体状態と還元体状態との間の反応を利用した電池は、反応速度が大きいので、エネルギー密度が高く、大容量で安定性に優れているものとされている(例えば、特許文献1ないし3参照)。
特開2002−151084号公報 特開2002−304996号公報 特開2002−298850号公報
The reduction in size and weight of portable battery-powered devices such as mobile phones is advancing more and more, and secondary batteries used in these devices are also required to be downsized. In addition, high output secondary batteries are required for notebook computers, mobile phones, electric vehicles, and the like.
Lithium ion secondary batteries widely used in portable battery-operated devices have a problem that it is difficult to charge and discharge a large current because the electrode reaction rate is low.
In contrast, a battery using a reaction between an oxidant state and a reductant state of a compound having a radical structure has a high reaction speed, and thus has a high energy density, a large capacity, and excellent stability. (For example, see Patent Documents 1 to 3).
JP 2002-151084 A JP 2002-304996 A JP 2002-298850 A

活物質としてラジカル化合物を用いた電池は、ラジカルの速い反応速度を利用したものであるので、大電流密度での充放電が期待されているが、これまで提案されている電池には、電極面積が小さなものであって、大電流密度での充放電特性は充分なものではなかった。本発明は、大きな電極面積を持ち、大電流充放電特性に優れた非水電解液二次電池を提供することを課題とするものである。   A battery using a radical compound as an active material uses a fast reaction rate of radicals, and is expected to be charged / discharged at a large current density. However, the charge / discharge characteristics at a large current density were not sufficient. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a large electrode area and excellent large current charge / discharge characteristics.

本発明は、負極集電体面にリチウム含有酸化ケイ素層が形成されており、正極集電体面には、活性層が配置されており、活性層の一方の面は前記リチウム含有酸化ケイ素層と接しており、前記リチウム含有酸化ケイ素層はLixSiO(xは1から4の範囲)と結着剤からなり、前記活性層は、リチウム含有酸化ケイ素層に接したリチウム含有酸化ケイ素とニトロキシドラジカル重合体が混在した第1層と、ニトロキシドラジカル重合体、導電性付与材、結着剤からなる第2層からなる非水電解液二次電池である。
また、前記ニトロキシドラジカル重合体が化学式(1)〜(8)のいずれかの構造単位を含む前記の非水電解液二次電池である。
In the present invention, a lithium-containing silicon oxide layer is formed on the negative electrode current collector surface, an active layer is disposed on the positive electrode current collector surface, and one surface of the active layer is in contact with the lithium-containing silicon oxide layer. The lithium-containing silicon oxide layer is composed of Li x SiO (x is in the range of 1 to 4) and a binder, and the active layer is composed of lithium-containing silicon oxide in contact with the lithium-containing silicon oxide layer and nitroxide radical weight. It is a nonaqueous electrolyte secondary battery comprising a first layer in which coalescence is mixed and a second layer comprising a nitroxide radical polymer, a conductivity imparting material, and a binder.
The nitroxide radical polymer is the non-aqueous electrolyte secondary battery according to any one of the structural units represented by chemical formulas (1) to (8).

Figure 0005169181
Figure 0005169181

また、前記活性層の第1層は、リチウム含有酸化ケイ素層中に、ニトロキシドラジカル重合体を含有する溶液を侵入させて形成されたものである前記の非水電解液二次電池である。   The first layer of the active layer is the non-aqueous electrolyte secondary battery formed by intruding a solution containing a nitroxide radical polymer into a lithium-containing silicon oxide layer.

本発明によれば、負極集電体側に配置したリチウム含有酸化ケイ素と、ニトロキシドラジカル重合体とが混在した第1層において、ニトロキシドラジカル重合体とリチウム含有酸化ケイ素層とが反応し、それらの界面にセパレータとしての機能を持つ層が形成される。また、ニトロキシドラジカル重合体とリチウム含有酸化ケイ素層との界面には三次元構造をとることができるため、セパレータとしての機能を有する層を介して接する、ニトロキシドラジカル重合体からなる正極と、リチウム含有酸化ケイ素層からなる負極は大きな電極面積を持って接しているので、大電流充放電特性に優れた非水電解液二次電池を得ることができる。またセパレータとしての機能を持つ層が反応によって形成されるので、別体のセパレータを使用する必要がなく非水電解液二次電池の製造工程が大幅に簡略化されるという利点もある。   According to the present invention, in the first layer in which the lithium-containing silicon oxide disposed on the negative electrode current collector side and the nitroxide radical polymer are mixed, the nitroxide radical polymer reacts with the lithium-containing silicon oxide layer, and the interface therebetween. A layer having a function as a separator is formed. In addition, since the interface between the nitroxide radical polymer and the lithium-containing silicon oxide layer can have a three-dimensional structure, a positive electrode made of a nitroxide radical polymer that is in contact with the layer having a function as a separator, Since the negative electrode made of the silicon oxide layer is in contact with a large electrode area, a non-aqueous electrolyte secondary battery excellent in large current charge / discharge characteristics can be obtained. In addition, since a layer having a function as a separator is formed by reaction, there is an advantage that it is not necessary to use a separate separator and the manufacturing process of the non-aqueous electrolyte secondary battery is greatly simplified.

本発明は、安定ラジカルの供給物質として使用するニトロキシラジカル重合体と、負極側に配置したリチウム含有酸化ケイ素層との反応でセパレータとしての機能を有する層を形成することによって、対向して接する正極と負極の界面の表面積を大きくすることが可能となり、また、合成樹脂製の多孔膜からなるセパレータを配置しないので、セパレータによる電気抵抗の増加を防ぐことができるので大電流での充放電特性が良好な二次電池を提供することが可能であることを見いだしたものである。   The present invention makes contact with each other by forming a layer having a function as a separator by a reaction between a nitroxy radical polymer used as a stable radical supply substance and a lithium-containing silicon oxide layer disposed on the negative electrode side. It is possible to increase the surface area of the interface between the positive electrode and the negative electrode, and since a separator made of a synthetic resin porous film is not disposed, an increase in electrical resistance due to the separator can be prevented, so charge / discharge characteristics at a large current Has been found to be able to provide a good secondary battery.

以下に図面を参照して本発明を説明する。
図1は、本発明の非水電解液二次電池の一実施態様を説明する断面図である。
本発明の非水電解液二次電池1は、負極集電体2の表面に、リチウム含有酸化ケイ素層と結着剤からなる負極活性層3を有している。また、負極活性層3に接して正極活性層4が配置されており、正極活性層4の他方の面は正極集電体5が配置されている。
正極活性層4は、負極活性層3に接する面にリチウム含有酸化ケイ素とニトロキシドラジカル重合体とが混在した第1層6を有し、第1層6と正極集電体5との間には、ニトロキシドラジカル重合体からなる第2層7を有している。そして、負極集電体2および正極集電体5を通じて充電および放電が行われる。
The present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view illustrating one embodiment of the nonaqueous electrolyte secondary battery of the present invention.
The non-aqueous electrolyte secondary battery 1 of the present invention has a negative electrode active layer 3 composed of a lithium-containing silicon oxide layer and a binder on the surface of a negative electrode current collector 2. A positive electrode active layer 4 is disposed in contact with the negative electrode active layer 3, and a positive electrode current collector 5 is disposed on the other surface of the positive electrode active layer 4.
The positive electrode active layer 4 has a first layer 6 in which lithium-containing silicon oxide and a nitroxide radical polymer are mixed on the surface in contact with the negative electrode active layer 3, and between the first layer 6 and the positive electrode current collector 5. And a second layer 7 made of a nitroxide radical polymer. Then, charging and discharging are performed through the negative electrode current collector 2 and the positive electrode current collector 5.

以下に、本発明の非水電解液二次電池の各部材について説明する。
第一の集電材料である負極集電体は、導電性が良好で充放電時に集電電極として安定に動作する銅、ニッケル、銀、及びそれらの合金を用いることができる。その形状としては、例えば、箔や平板状、メッシュ状のものを用いることができる。
Hereinafter, each member of the nonaqueous electrolyte secondary battery of the present invention will be described.
The negative electrode current collector that is the first current collecting material can be made of copper, nickel, silver, or an alloy thereof having good conductivity and stably operating as a current collecting electrode during charging and discharging. As the shape, for example, a foil, a flat plate, or a mesh can be used.

負極集電体の表面には、リチウム含有酸化ケイ素層が形成されている。リチウム含有酸化ケイ素層は負極活物質として作用するだけではなく、リチウム含有酸化ケイ素層に含まれているリチウムが正極活物質であるニトロキシドラジカル重合体と反応し、両者が会合する界面にセパレータ機能を持つ層が形成される。
その結果、多孔性の合成樹脂等からなるセパレータを用いることなく、正極と負極との間に電気的短絡が生じることがない。
A lithium-containing silicon oxide layer is formed on the surface of the negative electrode current collector. The lithium-containing silicon oxide layer not only acts as a negative electrode active material, but the lithium contained in the lithium-containing silicon oxide layer reacts with the nitroxide radical polymer, which is the positive electrode active material, to provide a separator function at the interface where both are associated. A layer is formed.
As a result, an electrical short circuit does not occur between the positive electrode and the negative electrode without using a separator made of a porous synthetic resin or the like.

リチウム含有酸化ケイ素層を形成するLixSiOとしては、xが1から4の範囲であることが好ましい。xが1より小さくなると、セパレータ機能を持つ層が形成しにくくなる。一方xが4より大きくなると充放電に伴うリチウム含有酸化ケイ素層の体積変化が大きくなり充放電に伴う容量劣化が大きくなる。 As Li x SiO forming the lithium-containing silicon oxide layer, x is preferably in the range of 1 to 4. When x is smaller than 1, it becomes difficult to form a layer having a separator function. On the other hand, when x is larger than 4, the volume change of the lithium-containing silicon oxide layer accompanying charging / discharging becomes large, and the capacity deterioration accompanying charging / discharging becomes large.

リチウム含有酸化ケイ素化合物は、所定量のリチウムと一酸化ケイ素を真空下またはアルゴン雰囲気下で1200℃に加熱することにより得ることができる。なかでもアルゴン雰囲気下で合成によるものが好ましい。   The lithium-containing silicon oxide compound can be obtained by heating a predetermined amount of lithium and silicon monoxide to 1200 ° C. in a vacuum or an argon atmosphere. Among them, those synthesized by synthesis under an argon atmosphere are preferable.

また、リチウム含有酸化ケイ素は、5μmないし20μmの粒径のものを用いることが好ましく、リチウム含有酸化ケイ素粒子をポリテトラフルオロエチレン等の結着剤と混合して、負極集電体表面に塗布することにより負極活物質層を形成する。リチウム含有酸化ケイ素と結着剤とは、質量比で80/5ないし80/15とすることが好ましく、リチウム含有酸化ケイ素が80/5より少ない場合には、電池のエネルギー密度が小さくなるため好ましくなく、80/5より大きい場合には、集電体と活物質との密着性が低下するため好ましくない。   The lithium-containing silicon oxide preferably has a particle size of 5 μm to 20 μm. The lithium-containing silicon oxide particles are mixed with a binder such as polytetrafluoroethylene and applied to the surface of the negative electrode current collector. Thus, a negative electrode active material layer is formed. The lithium-containing silicon oxide and the binder are preferably 80/5 to 80/15 by mass ratio. When the lithium-containing silicon oxide is less than 80/5, the energy density of the battery is reduced, which is preferable. If it is greater than 80/5, the adhesion between the current collector and the active material is lowered, which is not preferable.

本発明におけるニトロキシドラジカル重合体は、正極活物質として作用する。ニトロキシドラジカル重合体としては、還元状態において以下の化学式で表されるニトロキシドラジカル部分構造をとり、酸化状態においてオキソアンモニウムカチオン(ニトロキシルカチオン)部分構造をとるニトロキシドラジカル重合体であり、酸化還元状態間で下記のように電子の授受を行う反応により、正極活物質として作用する材料である。   The nitroxide radical polymer in the present invention acts as a positive electrode active material. The nitroxide radical polymer is a nitroxide radical polymer having a nitroxide radical partial structure represented by the following chemical formula in the reduced state and an oxoammonium cation (nitroxyl cation) partial structure in the oxidized state. Thus, it is a material that acts as a positive electrode active material by a reaction for exchanging electrons as described below.

Figure 0005169181
Figure 0005169181

ニトロキシドラジカル重合体としては、平衡状態におけるスピン濃度が1021spin/g以上である状態が1秒以上継続されるものであることが好ましい。本発明の非水電解液二次電池として好適なニトロキシドラジカル重合体として好適な構成単位を化学式(1)から(8)に示す。 The nitroxide radical polymer is preferably such that the state where the spin concentration in the equilibrium state is 10 21 spin / g or more is continued for 1 second or longer. Structural units suitable as nitroxide radical polymers suitable as the nonaqueous electrolyte secondary battery of the present invention are shown in chemical formulas (1) to (8).

Figure 0005169181
Figure 0005169181

これらのニトロキシドラジカル重合体では、それぞれのラジカルが近傍の嵩高い置換基による立体障害や、共鳴構造により安定化されているため、平衡状態におけるスピン濃度が1021spin/g以上である状態が1秒以上継続可能である。
またポリマー主鎖はポリ(メタ)アクリル酸、ポリアルキル(メタ)アクリレート類、ポリビニルエーテル類、ポリ(メタ)アクリルアミド類ポリマーが耐酸化性及び耐還元性等の電気化学的な安定性が良好であるので特に好ましい。
In these nitroxide radical polymers, since each radical is stabilized by a steric hindrance by a nearby bulky substituent or a resonance structure, the spin concentration in an equilibrium state is 10 21 spin / g or more. Can continue for more than a second.
The polymer main chain is poly (meth) acrylic acid, polyalkyl (meth) acrylates, polyvinyl ethers, and poly (meth) acrylamide polymers have good electrochemical stability such as oxidation resistance and reduction resistance. This is particularly preferable.

また、ニトロキシドラジカル重合体以外に、導電性を向上させるためにアセチレンブラック、ケッチェンブッラク等のカーボンブラックや気相成長炭素繊維(VGCF)、メソフェーズピッチ炭素繊維、カーボンナノチューブ等の導電付与剤を添加することが好ましい。
また集電材料との結着性を高めるために、ポリフッ化ビニリデン、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体等の結着剤を添加しても良い
In addition to nitroxide radical polymers, carbon black such as acetylene black and ketjen black, vapor grown carbon fiber (VGCF), mesophase pitch carbon fiber, carbon nanotubes and other conductivity-imparting agents are added to improve conductivity. It is preferable to do.
In order to enhance the binding property with the current collecting material, a binder such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer may be added.

また、本発明の非水電解液二次電池においては、正極活性層の第1層にリチウム含有酸化ケイ素とニトロキシドラジカル重合体とが混在した層が形成されている。この層はリチウム含有酸化ケイ素が含まれた多孔性層の表面近傍の空隙部にニトロキシドラジカル重合体が侵入して形成されたものであって、3次元構造状の界面を有するものである。
ニトロキシドラジカル重合体は、N−メチル−ピロリドン、アセトン、アセトニトリル等の溶剤に溶かして溶液粘度を調整して、ニトロキシドラジカル重合体が、リチウム含有酸化ケイ素層の表面層のみに留まるように含浸させることが好ましい。
In the nonaqueous electrolyte secondary battery of the present invention, a layer in which lithium-containing silicon oxide and a nitroxide radical polymer are mixed is formed in the first positive electrode active layer. This layer is formed by penetration of a nitroxide radical polymer into a void near the surface of a porous layer containing lithium-containing silicon oxide, and has a three-dimensional structured interface.
The nitroxide radical polymer should be dissolved in a solvent such as N-methyl-pyrrolidone, acetone or acetonitrile to adjust the solution viscosity, and impregnated so that the nitroxide radical polymer stays only on the surface layer of the lithium-containing silicon oxide layer. Is preferred.

ニトロキシドラジカル重合体溶液の粘度は5〜0.01Pa・sの範囲にあることが望ましく、粘度が5Pa・sを超える場合、空隙部に溶液が浸入するまでに時間がかかり過ぎ望ましくない。一方、粘度が0.01Pa・s未満ではニトロキシドラジカル重合体溶液がリチウム含有酸化ケイ素層の深部にまで到達するので含浸量の調整が困難となる。
このように、本発明の非水電解液二次電池においては、負極活物質層と正極活物質層との界面にセパレータ機能を持つ層が形成されるので、界面の形状にかかわらず、電気的な短絡は生じない。この接触部の3次元構造を微細化することにより、正極および負極の有効な面積を増大させることができる。
The viscosity of the nitroxide radical polymer solution is desirably in the range of 5 to 0.01 Pa · s, and when the viscosity exceeds 5 Pa · s, it takes an excessive amount of time until the solution enters the void, which is not desirable. On the other hand, when the viscosity is less than 0.01 Pa · s, the nitroxide radical polymer solution reaches the deep part of the lithium-containing silicon oxide layer, so that it is difficult to adjust the impregnation amount.
Thus, in the non-aqueous electrolyte secondary battery of the present invention, a layer having a separator function is formed at the interface between the negative electrode active material layer and the positive electrode active material layer. No short circuit occurs. By reducing the three-dimensional structure of the contact portion, the effective area of the positive electrode and the negative electrode can be increased.

また、正極活性層の第1層上に第2層の材料を塗布してもよいし、正極活性層の第2層を正極集電体上に塗布し、その後、正極活性層の第1層を形成した負極とを貼り合わせても良い。   Further, the material of the second layer may be applied on the first layer of the positive electrode active layer, or the second layer of the positive electrode active layer is applied on the positive electrode current collector, and then the first layer of the positive electrode active layer. The negative electrode formed with may be bonded together.

また、活性層第2層中の導電性物質とLixSiO(xは1から4の範囲)とが直接接触することを避けるため、導電性物質を含まないニトロキシドラジカル重合体を主とする層が実質的に存在するように、ニトロキシドラジカル重合体を塗布して活性層第1層を形成する場合に、LixSiO(xは1から4の範囲)が表面に露出しないように塗布することが必要である。 Further, in order to avoid direct contact between the conductive substance in the second active layer and Li x SiO (x is in the range of 1 to 4), a layer mainly composed of a nitroxide radical polymer containing no conductive substance. So that Li x SiO (x is in the range of 1 to 4) is not exposed to the surface when the first layer of the active layer is formed by applying the nitroxide radical polymer so that the is necessary.

また、本発明において正極集電体には、充放電環境において電気化学的に安定した、アルミニウム、ニッケル、及びそれらの合金が好ましい。その形状としては、例えば、箔や平板状、メッシュ状のものを用いることができる。また前記ニトロキシドラジカル重合体を主とする第2層の表面にアルミニウム、ニッケル、及びそれらの合金を蒸着、スパッタ等の方法で薄膜を形成し、正極集電体してもよい。   In the present invention, the positive electrode current collector is preferably made of aluminum, nickel, or an alloy thereof that is electrochemically stable in a charge / discharge environment. As the shape, for example, a foil, a flat plate, or a mesh can be used. Alternatively, a positive electrode current collector may be formed by forming a thin film by a method such as vapor deposition or sputtering of aluminum, nickel, or an alloy thereof on the surface of the second layer mainly composed of the nitroxide radical polymer.

非水電解液材料としては、本発明の非水電解液二次電池の動作電位範囲において安定な非水電解液を使用することができ、リチウムイオン電池等において使用されている非水電解液を利用することができるが、電解質は、20℃で10-5〜10-1S/cmのイオン伝導性を有していることが望ましく、支持電解質塩を溶媒に溶解した電解液が最も好ましい。 As the non-aqueous electrolyte material, a non-aqueous electrolyte that is stable in the operating potential range of the non-aqueous electrolyte secondary battery of the present invention can be used, and the non-aqueous electrolyte used in a lithium ion battery or the like can be used. Although the electrolyte can be utilized, it is desirable that the electrolyte has an ionic conductivity of 10 −5 to 10 −1 S / cm at 20 ° C., and an electrolytic solution in which a supporting electrolyte salt is dissolved in a solvent is most preferable.

溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート)等の環状カーボネート類、とジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類やγ−ブチロラクトン等のラクトン類を二種以上混合したものが好ましい。
支持電解質塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、等のリチウム塩が挙げられる。これら支持電解質塩は1種のみ用いることも、二種以上用いることもできる。その他の電解液としては4級アンモニウム−イミド塩等のイオン性液体を用いることができる。
Solvents include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and vinylene carbonate), chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, and lactones such as γ-butyrolactone. What mixed 2 or more types is preferable.
Examples of the supporting electrolyte salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 2 ) and the like. These supporting electrolyte salts can be used alone or in combination of two or more. As other electrolytic solutions, ionic liquids such as quaternary ammonium-imide salts can be used.

本発明の非水電解液二次電池の形状および外観については特に限定されるものではなく、従来公知のものを採用することができる。このような形状としては、例えば、電極積層体または巻回体を、金属ケース、樹脂ケース、もしくはアルミニウム箔などの金属箔と合成樹脂フィルムとからなるラミネートフィルム等によって封止したものが挙げられる。また、電池の外観としては、円筒型、角型、コイン型、シート型等が挙げられる。
また、巻回型、複数積層型電池では両極の電極が接触しないようにするためにセパレータを介在させて積層、あるいは巻回することが必要となる。また、両端の集電体が接触しないようにするために一方の集電体の端部を、ポリイミド樹脂材等によって絶縁処理することが好ましい。
The shape and appearance of the nonaqueous electrolyte secondary battery of the present invention are not particularly limited, and conventionally known ones can be employed. Examples of such a shape include a case where an electrode laminate or a wound body is sealed with a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film. Examples of the external appearance of the battery include a cylindrical shape, a square shape, a coin shape, and a sheet shape.
Further, in a wound type or multi-layered type battery, it is necessary to stack or wind by interposing a separator in order to prevent the electrodes of both electrodes from contacting each other. In order to prevent the current collectors at both ends from coming into contact with each other, it is preferable to insulate the end of one current collector with a polyimide resin material or the like.

以下、本発明を実施例、比較例を示して説明する。
実施例1
リチウム1.36gと一酸化ケイ素(高純度化学製)8.64gを配合し、アルゴン雰囲気下で電気炉にて1200℃で加熱後、液体窒素で冷却した金属板に挟んで急冷した後に、ボールミルによって粉砕し、更に粒度調整を行って個数平均粒径10μmのリチウム含有酸化ケイ素(LiSiO)粒子を作製した。得られたリチウム含有酸化ケイ素粒子と結着剤としてポリフッ化ビニリデン(クレハ製PVDF#1100)を9:1の質量比で混錬しペースト状にし、それを厚さ10μmの銅箔に圧着して厚さ120μmのリチウム含有酸化ケイ素化合物層を形成した。
次いで、リチウム含有酸化ケイ素化合物層表面に、前記化学式(1)で表される繰り返し単位からなる、分子量22000のポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)(PTMA)ホモポリマー物質とアセトンとを混合した溶液(PTMA/アセトン=1/15、溶液粘度:1Pa・s)を滴下し、層表面から70μmの深さまで含浸させた後乾燥し、リチウム含有酸化ケイ素化合物とホモポリマー物質とが混在した正極活性層の第1層を形成した。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
Example 1
After blending 1.36 g of lithium and 8.64 g of silicon monoxide (manufactured by High-Purity Chemical), heating at 1200 ° C. in an electric furnace under an argon atmosphere, quickly sandwiching between metal plates cooled with liquid nitrogen, Then, the particle size was adjusted to produce lithium-containing silicon oxide (LiSiO) particles having a number average particle size of 10 μm. The obtained lithium-containing silicon oxide particles and polyvinylidene fluoride (PVDF # 1100 made by Kureha) as a binder were kneaded at a mass ratio of 9: 1 to form a paste, which was pressed onto a copper foil having a thickness of 10 μm. A lithium-containing silicon oxide compound layer having a thickness of 120 μm was formed.
Next, on the surface of the lithium-containing silicon oxide compound layer, poly (2,2,6,6-tetramethylpiperidinoxymethacrylate) (PTMA) homopolymer having a molecular weight of 22000, which is composed of the repeating unit represented by the chemical formula (1). A solution in which a polymer substance and acetone are mixed (PTMA / acetone = 1/15, solution viscosity: 1 Pa · s) is dropped, impregnated to a depth of 70 μm from the surface of the layer, and then dried to form a homogenous lithium-containing silicon oxide compound and A first layer of a positive electrode active layer mixed with a polymer substance was formed.

次いで、正極活性層の第1層の上に、前記のPTMA、導電付与剤として黒鉛化気相成長炭素繊維、結着剤としてポリフッ化ビニリデンを5:4:1の質量比で配合して、それらをn−メチルピロリドンと混合したスラリーを塗布した後、乾燥して、正極活性層の第2層を形成した。この正極活性層の第2層表面に厚さ20μmの正極集電体のアルミニウム箔を張り合わせ、図1に示すものと同様の積層体を得た。
この積層体を直径14mmの円盤状に切り抜き、ステンレス製の外装缶に収納し、電解液として1mol/lのLiPF6支持電解質塩を含むプロピレンカーボネートを注入後、封止してコイン型二次電池を作製し、以下の電池特性試験方法によって電池の特性を評価した。
Next, on the first layer of the positive electrode active layer, the above PTMA, graphitized vapor-grown carbon fiber as a conductivity-imparting agent, and polyvinylidene fluoride as a binder at a mass ratio of 5: 4: 1, A slurry obtained by mixing them with n-methylpyrrolidone was applied and then dried to form a second layer of the positive electrode active layer. An aluminum foil of a positive electrode current collector having a thickness of 20 μm was bonded to the surface of the second layer of the positive electrode active layer to obtain a laminate similar to that shown in FIG.
This laminated body is cut out into a disk shape having a diameter of 14 mm, accommodated in a stainless steel outer can, injected with propylene carbonate containing 1 mol / l LiPF 6 supporting electrolyte salt as an electrolytic solution, sealed, and coin-type secondary battery The battery characteristics were evaluated by the following battery characteristic test method.

電池特性試験
作製したコイン型二次電池を放電停止電圧2V、充電停止電圧4Vの電圧範囲で、定電流充放電を行った。充放電試験は20℃に設定した恒温槽内で行った。
0.1mAの定電流で4.2Vまで充電した後、3.0Vまで放電することによって電池の容量を決定した。次いで、充電電流は1Cで行い。放電試験を1Cの電流と100Cの電流で行った。試験結果を表1に示す。
Battery characteristic test The manufactured coin-type secondary battery was charged and discharged at a constant current in a voltage range of a discharge stop voltage of 2 V and a charge stop voltage of 4 V. The charge / discharge test was performed in a thermostat set at 20 ° C.
The battery capacity was determined by charging to 4.2 V at a constant current of 0.1 mA and then discharging to 3.0 V. Next, the charging current is 1C. The discharge test was conducted at a current of 1C and a current of 100C. The test results are shown in Table 1.

実施例2
実施例1において活性層第1層および第2層に使用された化学式(1)で表される繰り返し単位からなるホモポリマー物質を、前記化学式(2)で表される繰り返し単位からなるポリ(2,2,6,6−テトラメチルピペリジノキシアクリレート)(PTAC)ホモポリマー物質に変更した以外は実施例1と同様にコイン型二次電池を作製し、実施例1と同様に試験を行いその験結果を表1に示す。
Example 2
In Example 1, the homopolymer substance composed of the repeating unit represented by the chemical formula (1) used for the first layer and the second layer of the active layer is converted into the poly (2) composed of the repeating unit represented by the chemical formula (2). , 2,6,6-tetramethylpiperidinoxyacrylate) (PTAC) except that it was changed to a homopolymer material, a coin-type secondary battery was prepared in the same manner as in Example 1 and tested in the same manner as in Example 1. The test results are shown in Table 1.

実施例3
実施例1において活性層第1層および第2層に使用された化学式(1)で表される繰り返し単位からなるホモポリマー物質を、前記化学式(3)で表される繰り返し単位からなるポリ(2,2,6,6−テトラメチルピペリジノキシビニル)ホモポリマー物質に変更した以外は実施例1と同様にコイン型二次電池を作製し、実施例1と同様に試験を行いその験結果を表1に示す。
Example 3
In Example 1, the homopolymer substance composed of the repeating unit represented by the chemical formula (1) used for the first layer and the second layer of the active layer is converted into the poly (2) composed of the repeating unit represented by the chemical formula (3). , 2,6,6-tetramethylpiperidinoxyvinyl) homopolymer material, a coin-type secondary battery was prepared in the same manner as in Example 1 and tested in the same manner as in Example 1. Is shown in Table 1.

実施例4
実施例1のリチウム含有酸化ケイ素をLi4SiOに変更した以外は実施例1と同様にコイン型二次電池を作製し、実施例1と同様に試験を行いその験結果を表1に示す。
Example 4
A coin-type secondary battery was prepared in the same manner as in Example 1 except that the lithium-containing silicon oxide in Example 1 was changed to Li 4 SiO. The test was performed in the same manner as in Example 1, and the test results are shown in Table 1.

比較例1
実施例1の負極をLi−Si合金箔(合金中のSiの原子組成比は30%)に変更し、て、その表面に実施例1で使用したニトロキシドラジカル重合体含有溶液を塗布、乾燥して厚さ120μmの層を形成した。
Comparative Example 1
The negative electrode of Example 1 was changed to Li-Si alloy foil (the atomic composition ratio of Si in the alloy was 30%), and the nitroxide radical polymer-containing solution used in Example 1 was applied to the surface and dried. Thus, a layer having a thickness of 120 μm was formed.

次いで、実施例1で使用した、前記のPTMA、導電付与剤として黒鉛化気相成長炭素繊維、結着剤としてポリフッ化ビニリデンを5:4:1の質量比で配合して、それらをn−メチルピロリドンと混合したスラリーを塗布した後、乾燥して、正極活性層の第2層を形成した点を除き実施例1と同様にコイン型二次電池を作製し、実施例1と同様に試験を行ったが、電池として動作しなかった。   Next, the PTMA used in Example 1, graphitized vapor-grown carbon fiber as a conductivity-imparting agent, and polyvinylidene fluoride as a binder at a mass ratio of 5: 4: 1 were mixed together. After applying a slurry mixed with methylpyrrolidone and drying, a coin-type secondary battery was produced in the same manner as in Example 1 except that the second layer of the positive electrode active layer was formed, and tested in the same manner as in Example 1. Did not work as a battery.

比較例2
実施例1で用いた個数平均粒径10μmのリチウム含有酸化ケイ素(LiSiO)粒子と結着剤としてポリテトラフルオロエチレンを9:1の質量比で混錬しペースト状にし、それを厚さ10μmの銅箔に圧着して厚さ120μmのリチウム含有酸化ケイ素化合物層を形成して負極電極を作製した。
Comparative Example 2
The lithium-containing silicon oxide (LiSiO) particles having a number average particle diameter of 10 μm used in Example 1 and polytetrafluoroethylene as a binder were kneaded at a mass ratio of 9: 1 to form a paste, which was 10 μm thick. A negative electrode was prepared by pressure bonding to a copper foil to form a 120 μm thick lithium-containing silicon oxide compound layer.

次いで、前記化学式(1)で表される繰り返し単位からなる、分子量22000のポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)(PTMA)ホモポリマー物質、導電付与剤として黒鉛化気相成長炭素繊維、結着剤としてポリフッ化ビニリデンを5:4:1の質量比で配合して、それらをn−メチルピロリドンと混合したスラリーを厚さ20μmのアルミニウム箔上に塗布し乾燥したものを正極とし、この正負極間に厚さ25μmのポリプロピレンからなるセパレータをはさみ、積層体を得た。
この積層体を用いて実施例1と同様にコイン型二次電池を作製し、実施例1と同様に試験を行いその験結果を表1に示す。
Next, a poly (2,2,6,6-tetramethylpiperidinoxymethacrylate) (PTMA) homopolymer substance having a molecular weight of 22000 comprising the repeating unit represented by the chemical formula (1), graphitized as a conductivity-imparting agent Vapor-grown carbon fiber and polyvinylidene fluoride as a binder were blended at a mass ratio of 5: 4: 1, and a slurry obtained by mixing them with n-methylpyrrolidone was applied onto an aluminum foil having a thickness of 20 μm and dried. This was used as a positive electrode, and a separator made of polypropylene having a thickness of 25 μm was sandwiched between the positive and negative electrodes to obtain a laminate.
Using this laminate, a coin-type secondary battery was produced in the same manner as in Example 1. The test was conducted in the same manner as in Example 1, and the test results are shown in Table 1.

表1
100C放電容量/1C放電容量 (%)
実施例1 71
実施例2 66
実施例3 69
実施例4 56
比較例1 −
比較例2 13
Table 1
100C discharge capacity / 1C discharge capacity (%)
Example 1 71
Example 2 66
Example 3 69
Example 4 56
Comparative Example 1
Comparative Example 2 13

本発明の非水電解液二次電池は、ニトロキシドラジカル重合体とリチウム含有酸化ケイ素層とが接する面に、リチウム含有酸化ケイ素層に浸透したニトロキシドラジカル重合体によってセパレータと同様の界面が形成されているので、セパレータを配置する必要がなく、またニトロキシドラジカル重合体とリチウム含有酸化ケイ素層とが表面積が大きな界面を形成しているために、高レートによる充放電が可能な非水電解液二次電池を提供することができる。   In the nonaqueous electrolyte secondary battery of the present invention, the same interface as the separator is formed on the surface where the nitroxide radical polymer and the lithium-containing silicon oxide layer are in contact with each other by the nitroxide radical polymer that has penetrated the lithium-containing silicon oxide layer. Therefore, there is no need to place a separator, and since the nitroxide radical polymer and the lithium-containing silicon oxide layer form an interface with a large surface area, a non-aqueous electrolyte secondary solution that can be charged and discharged at a high rate A battery can be provided.

本発明の非水電解液二次電池を説明する断面図である。It is sectional drawing explaining the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1…非水電解液二次電池、2…負極集電体、3…負極活性層、4…正極活性層、5…正極集電体、6…第1層、7…第2層   DESCRIPTION OF SYMBOLS 1 ... Non-aqueous electrolyte secondary battery, 2 ... Negative electrode collector, 3 ... Negative electrode active layer, 4 ... Positive electrode active layer, 5 ... Positive electrode collector, 6 ... 1st layer, 7 ... 2nd layer

Claims (3)

負極集電体面にリチウム含有酸化ケイ素層が形成されており、正極集電体面には、活性層が配置されており、活性層の一方の面は前記リチウム含有酸化ケイ素層と接しており、前記リチウム含有酸化ケイ素層はLixSiO(xは1から4の範囲)と結着剤からなり、前記活性層は、リチウム含有酸化ケイ素層に接したリチウム含有酸化ケイ素とニトロキシドラジカル重合体が混在した第1層と、ニトロキシドラジカル重合体、導電性付与材、結着剤からなる第2層からなることを特徴とする非水電解液二次電池。 A lithium-containing silicon oxide layer is formed on the negative electrode current collector surface, an active layer is disposed on the positive electrode current collector surface, and one surface of the active layer is in contact with the lithium-containing silicon oxide layer, The lithium-containing silicon oxide layer is composed of Li x SiO (x is in the range of 1 to 4) and a binder, and the active layer is a mixture of lithium-containing silicon oxide in contact with the lithium-containing silicon oxide layer and a nitroxide radical polymer. A non-aqueous electrolyte secondary battery comprising a first layer and a second layer comprising a nitroxide radical polymer, a conductivity-imparting material, and a binder. 前記ニトロキシドラジカル重合体が化学式(1)〜(8)のいずれかの構造単位を含むことを特徴とする請求項1に記載の非水電解液二次電池。
Figure 0005169181
The non-aqueous electrolyte secondary battery according to claim 1, wherein the nitroxide radical polymer includes a structural unit represented by any one of chemical formulas (1) to (8).
Figure 0005169181
前記活性層の第1層は、リチウム含有酸化ケイ素層中に、ニトロキシドラジカル重合体を含有する溶液を侵入させて形成されたものであることを特徴とする請求項1または2記載の非水電解液二次電池。   3. The non-aqueous electrolysis according to claim 1, wherein the first layer of the active layer is formed by allowing a solution containing a nitroxide radical polymer to enter a lithium-containing silicon oxide layer. Liquid secondary battery.
JP2007310585A 2007-11-30 2007-11-30 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5169181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310585A JP5169181B2 (en) 2007-11-30 2007-11-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310585A JP5169181B2 (en) 2007-11-30 2007-11-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009135010A JP2009135010A (en) 2009-06-18
JP5169181B2 true JP5169181B2 (en) 2013-03-27

Family

ID=40866696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310585A Expired - Fee Related JP5169181B2 (en) 2007-11-30 2007-11-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5169181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180134615A (en) 2017-06-09 2018-12-19 주식회사 엘지화학 Positive electrode for secondary battery, method for preparing the same, and lithium secondary battery comprising the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008586A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
FR3005207B1 (en) * 2013-04-24 2016-06-24 Batscap Sa POSITIVE ELECTRODE FOR LITHIUM BATTERY
CN109196000B (en) 2016-06-02 2021-04-30 赢创运营有限公司 Method for producing electrode material
JP6536515B2 (en) * 2016-08-15 2019-07-03 トヨタ自動車株式会社 Lithium ion battery and method of manufacturing lithium ion battery
WO2018046387A1 (en) 2016-09-06 2018-03-15 Evonik Degussa Gmbh Method for the improved oxidation of secondary amine groups
KR102091482B1 (en) * 2018-08-29 2020-03-20 한국생산기술연구원 Method of manufacturing oxygen-deficient crystalline lithium silicon oxide for all-solid battery anode, method of manufacturing anode comprising same and method of manufacturing all-solid lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3619657A1 (en) * 1986-06-11 1987-12-17 Basf Ag SEPARATOR-FREE ELECTROCHEMICAL CELL
JPH01243382A (en) * 1988-03-24 1989-09-28 Nitto Denko Corp Conducting organic polymer cell
JPH08130011A (en) * 1994-09-05 1996-05-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
US9443661B2 (en) * 2004-02-16 2016-09-13 Nec Corporation Power storage device having a nitroxyl polymer in a cathode and a lithium or lithium alloy anode
JP5167584B2 (en) * 2005-12-01 2013-03-21 日本電気株式会社 Non-aqueous electrolyte secondary battery
JP5066805B2 (en) * 2005-12-12 2012-11-07 日本電気株式会社 Electricity storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180134615A (en) 2017-06-09 2018-12-19 주식회사 엘지화학 Positive electrode for secondary battery, method for preparing the same, and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP2009135010A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP1995817B1 (en) Lithium rechargeable battery using ionic liquid
JP5471284B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
JP6841971B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
CN100583541C (en) Battery
WO2003044882A1 (en) Electrode active material, electrode, lithium ion secondary cell, method for producing electrode active material, and method for producing lithium ion secondary cell
JP2016506055A (en) Cathode active material for lithium-sulfur battery and method for producing the same
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
CN101494302B (en) Battery
JP2015072805A (en) Nonaqueous secondary battery
JP4632020B2 (en) Non-aqueous electrolyte secondary battery
JP2019091615A (en) Nonaqueous electrolyte secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2005209498A6 (en) Non-aqueous electrolyte secondary battery
US7919208B2 (en) Anode active material and battery
JP5167584B2 (en) Non-aqueous electrolyte secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
WO2018135624A1 (en) Electrode and secondary battery using radical polymer
JP2018206734A (en) Lithium ion secondary battery and manufacturing method thereof
JP2009277432A (en) Electrode for secondary battery, manufacturing method thereof, and secondary battery
JP7115318B2 (en) Electrodes and secondary batteries using radical polymers
JP5279362B2 (en) Nonaqueous electrolyte secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
CN115411238A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees