JP2011090149A - 操作訓練用教育システム - Google Patents
操作訓練用教育システム Download PDFInfo
- Publication number
- JP2011090149A JP2011090149A JP2009243475A JP2009243475A JP2011090149A JP 2011090149 A JP2011090149 A JP 2011090149A JP 2009243475 A JP2009243475 A JP 2009243475A JP 2009243475 A JP2009243475 A JP 2009243475A JP 2011090149 A JP2011090149 A JP 2011090149A
- Authority
- JP
- Japan
- Prior art keywords
- scenario
- command
- state
- unit
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
Abstract
【課題】顧客カスタマイズを施して運用する機器の教育システムにおいて、顧客カスタマイズ後の機器動作をシステムに反映し、一度実機で操作された機能について確実にシミュレートする。
【解決手段】システムのUI操作によって生ずるコマンドに対し、シミュレーションシステム24は、システム状態を保持するシミュレーション制御部27の状態及びコマンドの種類を条件に、シナリオ管理部29の保持シナリオを選択し、シナリオ実行部28が選択したシナリオを実行することにより応答する。
【選択図】図2
【解決手段】システムのUI操作によって生ずるコマンドに対し、シミュレーションシステム24は、システム状態を保持するシミュレーション制御部27の状態及びコマンドの種類を条件に、シナリオ管理部29の保持シナリオを選択し、シナリオ実行部28が選択したシナリオを実行することにより応答する。
【選択図】図2
Description
本発明は、機器の運転操作を行う操作者に対し、操作に係る技術訓練を支援する操作訓練用教育システムに関するものである。
半導体製造装置に代表されるFAシステムでは、生産現場毎にカスタマイズが施される。例えば、生産現場では様々な装置を組み合わせて一連のシステムを構築するため、半導体露光装置の前工程や後工程の装置の種類や機種に依存して、システムのパラメータ設定が異なる。また、生産対象の半導体の種別や現場のワークフローチャート図に依存して、UI(ユーザインタフェイス)がカスタマイズされ、装置のハードウェア構成に依存して、設定可能な項目やUI構成が変化する。このように様々な要因で、生産現場毎にカスタマイズが施される結果、UI操作は生産現場毎に独自のものとなり、生産現場にマッチした操作技術訓練が必要となる。
一方、生産現場でのシステム運転の操作の学習は、対象装置のシミュレーションシステムを用いて、操作の体験をすることが一般的に行われている。
従来のシミュレーションシステムの構成は、次の2つの方法が提案されている。
(1)実機と同様の動作仕様に基づいて、シミュレータソフトェアをプログラミングする方法。
(2)予めシナリオを用意し、シナリオ実行プログラムがシナリオに基づく動作を実施する方法。
(1)については、装置の動作モデルを作成しておき、モデルからシミュレータ用のソースコードを自動生成する方法が提案されている。(2)については、例えば特許文献1のように予め複数のシナリオを用意し、用途に応じてシナリオを取り代えながら動作を模擬する方式が提案されている。更に、この場合には、予め用意したシナリオの動作から逸脱した場合でも、他に実行継続可能なシナリオがあれば継続して動作するシミュレータ装置がある。例えば特許文献2のように、複数の動作シナリオを予め登録し、動作条件に応じたシナリオを用いたシミュレーションテスト方式及びシミュレーションテスト装置の従来技術が提案されている。
このように、従来のシミュレーションシステムでは、予め想定している動作をプログラミングすることによって、或いはシミュレーションのシナリオを用意することによって基本構成に対応した動作模擬が可能である。
上述した従来のシミュレーションシステムは、シミュレータのソフトウェアやシナリオが変更されないことを前提としており、想定した操作者の操作に対する応答を再現するだけである。このようなシミュレータでの操作訓練は、装置のカスタマイズが施される半導体露光装置のような機器においては、充分な操作訓練が実施できず不適切である。そのため、操作者の習熟度を向上することが難しい。
一方、シミュレーションシステムに顧客カスタマイズ仕様を実装する場合は、カスタマイズ情報が顧客先の生産活動に関する秘密情報であるため、シミュレーション開発者が正確にカスタマイズ情報を把握することができないという問題がある。そのため、シミュレーションシステムにカスタマイズ後の動作仕様を盛り込むことができない。
本発明の目的は、上述の問題点を解消し、機器のカスタマイズ後の動作仕様に対応し、機器操作の習熟度向上を実現する操作訓練用教育システムを提供することにある。
上記目的を達成するための本発明に係る操作訓練用教育システムは、実機と同様の操作が可能なユーザインタフェイスを持つ操作手段と、動作履歴からシナリオを作成し、該シナリオを管理するシナリオ管理手段と、前記シナリオを実行して実機の応答を模擬するシナリオ実行手段と、状態マシンの状態に応じて、ユーザの操作に対して応答するシミュレーション制御手段とから成ることを特徴とする。
本発明に係る操作訓練用教育システムによれば、操作部から伝達されるコマンド種とシステムの状態に応じて、実機の動作履歴から作成されるシナリオを選択実行することにより、機器の応答を動的に作成する。従って、一度実機で操作された機能については、同様の応答動作を実現することができ、実際の機器応答と同様の操作が可能になり、実機操作と同様の操作訓練環境が得られ、操作者の習熟度が向上する。
本発明を図示の実施例に基づいて詳細に説明する。
図1は本実施例の教育システムの対象とする半導体露光装置のブロック回路構成図である。半導体露光装置を含む半導体製造ラインは、半導体露光装置1やコーターデベロッパ2、エッジング装置3、複数の操作端末部4の各種装置から構成されている。これらの各装置はネットワークNにより接続され、半導体露光装置1の生産ラインは、制御アプリケーションAを搭載の集中管理ホストコンピュータ5によって制御されている。
図1は本実施例の教育システムの対象とする半導体露光装置のブロック回路構成図である。半導体露光装置を含む半導体製造ラインは、半導体露光装置1やコーターデベロッパ2、エッジング装置3、複数の操作端末部4の各種装置から構成されている。これらの各装置はネットワークNにより接続され、半導体露光装置1の生産ラインは、制御アプリケーションAを搭載の集中管理ホストコンピュータ5によって制御されている。
半導体露光装置1には、露光に伴う各種処理を実行するメカ/ハードウェア11が設けられている。また、このメカ/ハードウェア11を制御するハードウェア制御部12、露光処理や計測処理をジョブとして制御するジョブ制御部13、装置状態の監視、露光処理等を指示しアプリケーションを有する操作制御部14が設けられている。更に、集中管理ホストコンピュータ5の生産ライン全体を統括する制御アプリケーションAによる指示を受けて動作するオンライン制御部15、各種動作の履歴を保持する動作履歴部16が設けられている。
また、半導体露光装置1に接続された操作端末部4は複数の作業者が装置を操作することを目的に、操作制御部14と同等のアプリケーションを搭載している。複数の操作端末部4が接続された構成において、任意の一端末が装置の制御を占有することも可能であり、これを占有権と云い、この占有権は獲得すべき端末が占有コマンドを装置に対して発行することにより実現する。
操作者が露光処理や各種計測処理、装置状態の取得を目的に、操作制御部14のGUI(グラフィカルユーザインタフェイス)を操作すると、操作内容はコマンドに変換され、ジョブ制御部13に送信される。ジョブ制御部13はこのコマンドを解析しジョブとして実行する。ジョブは状態を持っており、ジョブ実行状況に応じて実行中、エラー解除待ち、終了処理中のように状態が推移する。ジョブ制御部13のジョブ実行によって、ハードウェア制御部12がハードウェアレジスタに値を設定し、割り込み処理やデータ転送処理などを行う。
半導体露光装置1が保持する動作履歴部16は、障害発生時の原因解析データや、消耗品の交換時期予測のための予測データとして利用される。動作履歴部16には、システム状態や、操作制御部14及び制御アプリケーションAからの機能実行指示内容と、それに伴う応答やイベント内容がタイムスタンプと共に保持/管理されている。
図2は半導体露光装置1に対する操作訓練用教育システムのブロック回路構成図である。操作訓練用教育システムは、対象機器の動作を模擬するソフトウェアを動作させるホストコンピュータ20、操作者が操作するキーボードやマウスなどの入力装置21、操作者にシステム状態を可視化するディスプレイなどの表示装置22から構成されている。
ホストコンピュータ20上で動作するソフトウェアの構成は、GUI操作を制御する操作制御部23とシミュレーションシステム24とから構成され、操作制御部23とシミュレーションシステム24は通信によって情報伝達を行う。操作制御部23は操作訓練対象の半導体露光装置1と同様のUI表示とUI操作が可能で、表示変更制御を行う表示制御部25と、コマンド授受を制御するコマンド制御部26から成っている。シミュレーションシステム24はシミュレーション制御部27、シナリオ実行部28、シナリオ管理部29から構成されている。
図3に示す表示制御部25は、制御部25aとGUIレイアウト25b、GUI部品25cから構成されている。制御部25aは操作者の指示やシステム状態に応じてGUIレイアウト25b及びGUI部品25cの色やテキスト情報といった属性情報を変更する。GUIレイアウト25bはGUI部品25cの組み合わせ方法や配置方法を定義しており、露光処理の進捗状況やステージ状態、ウェハ位置などの表示用ウィンドウがある。
図4は表示制御部25の動作フローチャート図である。操作者によるGUI操作やシミュレーションシステム24のコマンド応答などのイベント(事象)が発生すると(S101)、表示制御部25内の処理で完結するか、シミュレーションシステム24にコマンド送信が必要かを判断する。表示制御部25内での処理で完結する場合は(S102)、GUIレイアウト25bやGUI部品25cの更新を行う(S103)。シミュレーションシステム24へのコマンド送信が必要な場合は、コマンド制御処理に移る(S104)。
シミュレーションシステム24からのコマンド応答やウェハ位置通知等のイベントをコマンド制御部26を経由して受信した場合は、コマンド内容を解釈し、GUIレイアウト25bやGUI部品25cに反映する(S103)。
図5はコマンド制御部26の構成図を示し、図6に示すUIアクション−送信コマンド対応表L1、通信制御手段26aから構成されている。GUI操作による処理依頼のコマンド送信とシミュレーションシステム24からの状態通知や応答の受信を担う。UIイベントはUIアクション−送信コマンド対応表L1により対応するコマンドに変換され、通信制御手段26aがコマンドを送信する。UIアクション−送信コマンド対応表L1には、UIアクションの内容とそれに対応するコマンドとコマンドパラメータの種類が定義されている。
図7はコマンド制御部26の動作フローチャート図である。コマンド制御処理が依頼されると(S201)、UIアクション−送信コマンド対応表L1によりUIイベントをコマンドに変換し(S202)、操作制御部23とシミュレーションシステム24間の定義プロトコルに従ってコマンドを発行する(S203)。また、シミュレーションシステム24からコマンド応答を受信すると(S201)、その内容を表示制御部25に渡す(S204)。
図8はシミュレーション制御部27の構成図を示し、通信制御部27a、コマンドパラメータ抽出部27b、システム用状態マシン27c、ジョブインスタンス管理部27d、ジョブ用状態マシン27e、エラー発生制御部27fから構成されている。また、ジョブインスタンス管理部27dはジョブを識別するためにジョブ毎に付与されるコンテキスト情報の管理を担うコンテキスト情報管理部27gを含んでいる。更に、シミュレーション制御部27は後述するシステム用、ジョブ用の状態遷移表L2、L3を有している。
シミュレーション制御部27は通信制御部27aのコマンド受信及びシナリオ実行部28によるシナリオ実行完了や、エラー発生制御部27fから発生するエラーイベントによって、システム用状態マシン27cが状態遷移を起こす。エラー発生制御部27fは強制的にシミュレーション制御部27のシステム用状態マシン27cやジョブ用状態マシン27eの状態をエラー状態にするものであり、実機では発生頻度の少ないエラー処置の操作訓練用に用いられる。
図9はエラー発生制御部27fのGUIの表示画面を示している。エラー発生用GUIは半導体露光装置1の各種モジュール毎にエラー設定が可能である。ジョブインスタンス管理部27dは露光処理などの処理単位でジョブの生成/削除を担う。
状態遷移表は図10に示すシステム用の状態遷移表L2、図11に示すジョブ用の状態遷移表L3のように定義される。システム用の状態遷移表L2は横の列にイベント種を縦の行に現在の状態を示し、交差する個所のマスの中はそのイベントが発生した時の処理内容(アクション)と次の遷移先の状態を示し、「アクション/次の遷移先状態」と表現している。システム用の状態遷移表L2では、シミュレーション制御部27の現在状態が“オンライン状態でかつ非占有状態”のとき、占有コマンドを受信すると、状態遷移表L2のアクション定義に従ってaccepted応答を行う。そして、“オンライン状態でかつ占有状態”に遷移する。
ジョブ用の状態遷移表L3も同様の記述方式で表現されている。状態遷移表L3において実際の値としてのデータにあるジョブインスタンスが生成され、ジョブの現在状態が“PREPROCESSING”の場合に、一時停止コマンドを受信すると、状態遷移表L3のアクション定義に従ってaccepted応答を行う。更に、シナリオを実行し、“PAUSED状態”に遷移する。なお、シナリオ実行はシナリオ実行部28がシミュレーション制御部27の状態とコマンドパラメータの内容から実行に適したシナリオを検索して実行する。
ジョブの現在の状態が“PROCESSING”の場合には、シナリオ実行完了イベントを受信すると、ジョブ用の状態遷移表L3のアクション定義に従ってシナリオを実行し、次の状態遷移先の“POSRPROCESSING”に遷移する。ジョブの現在の状態が“PROCESSING”の場合に、エラー発生イベントを受信すると、状態遷移表L3のアクション定義に従って実行中のシナリオを停止し、次の状態遷移先の“SUSPENDED”に遷移する。
図12はシミュレーション制御部27の動作フローチャート図である。通信制御部27aが操作制御部23のコマンド制御部26から送信されたコマンドを受信すると(S301)、コマンドパラメータ抽出部27bがコマンド内のデータ構造を解析してコマンドパラメータを抽出し、コマンド種を特定する(S302)。システム用状態マシン27cからシステムの状態を取得する(S303)。システムの状態がジョブ制御コマンドでない場合は(S304)、システム用の状態遷移表L2に定義されたアクションを実行して(S305)、システム用状態マシン27cの状態を次の遷移先に遷移させる(S306)。
ジョブ抑制コマンドの場合で、受信したコマンドがジョブ生成コマンドの場合は(S307)、ジョブインスタンス管理部27dがジョブインスタンスの上限値を超えていないかなどのジョブ生成条件を判断する(S308)。生成可能であれば、ジョブインスタンスを生成する(S309)。更に、インスタンスを識別するためのコンテキスト情報を、コンテキスト情報管理部27gが作成する(S310)。そして、ジョブ用状態マシン27eの状態を取得し(S311)、アクションに「シナリオ実行」が指定されていた場合は、シナリオ実行部28にコマンドパラメータとシステムとジョブの状態を渡してシナリオを実行する(S312)。ジョブ生成以外のジョブ制御コマンドの場合も、S311〜S313のアクション実行と次の状態への遷移処理を行う。
図13に示すシナリオ管理部29は、動作履歴部28a、シナリオ選択部28b、動作履歴からシナリオへに変換するシナリオ変換部28cから構成されている。また、シナリオ管理部29はシナリオファイル表L4、シナリオ−動作条件対応表L6を有している。シナリオ変換部28cは動作履歴を解釈する履歴解釈部28dが装置のコマンド応答やイベント送信を抽出する。シナリオ作成部28eは抽出されたデータを基に、記述言語であるXMLのエレメント種や属性値を決定し、図14に示すシナリオファイル表L4に出力する。
図15に示すシナリオデータ構造表L5は、シナリオファイル表L4を作成する際に動作履歴から機器の応答やイベントを抜き出した中間データである。コマンド単位でコマンドパラメータとその値を抽出し、更に前のコマンド送信からの経過時間を算出する。これをXML形式化したシナリオファイル表L4に、シナリオデータ構造表L5で示した各要素をXMLエレメント及びエレメント属性として表現している。タイマはコマンドの送信間隔を定義するもので、履歴から抽出したタイムスタンプから導出しているため、コマンド応答やイベント送信のタイミングについてもよりリアルに動作模擬が可能となる。
図16に示す動作条件とシナリオ名を対応させたシナリオ−動作条件対応表L6は、シナリオ名と動作条件の関連を表現し、動作条件にコマンドパラメータ種とその値及びジョブ状態が記載され、それに対応してシナリオファイル名が登録されている。動作条件は主に実機の操作部から送信される露光処理依頼などのコマンドパラメータと実機の状態を指し、シナリオは操作部に送信された複数のコマンド応答やイベントを基に作成する。
図17に示す動作履歴データ構造表L7は動作履歴部28aのデータ構造の例を示している。実機の操作制御部14とジョブ制御部13間のプロトコルとシステム/ジョブ/ユニットの状態変化をモニタしたものであり、コマンド依頼/応答やジョブ制御部13からのイベント発行が記録されている。履歴の内容はタイムスタンプ、操作区分、操作番号、状態、コマンド種、コマンドパラメータとその値から構成されている。
図18はシナリオ管理部29のシナリオ選択の動作フローチャート図である。シミュレーション制御部27のコマンドパラメータ抽出部27bからコマンドパラメータを、システム用状態マシン27cとジョブ用状態マシン27eから各種状態を取得する(S401)。そして、これらの情報に合致する動作条件をシナリオ−動作条件対応表L6内で検索する(S402)。条件に合致する内容が検出された場合は(S403)、シナリオ名を依頼元に渡し(S404)、合致するシナリオが存在しなかった場合には、コマンドパラメータとシミュレーション制御部27の状態に最も近い動作条件を特定する(S405)。
図19はシナリオ管理部29のシナリオファイル表L4及びシナリオ−動作条件対応表L6の作成のための動作フローチャート図である。動作履歴部28aに次の行があると(S501)、1行ずつ読み出す(S502)。操作区分が“operation”でコマンド応答やイベント送信を示す場合は(S503)、図15のシナリオデータ構造表L5のシナリオ中間データにコマンド枠を追加する(S504)。前回のコマンドのタイムスタンプと現履歴のタイムスタンプとの差分を算出し、1回前のコマンドのタイマ値として設定する(S505)。そして、現履歴のタイムスタンプをテンポラリ領域に格納し(S506)、追加したコマンド枠にはコマンド種、コマンドパラメータとその値を登録する(S507)。
また、ジョブの状態変化”jobStatus”の場合では(S503)、図15のシナリオデータ構造表L5のシナリオ中間データに登録されている全データをXML形式に変換してシナリオファイルを作成し、シナリオ中間データをクリアする(S508)。操作区分が“operation”でコマンド受信の場合と、操作区分がシステムの状態変化”status”も同様である。作成したシナリオファイル表L4の名称と保持している動作条件を対応させて、シナリオ−動作条件対応表L6を更新し(S509)、現在の履歴から抽出した各種要素で動作履歴を更新する(S510)。以上の処理を動作履歴に次の行がある限り、全ての行に対して行う(S501)。
図20に示すシナリオ実行部28は、シナリオコマンド変換部29a、コンテキスト情報置換部29b、XMLエレメント属性−コマンド対応表L8から構成されている。シナリオコマンド変換部29aはXML形式で記載されたシナリオファイルを解釈し、コマンドに変換する。
このコマンドへの変換は、XMLで定義されたコマンド種を示すXMLエレメントの属性値とコマンドの対応を定義した図21に示すXMLエレメント属性−コマンド対応表L8を基に実行される。XMLエレメント属性−コマンド対応表L8はXMLで記載されたシナリオの要素をパースし、予め決められたXMLエレメントの属性の値を取得し、対応表のXMLエレメント属性に対して取得した値を検索してコマンドを特定する。
ところで、ジョブ投入毎にインクリメントされるジョブコンテキスト情報であるジョブ識別情報が存在し、この情報は同時に複数投入されるジョブを区別するための識別子であり、殆どのコマンド応答やイベントに含まれる情報である。ジョブ識別情報は動的に変化するため、動作履歴の情報をそのまま利用できない。そのため、コンテキスト情報置換部29bがコンテキスト情報をシミュレーション制御部27のコンテキスト情報管理部27gから取得し、コマンドパラメータに反映する必要がある。
図22はシナリオ実行部28にシナリオ実行が依頼された際の動作フローチャート図である。シナリオ実行部28は実行指示により(S601)、実行対象のシナリオをシナリオ管理部29から取得する(S602)。取得したシナリオを展開してXMLエレメントの属性値を取得し、次の行が定義されていれば(S603)、XMLエレメント属性−コマンド対応表L8から実行するコマンドを特定する(S604)。実行するコマンドにシナリオ内に記載されているパラメータ値を反映し、更にコンテキスト情報置換部29bがコンテキスト情報をコンテキスト情報管理部27gから取得して、ジョブ識別子などのパラメータ値に反映する(S605)。作成したコマンドは予め定義したプロトコルに従って、操作制御部23に送信する(S606)。
上述のステップS603〜S606の処理を、シナリオ内の全てのXMLエレメントに対して実行し(S603)、1個のシナリオファイルの実行を完了する。シナリオ実行が完了すると、完了イベントをシミュレーション制御部27に送信し、シミュレーション制御は必要に応じてモデルの状態遷移を起こす。
シナリオ管理部29の動作履歴部28aは、ユーザの利用形態に応じて随時更新が可能である。例えば、装置のバージョンアップや顧客カスタマイズの追加などにより、装置の動作仕様の変更があった場合に、最新の機器の動作情報を操作訓練環境に速やかに動作仕様を反映する必要がある。また、実機で行われる多様な機能実行を動作履歴部28aに定期的に取り込むことにより、教育システム内で保持するよりも動作定義パターンが増し、リアルな動作模擬を実現する。
図23はシナリオ管理部29に付随する履歴取得部の構成図である。半導体露光装置1の実機側に動作履歴を随時取得するための履歴取得部31(エージェント)を作動させておき、教育システムの履歴更新部32とネットワークを通じて通信を行う。
実機側の半導体露光装置1は動作履歴部16、履歴取得部31から構成され、履歴取得部31は更新スケジュール部33、通信制御部34を有している。教育システム側の履歴更新部32は、通信制御部35、履歴反映部36、履歴更新UI37から構成されている。
履歴更新時に、実機側の更新スケジュール部33に基づいて動作履歴部16からデータを取得し、通信制御部34を通じて、教育システムの履歴更新部32に履歴データを送信する。
図24は履歴取得の動作フローチャート図である。教育システムの履歴更新部32はネットワークと通じて通信制御部35が履歴データを受信して(S701)、履歴反映部36によってシナリオ管理部29の動作履歴部28aを更新し(S702)、更新した履歴を基に新たにシナリオを作成する(S703)。
図25はUIによる履歴取得動作フローチャート図である。教育システムの履歴更新部32は、教育システム独自の履歴更新UI37によって、教育システムの操作者が更新対象の動作履歴ファイルを指定する(S801)。この指定により、対象ファイルの内容をシナリオ管理部29の動作履歴部28aに反映し(S802)、更新した履歴を基に新たにシナリオを作成する(S803)。
このように本実施例によれば、半導体露光装置1の教育システムは、操作制御部23が送信するコマンドを解析し、コマンド種とシステムの状態に応じてシナリオを選択実行することにより、機器の応答を動的に作成する。ここで用いるシナリオは実機の動作履歴から作成するため、一旦、半導体露光装置1で操作された機能について同様の応答動作を再現することができ、実機応答と同様の操作が可能になる。このような実機操作と同様の操作訓練環境とすることにより、操作者の習熟度の向上が期待できる。
なお、本実施例においては、半導体露光装置1の実機を対象として、操作訓練用教育システムについて説明したが、他の種類の実機に対して同様の精度システムとすることもできる。
1 半導体露光装置
4 操作端末部
5 集中管理ホストコンピュータ
11 メカ/ハードウェア
12 ハードウェア制御部
13 ジョブ制御部
14 操作制御部
15 オンライン制御部
16 動作履歴部
20 ホストコンピュータ
21 入力装置
22 表示装置
23 操作制御部
24 シミュレーションシステム
25 表示制御部
26 コマンド制御部
27 シミュレーション制御部
28 シナリオ実行部
29 シナリオ管理部
31 履歴取得部
32 履歴更新部
33 更新スケジュール部
36 履歴反映部
37 履歴更新UI
A 制御アプリケーション
4 操作端末部
5 集中管理ホストコンピュータ
11 メカ/ハードウェア
12 ハードウェア制御部
13 ジョブ制御部
14 操作制御部
15 オンライン制御部
16 動作履歴部
20 ホストコンピュータ
21 入力装置
22 表示装置
23 操作制御部
24 シミュレーションシステム
25 表示制御部
26 コマンド制御部
27 シミュレーション制御部
28 シナリオ実行部
29 シナリオ管理部
31 履歴取得部
32 履歴更新部
33 更新スケジュール部
36 履歴反映部
37 履歴更新UI
A 制御アプリケーション
Claims (5)
- 実機と同様の操作が可能なユーザインタフェイスを持つ操作手段と、動作履歴からシナリオを作成し、該シナリオを管理するシナリオ管理手段と、前記シナリオを実行して実機の応答を模擬するシナリオ実行手段と、状態マシンの状態に応じて、ユーザの操作に対して応答するシミュレーション制御手段とから成ることを特徴とする操作訓練用教育システム。
- 前記シナリオ管理手段は、新たに取得した動作履歴から前記シナリオを更新することを特徴とする請求項1に記載の操作訓練用教育システム。
- 前記シミュレーション制御手段は、システムの動作を示す状態を保持し、前記操作手段から送信されるコマンドの受信とシステム内で発生するイベントによって、状態を遷移させることを特徴とする請求項1又は2に記載の操作訓練用教育システム。
- 前記シナリオ管理手段は、動作履歴から作成する前記シナリオを動作条件と共に保持し、前記操作手段から送信されたコマンドパラメータと前記シミュレーション制御手段の状態を検索の条件とし、実行対象の前記シナリオを選択することを特徴とする請求項1〜3の何れか1つの請求項に記載の操作訓練用教育システム。
- 前記実機は半導体露光装置としたことを特徴とする請求項1〜4の何れか1つの請求項に記載の操作訓練用教育システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009243475A JP2011090149A (ja) | 2009-10-22 | 2009-10-22 | 操作訓練用教育システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009243475A JP2011090149A (ja) | 2009-10-22 | 2009-10-22 | 操作訓練用教育システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011090149A true JP2011090149A (ja) | 2011-05-06 |
Family
ID=44108461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009243475A Pending JP2011090149A (ja) | 2009-10-22 | 2009-10-22 | 操作訓練用教育システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011090149A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115660909A (zh) * | 2022-10-18 | 2023-01-31 | 广州远程教育中心有限公司 | 一种数字学校平台沉浸式数字化学习方法及系统 |
KR20230099069A (ko) * | 2021-12-27 | 2023-07-04 | 권영우 | 포토리소그래피 교육 장치 및 이를 이용하여 포토리소그래피 공정을 학습하는 방법 |
-
2009
- 2009-10-22 JP JP2009243475A patent/JP2011090149A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230099069A (ko) * | 2021-12-27 | 2023-07-04 | 권영우 | 포토리소그래피 교육 장치 및 이를 이용하여 포토리소그래피 공정을 학습하는 방법 |
KR102708619B1 (ko) * | 2021-12-27 | 2024-09-23 | 권영우 | 포토리소그래피 교육 장치 및 이를 이용하여 포토리소그래피 공정을 학습하는 방법 |
CN115660909A (zh) * | 2022-10-18 | 2023-01-31 | 广州远程教育中心有限公司 | 一种数字学校平台沉浸式数字化学习方法及系统 |
CN115660909B (zh) * | 2022-10-18 | 2023-07-04 | 广州远程教育中心有限公司 | 一种数字学校平台沉浸式数字化学习方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3246818B1 (en) | Functional behaviour test system and method | |
US10635556B2 (en) | Device maintenance apparatus, method for maintaining device, and storage medium | |
CN102385323B (zh) | 用于显示本地化过程控制对象的方法及装置 | |
EP3798841B1 (en) | System and method for industrial automation troubleshooting | |
CN108009081B (zh) | 工程设计工具协同装置及工程设计工具协同方法 | |
CN104123219A (zh) | 测试软件的方法和设备 | |
JP2016212865A5 (ja) | ||
JP2019109580A (ja) | 産業用制御システムとその支援装置、制御支援方法およびプログラム | |
JP6094593B2 (ja) | 情報システム構築装置、情報システム構築方法および情報システム構築プログラム | |
CN112306880A (zh) | 测试方法、装置、电子设备和计算机可读存储介质 | |
JP5740634B2 (ja) | 自動操作システム及び操作自動化方法 | |
US20170293896A1 (en) | Device maintenance apparatus, method for maintaining device, and storage medium | |
CN113508349B (zh) | 用于具有混合现实和机器学习技术的qcs扫描架的360°辅助 | |
JP2016012173A (ja) | プログラマブル表示器 | |
KR20150025106A (ko) | 애플리케이션 검증결과 모니터링 서비스를 위한 검증장치, 단말장치, 시스템, 방법 및 컴퓨터로 판독 가능한 기록 매체 | |
CN109901830B (zh) | 一种用于scada系统开发的信号配置方法与系统 | |
JP4791990B2 (ja) | プラントモデル開発システム | |
JP2011090149A (ja) | 操作訓練用教育システム | |
JP4941674B2 (ja) | シミュレーション・システム | |
JP6827814B2 (ja) | シミュレーション装置及びプログラム | |
JP2020197997A (ja) | 情報処理装置、方法及びプログラム | |
EP3018576B1 (en) | A method for controlling changes in a computer system | |
JP2017220107A (ja) | 機器設定装置、機器設定方法、及びプログラム | |
CN112416805A (zh) | 一种测试管理云平台和方法 | |
US11520315B2 (en) | Production system, production method, and information storage medium |