JP2011089159A - Method for manufacturing martensitic stainless steel welded tube excellent in intergranular stress corrosion cracking resistance - Google Patents

Method for manufacturing martensitic stainless steel welded tube excellent in intergranular stress corrosion cracking resistance Download PDF

Info

Publication number
JP2011089159A
JP2011089159A JP2009242261A JP2009242261A JP2011089159A JP 2011089159 A JP2011089159 A JP 2011089159A JP 2009242261 A JP2009242261 A JP 2009242261A JP 2009242261 A JP2009242261 A JP 2009242261A JP 2011089159 A JP2011089159 A JP 2011089159A
Authority
JP
Japan
Prior art keywords
less
stainless steel
welded
martensitic stainless
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009242261A
Other languages
Japanese (ja)
Other versions
JP5549176B2 (en
Inventor
Yukio Miyata
由紀夫 宮田
Hiroshi Yano
浩史 矢埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009242261A priority Critical patent/JP5549176B2/en
Publication of JP2011089159A publication Critical patent/JP2011089159A/en
Application granted granted Critical
Publication of JP5549176B2 publication Critical patent/JP5549176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a martensitic stainless steel welded tube having a seam weld excellent in intergranular stress corrosion cracking resistance. <P>SOLUTION: The method for manufacturing the martensitic stainless steel welded tube having the seam weld excellent in intergranular stress corrosion cracking resistance uses a martensitic stainless steel strip which contains, by mass%, <0.0200% C, <0.0200% N, 10-14% Cr, 3-8% Ni, 1-4% Mo, 0.02-0.10% V, 0.0005-0.010% Ca. further contains proper amounts of Si, Mn, P, S and Al or further contains one or more kinds selected from among Ti, Nb, and Zr and/or one or two kinds selected from among Cu and W. In the metod, the martensitic stainless steel strip is welding-jointed to obtain the welded tube 12 and thereafter, post-welding heat treatment for the seam weld for holding 1-20 min in the temperature range of 550-700°C, is applied to the seam weld of the welded tube. The welding-joint is desirable to be a high frequency resistance welding or high density energy beam welding. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭酸ガスなどの腐食性ガスを含有する天然ガスや石油のパイプライン等の使途に好適なマルテンサイト系ステンレス鋼溶接管に係り、とくにマルテンサイト系ステンレス鋼溶接管溶接部の耐粒界応力腐食割れ性の改善に関する。   The present invention relates to a martensitic stainless steel welded tube suitable for use in natural gas or petroleum pipelines containing corrosive gases such as carbon dioxide gas, and in particular, grain resistance of a welded portion of a martensitic stainless steel welded tube. It relates to improvement of field stress corrosion cracking.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇に対処するために、従来省みられなかったような深層油田や、一旦開発が放棄されていた腐食性の強いガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田において、使用される油井管やラインパイプ用鋼管には、耐食性に富むことが要求されている。
このような耐食性に優れた鋼管として、従来は、主として二相ステンレス鋼管を使用してきたが、1990年代後半になって、より安価で適度な耐食性を有するマルテンサイト系ステンレス鋼管が開発された。そして、ラインパイプ用材料として、API規格に炭素量を低減した12%Crマルテンサイト系ステンレス鋼が規定されて、炭酸ガスを含有する天然ガス用のラインパイプとして、多量に使用されるようになってきている。
In recent years, in order to cope with the rise in crude oil prices and the expected depletion of oil resources in the near future, deep oil fields that have not been excluded in the past, highly corrosive gas fields that were once abandoned, etc. Development on the world is thriving on a global scale. In such oil and gas fields, oil well pipes and steel pipes for line pipes used are required to have high corrosion resistance.
Conventionally, duplex stainless steel pipes have been mainly used as such steel pipes having excellent corrosion resistance. However, in the late 1990s, martensitic stainless steel pipes having lower cost and appropriate corrosion resistance were developed. As a material for line pipes, 12% Cr martensitic stainless steel with a reduced carbon content is defined in the API standard, and it has come to be used in large quantities as a line pipe for natural gas containing carbon dioxide. It is coming.

このような使途には、これまでは、マルテンサイト系ステンレス鋼継目無管が主体として使用されてきたが、最近では、材料コストの低減という観点からマルテンサイト系ステンレス鋼溶接管の需要も増加している。
しかし、最近、炭酸ガスを含有する環境下で使用した際に、マルテンサイト系ステンレス鋼継目無管を円周溶接した際に形成された溶接熱影響部に粒界応力腐食割れ(Intergranular Stress Corrosion Cracking)(以下、IGSCCともいう)と推定される割れが生じるという問題があった。
Until now, martensitic stainless steel seamless pipes have mainly been used for such applications, but recently, demand for martensitic stainless steel welded pipes has increased from the viewpoint of reducing material costs. ing.
However, recently, when used in an environment containing carbon dioxide, intergranular stress corrosion cracking occurs in the weld heat-affected zone formed when the martensitic stainless steel seamless pipe is circumferentially welded. ) (Hereinafter also referred to as IGSCC).

このような問題に対し、例えば、特許文献1には、mass%で、C:0.0100%未満、N:0.0100%未満、Cr:10〜14%、Ni:3〜8%を、有効C固溶量Csol=C−1/3Cpre(ここで、Cpre:Ti、Nb、Zr、V、Hf、Taと結合して析出するC量)で定義されるCsolが0.0050%未満を満足するように、含有する組成を有する、溶接熱影響部の耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管が提案されている。特許文献1に記載された技術によれば、IGSCCの原因は、溶接時の熱サイクルで炭素が固溶し後続の熱サイクルでCr炭化物として粒界に析出する際に、Cr欠乏層が形成されるためであり、C含有量を低減したり炭化物形成元素を適量含有して、溶接時の有効固溶C量Csolを所定値未満に調整することで、IGSCCが防止できるとしている。   For such a problem, for example, in Patent Document 1, mass%, C: less than 0.0100%, N: less than 0.0100%, Cr: 10-14%, Ni: 3-8%, effective C solid solution Csol = C-1 / 3Cpre (where Cpre: C amount precipitated by combining with Ti, Nb, Zr, V, Hf, Ta) is contained so as to satisfy less than 0.0050% There has been proposed a martensitic stainless steel pipe having a composition that exhibits excellent resistance to intergranular stress corrosion cracking in the weld heat affected zone. According to the technique described in Patent Document 1, the cause of IGSCC is that a Cr-depleted layer is formed when carbon dissolves in the thermal cycle during welding and precipitates at grain boundaries as Cr carbide in the subsequent thermal cycle. For this reason, IGSCC can be prevented by reducing the C content or containing an appropriate amount of carbide forming elements and adjusting the effective solid solution C amount Csol during welding to less than a predetermined value.

しかしながら、特許文献1に記載された技術によっても、溶接時のCr炭化物の再析出を完全には防止できず、したがって、IGSCC発生のリスクを完全に排除しきれないとの指摘もある。また、C量を特許文献1に記載されたレベルまで低減するためには、精錬コストの高騰を招くという問題もある。
このような円周溶接部の溶接熱影響部HAZに発生するIGSCCを防止できる実用的な方策として、溶接後熱処理(Post Welding Heat Treatment)(以下、PWHTともいう)の適用が考えられている。これは、溶接後に溶接部に適正な条件でPWHTを施すことにより、IGSCCの原因となるCr欠乏層にCrを拡散させ、Cr欠乏層を消滅させるという考え方に基づいている。
However, it is pointed out that even the technique described in Patent Document 1 cannot completely prevent the reprecipitation of Cr carbide at the time of welding, and therefore cannot completely eliminate the risk of IGSCC occurrence. Moreover, in order to reduce the amount of C to the level described in Patent Document 1, there is also a problem that the refining cost increases.
As a practical measure that can prevent IGSCC occurring in the weld heat affected zone HAZ of such a circumferential weld, application of post welding heat treatment (hereinafter also referred to as PWHT) is considered. This is based on the idea that after welding, PWHT is applied to the welded part under appropriate conditions to diffuse Cr into the Cr-deficient layer that causes IGSCC and to extinguish the Cr-deficient layer.

しかし、溶接部にPWHTを施した場合、その条件が不適切であると、目的とするIGSCCの発生防止が達成できないばかりか、HAZが硬化する場合があることが懸念される。
このような問題に対し、例えば、特許文献2には、マルテンサイト系ステンレス鋼管円周溶接継手の製造方法が提案されている。特許文献2に記載された技術では、マルテンサイト系ステンレス鋼管の端部同士を付き合せて、端部に沿って多層盛溶接を施して、円周溶接部を形成する際に、少なくとも1回の溶接パスによる溶接熱サイクルにより鋼管内表層のピーク温度で950℃以上に加熱された溶接熱影響部に、耐粒界応力腐食割れ性を向上させる熱サイクルが付与されるように、その後の溶接パスを調整して溶接する、としている。耐粒界応力腐食割れ性を向上させる熱サイクルとして、例えば、その後の溶接パスのピーク温度、冷却速度等の溶接条件を調整して、Cr炭化物が再溶解する熱サイクル、Cr炭化物が析出しない熱サイクル、あるいはCrが拡散しCr欠乏層を消滅させる熱サイクル等、が考えられるとしている。これにより、溶接後熱処理を施すことなく、溶接熱影響部のIGSCCを防止でき、耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼継目無管円周溶接継手を提供できるとしている。
However, when PWHT is applied to the weld zone, if the conditions are inappropriate, it is not only possible to prevent the desired generation of IGSCC from occurring, but there is a concern that HAZ may be cured.
For such a problem, for example, Patent Document 2 proposes a method for manufacturing a martensitic stainless steel pipe circumferential welded joint. In the technique described in Patent Document 2, when end portions of martensitic stainless steel pipes are attached to each other, multilayer build-up welding is performed along the end portions, and a circumferential weld portion is formed, at least once. Subsequent weld passes so that a heat cycle that improves the intergranular stress corrosion cracking resistance is given to the weld heat affected zone heated to 950 ° C or higher at the peak temperature of the surface layer in the steel pipe by the weld heat cycle by the weld pass. We are going to adjust and weld. As a heat cycle that improves the intergranular stress corrosion cracking resistance, for example, by adjusting the welding conditions such as the peak temperature of the subsequent welding pass, the cooling rate, etc. Cycles or thermal cycles where Cr diffuses and the Cr-deficient layer disappears are considered. This makes it possible to provide a martensitic stainless steel seamless pipe circumferential welded joint that can prevent IGSCC in the weld heat-affected zone and has excellent intergranular stress corrosion cracking resistance without performing post-weld heat treatment.

また、特許文献3には、マルテンサイト系ステンレス鋼材溶接部の形成方法が提案されている。特許文献3に記載された技術では、特定組成のマルテンサイト系ステンレス鋼材の溶接部に、溶接後熱処理の温度と保持時間との特定関係式で定義される値が所定値以上で、かつ溶接後熱処理の温度と100体積%マルテンサイト組織としたのち加熱し20秒間保持したときに1体積%以上オーステナイト相が形成される温度のうちの下限温度との特定関係式で定義される値が所定値以下を満足し、保持時間が60〜1000sの範囲内である溶接後熱処理を施すことにより、耐IGSCC性に優れ、かつ耐水素脆化性に優れ、さらに靭性にも優れた溶接熱影響部を有するマルテンサイト系ステンレス鋼継目無管の円周溶接継手部を形成できるとしている。   Patent Document 3 proposes a method for forming a martensitic stainless steel material weld. In the technique described in Patent Document 3, the value defined by the specific relational expression between the temperature of the heat treatment after welding and the holding time is not less than a predetermined value in the welded portion of the martensitic stainless steel material having a specific composition, and after welding. The value defined by the specific relational expression between the heat treatment temperature and the lower limit temperature of the temperature at which 1 volume% or more of the austenite phase is formed when heated and held for 20 seconds after forming a 100 volume% martensite structure is a predetermined value. By performing post-weld heat treatment that satisfies the following conditions and the holding time is in the range of 60 to 1000 s, the weld heat-affected zone has excellent IGSCC resistance, excellent hydrogen embrittlement resistance, and excellent toughness. It is said that a circumferential welded joint of a martensitic stainless steel seamless pipe can be formed.

特開2005−336601号公報JP 2005-336601 A 特開2006−068757号公報JP 2006-068757 A 特開2007−321181号公報JP 2007-321181

特許文献2、特許文献3に記載された技術によれば、マルテンサイト系ステンレス鋼継目無管の円周溶接継手部に発生するIGSCCを防止できるとされる。しかし、最近では、高価なマルテンサイト系ステンレス鋼継目無管に代えて、より薄肉の鋼管が製造可能で、管長さ当たりの材料コストを抑えることができる安価なマルテンサイト系ステンレス鋼溶接管を使用したいという要望が高い。   According to the techniques described in Patent Document 2 and Patent Document 3, IGSCC occurring in a circumferential welded joint of a martensitic stainless steel seamless pipe can be prevented. Recently, however, instead of expensive martensitic stainless steel seamless pipes, it is possible to manufacture thinner steel pipes and use cheap martensitic stainless steel welded pipes that can reduce the material cost per pipe length. The desire to do is high.

このような要望に鑑み、本発明者らは、マルテンサイト系ステンレス鋼溶接管におけるIGSCCの発生防止について鋭意検討した。その結果、炭酸ガスを含有する腐食環境下で発生するIGSCCを防止する目的で、継目無管と同様に、マルテンサイト系ステンレス鋼溶接管円周溶接継手の円周溶接部に溶接後熱処理を施すと、図1に示すように、シーム溶接部にIGSCCに対し鋭敏化する領域Aが生成し、IGSCC発生のリスクがあるという現象を知見した。   In view of such a demand, the present inventors diligently studied how to prevent the occurrence of IGSCC in a martensitic stainless steel welded pipe. As a result, in order to prevent IGSCC generated in a corrosive environment containing carbon dioxide, post-weld heat treatment is applied to the circumferential welds of martensitic stainless steel welded pipe circumferential welded joints in the same way as seamless pipes. As shown in FIG. 1, a region A that is sensitized to IGSCC is generated in the seam welded portion, and the phenomenon that there is a risk of occurrence of IGSCC was found.

本発明は、上記した問題を解決し、耐IGSCC性に優れたシーム溶接部を有し、炭酸ガスを含有する油田・ガス田に用いられるフローライン用鋼管として好適な、マルテンサイト系ステンレス鋼溶接管を製造できる、マルテンサイト系ステンレス鋼溶接管の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems, has a seam welded portion excellent in IGSCC resistance, and is suitable as a steel pipe for a flow line used in oil fields and gas fields containing carbon dioxide gas, martensitic stainless steel welding It aims at providing the manufacturing method of the martensitic stainless steel welded pipe which can manufacture a pipe | tube.

本発明者らは、上記した目的を達成するために、マルテンサイト系ステンレス鋼溶接管において、IGSCCの発生に影響する各種要因について鋭意研究した。その結果、シーム溶接部に、円周溶接後のPWHTにより形成される、IGSCCに対し鋭敏化した領域Aは、シーム溶接時の熱サイクルでCが固溶する温度域まで加熱され、かつ円周溶接後のPWHTにおいて、目標のPWHT加熱温度に達しない低温に加熱された領域であるという知見を得た。そこで、さらに検討を加えた結果、本発明者らは、シーム溶接部の鋭敏化した領域の形成を防止するためには、シーム溶接部、すなわちシーム溶接時の熱サイクルでCが固溶する温度域まで加熱された領域に、シーム溶接終了後に固溶Cを炭化物として十分析出させる熱処理を施す必要があることを想到した。そしてこのような熱処理により、溶接管の端部同士を円周溶接した後、PWHT時に低温に加熱された領域が鋭敏化することを防止でき、マルテンサイト系ステンレス鋼溶接管におけるIGSCCの発生を防止できるという知見を得た。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors that affect the occurrence of IGSCC in a martensitic stainless steel welded pipe. As a result, the region A sensitized to IGSCC, which is formed by PWHT after circumferential welding in the seam weld, is heated to the temperature range where C is dissolved in the thermal cycle during seam welding, and the circumference It was found that the PWHT after welding was a region heated to a low temperature that did not reach the target PWHT heating temperature. Therefore, as a result of further studies, the present inventors have found that the temperature at which C dissolves in the seam welded portion, that is, the thermal cycle during seam welding, in order to prevent the formation of a sensitized region of the seam welded portion. It was conceived that it was necessary to heat-treat the region heated to the region sufficiently to precipitate the solid solution C as carbides after the end of seam welding. And by such heat treatment, after welding the ends of the welded pipes, it is possible to prevent the area heated to low temperature during PWHT from becoming sensitized, and to prevent the occurrence of IGSCC in martensitic stainless steel welded pipes I got the knowledge that I can do it.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)鋼帯を連続的に成形し、略円筒状断面のオープン管となし、該オープン管の両端面同士を突合せ、溶接接合して溶接管とする溶接管の製造方法において、前記鋼帯を、質量%で、C:0.0200%未満、N:0.0200%未満、Si:1.0%以下、Mn:2.0%以下、P:0.03%以下、S:0.010%以下、Al:0.10%以下、Cr:10〜14%、Ni:3〜8%、Mo:1〜4%、V:0.02〜0.10%、Ca:0.0005〜0.010%を含有し、残部Feおよび不可避的不純物からなる組成を有するマルテンサイト系ステンレス鋼鋼帯とし、前記溶接接合したのち、前記溶接管のシーム溶接部に、550〜700℃の範囲の温度で1〜20min間保持するシーム溶接部後熱処理を施し、耐粒界応力腐食割れ性に優れたシーム溶接部を有する溶接管とすることを特徴とするマルテンサイト系ステンレス鋼溶接管の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) In a method of manufacturing a welded pipe in which a steel strip is continuously formed to form an open pipe having a substantially cylindrical cross section, both end faces of the open pipe are butted and welded to form a welded pipe. In mass%, C: less than 0.0200%, N: less than 0.0200%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.010% or less, Al: 0.10% or less, Cr: A martensitic system containing 10-14%, Ni: 3-8%, Mo: 1-4%, V: 0.02-0.10%, Ca: 0.0005-0.010%, and having the balance Fe and inevitable impurities After making the stainless steel strip and welding, the seam welded part of the welded pipe is subjected to post-heat treatment of the seam welded part held at a temperature in the range of 550 to 700 ° C for 1 to 20 minutes, and the intergranular stress corrosion cracking resistance A method for producing a martensitic stainless steel welded pipe, characterized in that the welded pipe has a seam welded portion with excellent properties.

(2)(1)において、前記組成に加えてさらに、質量%で、Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とするマルテンサイト系ステンレス鋼溶接管の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:4.0%以下、W:4.0%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とするマルテンサイト系ステンレス鋼溶接管の製造方法。
(2) In (1), in addition to the above composition, the composition further contains, in mass%, one or more selected from Ti: 0.15% or less, Nb: 0.10% or less, Zr: 0.10% or less The manufacturing method of the martensitic stainless steel welded pipe characterized by the above-mentioned.
(3) In (1) or (2), in addition to the above composition, the composition further contains, by mass%, one or two selected from Cu: 4.0% or less and W: 4.0% or less A method for producing a martensitic stainless steel welded pipe, characterized in that:

(4)(1)ないし(3)のいずれかにおいて、前記溶接接合が、高密度エネルギービーム溶接法を用いた溶接接合であることを特徴とするマルテンサイト系ステンレス鋼溶接管の製造方法。
(5)(4)において、前記溶接接合したのちで、前記シーム溶接部後熱処理を施す前に、前記溶接管のシーム溶接部に、該シーム溶接部の内表面から肉厚方向に0.5mm以上再溶融させ凝固させるシーム溶接部補修処理を行うことを特徴とするマルテンサイト系ステンレス鋼溶接管の製造方法。
(4) The method for producing a martensitic stainless steel welded pipe according to any one of (1) to (3), wherein the weld joint is a weld joint using a high-density energy beam welding method.
(5) In (4), after the welded joint, and before the heat treatment after the seam welded portion, 0.5 mm or more in the thickness direction from the inner surface of the seam welded portion to the seam welded portion of the welded pipe A method for manufacturing a martensitic stainless steel welded pipe, comprising repairing a seam weld that is remelted and solidified.

本発明によれば、耐粒界応力割れ性に優れたシーム溶接部を有するマルテンサイト系ステンレス鋼溶接管を容易にしかも安価に製造でき、産業上格段の効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the martensitic stainless steel welded pipe which has the seam weld part excellent in the intergranular stress cracking resistance can be manufactured easily and cheaply, and there is a remarkable industrial effect.

円周溶接後のPWHTに起因する、マルテンサイト系ステンレス鋼溶接管のIGSCC鋭敏化領域の形成位置を、模式的に示す説明図である。It is explanatory drawing which shows typically the formation position of the IGSCC sensitization area | region of the martensitic stainless steel welded pipe resulting from PWHT after circumferential welding. 4点曲げ応力腐食割れ試験における試験片の曲げ状況を模式的に示す説明図である。It is explanatory drawing which shows typically the bending condition of the test piece in a 4-point bending stress corrosion cracking test. 溶接管の製造設備の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the manufacturing equipment of a welded pipe.

本発明では、鋼帯を、図3に示すように、各種成形ロールで連続的に成形し、略円筒状断面のオープン管となし、該オープン管をスクイズロールで加圧しながら、該オープン管の両端面同士を突合せ、溶接接合して溶接管とする。本発明では、使用する鋼帯はマルテンサイト系ステンレス鋼組成の鋼帯とする。
まず、使用する鋼帯の組成限定理由について説明する。なお、以下、とくに断らないかぎり組成における質量%は、単に%で記す。
In the present invention, as shown in FIG. 3, the steel strip is continuously formed with various forming rolls to form an open tube having a substantially cylindrical cross section, and the open tube is pressed with a squeeze roll. Both end faces are butted together and welded to form a welded pipe. In the present invention, the steel strip used is a steel strip having a martensitic stainless steel composition.
First, the reasons for limiting the composition of the steel strip used will be described. Hereinafter, the mass% in the composition is simply expressed as% unless otherwise specified.

C:0.0200%未満、
Cは、鋼に固溶し、鋼の強度増加に寄与する元素であるが、多量の含有は、HAZを硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させるため、本発明では、できるだけ低減することが望ましい。本発明では、とくにシーム溶接部のIGSCCを防止するため、Cr炭化物として析出してCr欠乏層形成の原因となるCを、0.0200%未満に限定した。Cを0.0200%以上含有すると、シーム溶接部のIGSCCを防止することが困難となる。なお、好ましくは0.0100%以下である。
C: less than 0.0200%,
C is an element that dissolves in steel and contributes to increasing the strength of the steel. However, if contained in a large amount, the HAZ is hardened to cause weld cracking or deteriorate the weld heat-affected zone toughness. Then, it is desirable to reduce as much as possible. In the present invention, in order to prevent IGSCC particularly in the seam welded portion, C that precipitates as Cr carbide and causes formation of a Cr-deficient layer is limited to less than 0.0200%. When C is contained in an amount of 0.0200% or more, it becomes difficult to prevent IGSCC in the seam weld. In addition, Preferably it is 0.0100% or less.

N:0.0200%未満、
Nは、Cと同様に、鋼に固溶し、鋼の強度増加に寄与する元素であり、多量の含有は、溶接部を硬化させ、溶接割れを生じさせたり、溶接部靭性を劣化させる。また、Nは、Ti、Nb、Zr、V、Hf、Ta等と結合し窒化物を形成するため、炭化物を形成しCr炭化物の形成を防止できるTi、Nb、Zr、V、Hf、Ta量を実質的に低減することになり、これら元素のCr欠乏層形成を抑制しIGSCCを抑制する効果を低下させることになる。このため、本発明では、Nはできるだけ低減することが望ましい。上記したNの悪影響は、0.0200%未満であれば許容できるため、本発明では、Nは0.0200%未満に限定した。なお、好ましくは0.0100%以下である。
N: less than 0.0200%,
N, like C, is an element that dissolves in steel and contributes to an increase in the strength of the steel, and if contained in a large amount, it hardens the welded portion and causes weld cracking or deteriorates the toughness of the welded portion. In addition, N combines with Ti, Nb, Zr, V, Hf, Ta, etc. to form nitrides. Therefore, Ti can form carbides and prevent formation of Cr carbides. Ti, Nb, Zr, V, Hf, Ta amount Thus, the effect of suppressing the IGSCC by reducing the formation of Cr-deficient layers of these elements is reduced. For this reason, in the present invention, it is desirable to reduce N as much as possible. Since the adverse effect of N described above is acceptable if it is less than 0.0200%, in the present invention, N is limited to less than 0.0200%. In addition, Preferably it is 0.0100% or less.

Si:1.0%以下、
Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素であり、本発明では0.05%以上含有することが望ましい。しかし、Siはフェライト生成元素でもあり、1.0%を超える多量の含有は母材およびHAZ靭性を劣化させる。このため、Siは1.0%以下に限定した。なお、好ましくは0.1〜0.5%である。
Si: 1.0% or less,
Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In the present invention, Si is desirably contained in an amount of 0.05% or more. However, Si is also a ferrite-forming element, and a large content exceeding 1.0% deteriorates the base material and the HAZ toughness. For this reason, Si was limited to 1.0% or less. In addition, Preferably it is 0.1 to 0.5%.

Mn:2.0%以下、
Mnは、固溶して鋼の強度上昇に寄与するとともに、オーステナイト生成元素であり、
フェライト生成を抑制して母材およびHAZ靭性を向上させる。このような効果を得るためには0.1%以上含有することが望ましい。一方、2.0%を超えて含有しても効果が飽和する。このため、Mnは2.0%以下に限定した。なお、好ましくは0.2〜1.2%である。
Mn: 2.0% or less,
Mn is an austenite-generating element while contributing to an increase in the strength of steel by solid solution,
Suppresses ferrite formation and improves the base metal and HAZ toughness. In order to acquire such an effect, it is desirable to contain 0.1% or more. On the other hand, even if the content exceeds 2.0%, the effect is saturated. For this reason, Mn was limited to 2.0% or less. In addition, Preferably it is 0.2 to 1.2%.

P:0.03%以下、
Pは、粒界に偏析して粒界強度を低下させ、耐応力腐食割れ性に悪影響を及ぼす元素であり、できるだけ低減することが好ましいが、0.03%までは許容できる。このため、Pは0.03%以下に限定した。なお、熱間加工性の観点からは、0.02%以下とすることが好ましい。
P: 0.03% or less,
P is an element that segregates at the grain boundary to lower the grain boundary strength and adversely affects the stress corrosion cracking resistance, and is preferably reduced as much as possible, but is acceptable up to 0.03%. For this reason, P was limited to 0.03% or less. From the viewpoint of hot workability, it is preferably 0.02% or less.

S:0.010%以下、
Sは、MnS等の硫化物を形成し、熱間加工性を低下させる元素であり、本発明ではできるだけ低減することが好ましいが、0.010%までは許容できる。このため、Sは0.010%以下に限定した。なお、より安定した熱間加工性確保の観点からは、0.004%以下とすることが好ましい。
S: 0.010% or less,
S is an element that forms sulfides such as MnS and reduces hot workability. In the present invention, S is preferably reduced as much as possible, but is acceptable up to 0.010%. For this reason, S was limited to 0.010% or less. In addition, from the viewpoint of securing more stable hot workability, it is preferably 0.004% or less.

Al:0.10%以下、
Alは、脱酸剤として作用する元素であり、このような効果は、0.001%以上含有することにより認められるが、0.10%を超える含有は靭性を劣化させる。このため、Alは0.10%以下に限定した。なお、好ましくは0.01〜0.04%である。
Cr:10〜14%、
Crは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性等の耐食性を向上させるための基本元素であり、本発明では10%以上含有する必要がある。一方、14%を超える含有は、フェライト相が形成しやすくなり、マルテンサイト組織を安定して確保するために多量の合金元素添加を必要とし材料コストの上昇を招く。このため、本発明ではCrは10〜14%の範囲に限定した。
Al: 0.10% or less,
Al is an element that acts as a deoxidizer, and such an effect is recognized when contained in an amount of 0.001% or more, but inclusion exceeding 0.10% degrades toughness. For this reason, Al was limited to 0.10% or less. In addition, Preferably it is 0.01 to 0.04%.
Cr: 10-14%
Cr is a basic element for improving corrosion resistance such as carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and it is necessary to contain 10% or more in the present invention. On the other hand, if the content exceeds 14%, a ferrite phase tends to be formed, and a large amount of alloying element is required to stably secure a martensite structure, leading to an increase in material cost. For this reason, in the present invention, Cr is limited to the range of 10 to 14%.

Ni:3〜8%、
Niは、耐炭酸ガス腐食性を向上させるとともに、固溶して強度上昇に寄与し、また靭性を向上させる元素である。また、Niはオーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、3%以上の含有を必要とする。一方、8%を超える含有は、変態点が低下しすぎて、所望の特性を確保するための焼戻し処理が長時間となるうえ、材料コストの高騰を招く。このため、Niは3〜8%の範囲に限定した。なお、好ましくは4〜7%である。
Ni: 3-8%,
Ni is an element that improves the corrosion resistance of carbon dioxide gas, contributes to an increase in strength by solid solution, and improves toughness. Ni is an austenite-forming element and acts effectively to stably secure a martensite structure in a low carbon region. In order to obtain such an effect, the content of 3% or more is required. On the other hand, if the content exceeds 8%, the transformation point is excessively lowered, and the tempering treatment for securing the desired characteristics takes a long time, and the material cost increases. For this reason, Ni was limited to the range of 3 to 8%. In addition, Preferably it is 4 to 7%.

Mo:1.0〜4.0%、
Moは、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、このような効果を得るためには1.0%以上含有する必要がある。一方、4.0%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Moは1.0〜4.0に限定した。なお、好ましくは1.5〜3.0%である。
Mo: 1.0-4.0%
Mo is an element that improves stress corrosion cracking resistance, further sulfide stress corrosion cracking resistance, and pitting corrosion resistance. In order to obtain such effects, it is necessary to contain 1.0% or more. On the other hand, if the content exceeds 4.0%, ferrite is easily generated and the effect of improving resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Mo was limited to 1.0-4.0. In addition, Preferably it is 1.5 to 3.0%.

V:0.02〜0.10%、
Vは、炭化物形成元素であり、Crに比べて炭化物形成能が強く、溶接熱で固溶したCが、Cr炭化物として旧オーステナイト粒界に再析出するのを抑制し、溶接部の耐IGSCC性を向上させる効果を有する。このような効果を得るためには、0.02%以上含有する必要がある。0.10%超える多量の含有は、耐溶接割れ性、靭性を劣化させる。このため、Vは0.10%以下に限定した。なお、好ましくは0.025〜0.075%である。
V: 0.02 to 0.10%,
V is a carbide forming element, and has a stronger carbide forming ability than Cr, and suppresses reprecipitation of C, which is solid-solved by welding heat, as Cr carbide at the prior austenite grain boundaries, and is resistant to IGSCC in the weld zone. Has the effect of improving. In order to acquire such an effect, it is necessary to contain 0.02% or more. A large content exceeding 0.10% deteriorates weld crack resistance and toughness. For this reason, V was limited to 0.10% or less. In addition, Preferably it is 0.025 to 0.075%.

Ca:0.0005〜0.010%
Caは、介在物の形態制御を介して、熱間加工性の向上に寄与する元素である。このような効果を得るためには、0.0005%以上含有することが望ましいが、0.010%を超えて含有すると、粗大介在物として存在しやすくなるため耐食性の劣化、靭性の低下が著しくなる。このため、Caは0.0005〜0.010%の範囲に限定した。なお、好ましくは0.0005〜0.0030%である。
Ca: 0.0005 to 0.010%
Ca is an element that contributes to the improvement of hot workability through the form control of inclusions. In order to obtain such an effect, it is desirable to contain 0.0005% or more. However, if it exceeds 0.010%, it tends to exist as coarse inclusions, so that the corrosion resistance and toughness are significantly reduced. For this reason, Ca was limited to 0.0005 to 0.010% of range. In addition, Preferably it is 0.0005 to 0.0030%.

上記した成分が基本の組成であるが、基本組成に加えて、さらに必要に応じて、Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下のうちから選ばれた1種または2種以上、および/または、Cu:4.0%以下、W:4.0%以下のうちから選ばれた1種または2種を、選択して含有できる。
Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下のうちから選ばれた1種または2種以上
Ti、Nb、Zrはいずれも、Vと同様に炭化物形成元素であり、必要に応じて1種または2種以上を選択して含有できる。Ti、Nb、Zr はいずれも、Crに比べて炭化物形成能が強く、溶接熱で固溶したCが、Cr炭化物として旧オーステナイト粒界に再析出するのを抑制し、溶接部の耐IGSCC性を向上させる効果を有する。また、Ti、Nb、Zr の炭化物は、溶接熱で高温に加熱されても溶解しにくく固溶Cの発生が抑制され、このことを介してCr炭化物の形成を抑制し、溶接部の耐IGSCC性を向上させるという効果もある。このような効果を得るためには、Ti:0.03%以上、Nb:0.03%以上、Zr:0.03%以上をそれぞれ含有することが好ましい。一方、Ti:0.15%、Nb:0.10%、Zr:0.10%をそれぞれ超える含有は、耐溶接割れ性、靭性を劣化させる。このため、Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下にそれぞれ限定することが好ましい。なお、より好ましくは Ti:0.03〜0.12%、Nb:0.03〜0.08%、Zr:0.03〜0.08%である。
The above-mentioned components have a basic composition. In addition to the basic composition, one or two selected from Ti: 0.15% or less, Nb: 0.10% or less, and Zr: 0.10% or less as required. One or more selected from Cu or more and / or Cu: 4.0% or less, W: 4.0% or less can be selected and contained.
One or more selected from Ti: 0.15% or less, Nb: 0.10% or less, Zr: 0.10% or less
Ti, Nb, and Zr are all carbide-forming elements like V, and can be selected from one or more as required. Ti, Nb, and Zr all have a stronger carbide forming ability than Cr, and suppress the re-precipitation of C, which is solid-solved by welding heat, as Cr carbide at the prior austenite grain boundaries. Has the effect of improving. In addition, Ti, Nb and Zr carbides are difficult to dissolve even when heated to high temperatures with welding heat, and the formation of solute C is suppressed, which suppresses the formation of Cr carbides and suppresses the IGSCC resistance of welds. There is also an effect of improving the performance. In order to obtain such an effect, it is preferable to contain Ti: 0.03% or more, Nb: 0.03% or more, and Zr: 0.03% or more. On the other hand, the content exceeding Ti: 0.15%, Nb: 0.10% and Zr: 0.10% respectively deteriorates weld crack resistance and toughness. For this reason, it is preferable to limit to Ti: 0.15% or less, Nb: 0.10% or less, and Zr: 0.10% or less, respectively. More preferably, they are Ti: 0.03-0.12%, Nb: 0.03-0.08%, Zr: 0.03-0.08%.

Cu:4.0%以下、W:4.0%以下のうちから選ばれた1種または2種
Cu、Wはいずれも、COを含有する天然ガスを輸送するラインパイプ用鋼管に要求される特性である耐炭酸ガス腐食性を向上させる元素であり、必要に応じて1種または2種を選択して含有できる。
Cuは、耐炭酸ガス腐食性を向上させるとともに、オーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、0.5%以上含有することが好ましい。一方、4.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Cuは4.0%以下に限定することが好ましい。なお、より好ましくは1.0〜3.0%である。
One or two selected from Cu: 4.0% or less, W: 4.0% or less
Both Cu and W are elements that improve the corrosion resistance of carbon dioxide gas, which is a characteristic required for steel pipes for line pipes that transport natural gas containing CO 2 , and one or two of them can be selected as necessary. Can be selected and contained.
Cu is an austenite forming element as well as improving the carbon dioxide gas corrosion resistance, and effectively acts to secure a stable martensite structure in a low carbon region. In order to acquire such an effect, it is preferable to contain 0.5% or more. On the other hand, even if the content exceeds 4.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Cu to 4.0% or less. In addition, More preferably, it is 1.0 to 3.0%.

Wは、耐炭酸ガス腐食性を向上させるとともに、さらに、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、その効果を得るためには0.5%以上含有することが好ましいが、4.0%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Wは4.0%以下に限定することが好ましい。なお、より好ましくは1.0〜3.0%である。   W is an element that improves the corrosion resistance of carbon dioxide gas, and further improves the resistance to stress corrosion cracking, further resistance to sulfide stress corrosion cracking, and pitting corrosion resistance. It is preferable to contain more than 4.0%, but if the content exceeds 4.0%, it is easy to produce ferrite, and the effect of improving resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected. Become. For this reason, it is preferable to limit W to 4.0% or less. In addition, More preferably, it is 1.0 to 3.0%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。
本発明で使用するマルテンサイト系ステンレス鋼鋼帯は、上記した組成の溶鋼を、転炉、電気炉、真空溶解炉などの通常の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法などの公知の方法でスラブ等の製品素材とし、該製品素材に公知の熱間加工を適用し、所定の寸法の熱延鋼板とすることが好ましい。熱間加工後、室温まで冷却したこれら熱延鋼板には、さらにAc3変態点以上の温度に再加熱したのち空冷以上の冷却速度で冷却する焼入れ処理を施し、ついで、Ac1変態点以下の温度で焼戻し処理を行うことが好ましい。なお、上記した組成の鋼は、熱間加工後、空冷以上の冷却速度で冷却すれば、マルテンサイト組織とすることができるので、焼入れ処理を省略して、熱間加工後、室温まで冷却したのち、直接焼戻し処理を施してもよい。
The balance other than the above components is composed of Fe and inevitable impurities.
The martensitic stainless steel strip used in the present invention is obtained by melting the molten steel having the above composition by a normal melting method such as a converter, an electric furnace, a vacuum melting furnace, and the like. It is preferable to use a known method such as a lump rolling method as a product material such as a slab and apply a known hot working to the product material to obtain a hot-rolled steel sheet having a predetermined size. After hot working, these hot-rolled steel sheets cooled to room temperature were further reheated to a temperature above the Ac 3 transformation point, and then subjected to quenching treatment at a cooling rate above air cooling, and then below the Ac 1 transformation point. It is preferable to perform a tempering treatment at a temperature. Note that the steel having the above composition can be made into a martensite structure if it is cooled at a cooling rate equal to or higher than air cooling after hot working, so that the quenching treatment is omitted and the steel is cooled to room temperature after hot working. Thereafter, direct tempering treatment may be performed.

上記した鋼帯1を、例えば図3に示す、好ましくは複数の各種成形ロール(ブレイクダウンロール3、ケージロール4、フィンパスロール5等)を直列的に配設した連続成形設備で、連続的に、略円筒状断面のオープン管11とする。ついで、オープン管11をスクイズロール7で加圧しながら、オープン管の両端面同士を突合せ、シーム部を溶接手段6により溶接接合して溶接管12とする。なお、使用する製造設備は、常用の溶接管の製造設備がいずれも適用できる。   For example, the steel strip 1 is continuously formed in a continuous forming facility shown in FIG. 3, for example, in which a plurality of various forming rolls (breakdown roll 3, cage roll 4, fin pass roll 5, etc.) are arranged in series. The open tube 11 has a substantially cylindrical cross section. Next, while pressing the open pipe 11 with the squeeze roll 7, both end faces of the open pipe are brought into contact with each other, and the seam portion is welded and joined by the welding means 6 to obtain a welded pipe 12. In addition, as for the manufacturing equipment to be used, any of the conventional equipment for manufacturing welded pipes can be applied.

溶接接合は、常用の高周波抵抗溶接法(電縫溶接法)を溶接手段として用いて溶接接合とすることが好ましいが、高周波抵抗溶接法に代えて、高密度エネルギービーム溶接法としてもよい。なお、高密度エネルギービームとしてはレーザビームとすることが好ましい。高密度エネルギービーム溶接を用いて溶接接合する際には、高密度エネルギービームの照射条件を、オープン管の両端面部が全厚にわたり溶融する条件とすることは言うまでもない。なお、溶接接合して得られた溶接管の外面および内面には、溶接時に溶接部を加圧することにより、溶湯が押し出されて凝固し隆起部(ビード)を形成する。これらビードは、内外面ともに切削加工等で除去して平滑化することが好ましい。   The welding joining is preferably performed using a conventional high-frequency resistance welding method (electro-sealing welding method) as a welding means, but may be a high-density energy beam welding method instead of the high-frequency resistance welding method. The high-density energy beam is preferably a laser beam. Needless to say, when welding and bonding using high-density energy beam welding, the irradiation condition of the high-density energy beam is a condition in which both end portions of the open tube are melted over the entire thickness. In addition, by pressurizing a welded part at the time of welding, the molten metal is extruded and solidified on the outer surface and the inner surface of the welded pipe obtained by welding joining to form a raised part (bead). These beads are preferably removed and smoothed by cutting or the like on both the inner and outer surfaces.

Cr等の合金成分を多量に含むステンレス鋼では、溶接に際し高融点酸化物を多量に生成しやすく、生成した高融点酸化物がシーム溶接部に残留し、ぺネトレータと称する溶接欠陥を発生しやすい。高融点酸化物の生成を抑制するためには、不活性ガスで溶湯をシールドすることが考えられるが、高融点酸化物の生成を完全には防止できない。そこで、溶接時に生じた溶湯が大気と接触することが避けられる高密度エネルギービーム溶接を用いて、溶接接合することが好ましい。しかし、高密度エネルギービームの照射条件によっては照射量が不足する場合があり、とくに溶接管の内面側に未溶融部を残す場合があり、溶接管内面側のビード表面にアンダーカット、ポロシティ等の溶接欠陥が発生しやすいという問題がある。   Stainless steel containing a large amount of alloy components such as Cr tends to generate a large amount of high-melting-point oxide during welding, and the generated high-melting-point oxide remains in the seam weld and easily causes welding defects called penetrators. . In order to suppress the formation of the high melting point oxide, it is conceivable to shield the molten metal with an inert gas, but the generation of the high melting point oxide cannot be completely prevented. Therefore, it is preferable to perform welding joining using high-density energy beam welding in which the molten metal generated during welding is prevented from coming into contact with the atmosphere. However, depending on the irradiation condition of the high-density energy beam, the irradiation amount may be insufficient, and an unmelted part may remain on the inner surface side of the welded pipe. There is a problem that welding defects are likely to occur.

このような管内面側の溶接欠陥の発生を想定し、管内面側のシーム溶接部に、管内表面から肉厚方向に0.5mm以上再溶融させ凝固させるシーム溶接部補修処理を行うことが好ましい。なお、シーム溶接部補修処理は、具体的には溶融部の幅を2〜5mmとすることが、すなわち、シーム溶接部の溶融部の幅の2〜5倍以下程度とすることが、溶接欠陥の発生防止の観点から好ましい。これにより、シーム溶接部内面側表面の溶接欠陥の発生を防止できる。なお、再溶融させる深さ(肉厚方向距離)は、内表面から管肉厚の40%以下、具体的には5mm以下とすることが好ましい。なお、シーム溶接部補修処理は、加熱する位置や温度等を制御できる加熱方法であれば、とくに限定されない。アーク、プラズマ、レーザ等を利用した加熱・溶解方法がいずれも利用できる。   Assuming the occurrence of such a weld defect on the inner surface of the pipe, it is preferable to perform a seam weld repair process for remelting and solidifying the seam weld on the inner surface of the pipe by 0.5 mm or more in the thickness direction from the inner surface of the pipe. In addition, the seam welded part repair process specifically has a width of the melted part of 2 to 5 mm, that is, a weld defect of about 2 to 5 times or less the width of the melted part of the seam welded part. From the viewpoint of preventing the occurrence of Thereby, generation | occurrence | production of the welding defect of the seam welding part inner surface side surface can be prevented. The remelting depth (distance in the thickness direction) is preferably 40% or less of the tube thickness from the inner surface, specifically, 5 mm or less. The seam weld repair process is not particularly limited as long as it is a heating method capable of controlling the heating position and temperature. Any heating / melting method using arc, plasma, laser or the like can be used.

本発明では、溶接接合したのち、あるいは高密度エネルギービーム溶接により溶接接合し、さらに管内面側へのシーム溶接部補修処理を行ったのちに、溶接管のシーム溶接部に、550〜700℃の範囲の温度で1〜20min間保持するシーム溶接部後熱処理を施す。これにより、管円周溶接した後に、IGSCC防止のためのPWHTを施されても、シーム溶接部にIGSCCが発生することを防止できる。なお、シーム溶接部後熱処理は、管全体に施してもよいが、例えば円周溶接やその後のPWHTにより比較的低温に加熱され、固溶CがCr炭化物として旧γ粒界に再析出する温度域となることが懸念されるシーム溶接部、すなわち管の両端部近傍のシーム溶接部のみで十分である。   In the present invention, after being welded or welded by high-density energy beam welding, and further subjected to seam weld repair on the inner surface of the pipe, the seam welded portion of the welded pipe is subjected to 550 to 700 ° C. A post-heat treatment of the seam weld is held at a temperature in the range for 1-20 min. Thereby, even if PWHT for IGSCC prevention is given after pipe circumference welding, it can prevent IGSCC generating in a seam welded part. The post-seam weld post-heat treatment may be performed on the entire tube, but is heated to a relatively low temperature by, for example, circumferential welding or subsequent PWHT, and the temperature at which the solid solution C reprecipitates as a Cr carbide at the old γ grain boundary. Only the seam weld where there is a concern of becoming a zone, that is, the seam weld near the ends of the tube, is sufficient.

また、シーム溶接部後熱処理の加熱温度が550℃未満では、安定した炭化物が生成しにくく、その後のPWHT処理でIGSCCが発生する恐れが増大し、シーム溶接部の耐IGSCC性が低下する傾向が高くなる。一方、700℃を超えて高温となると、溶接部の硬さが増加する傾向を示し靭性が低下する。このため、シーム溶接部後熱処理の加熱温度は550〜700℃とした。なお、好ましくは600〜650℃である。また、シーム溶接部後熱処理の加熱方法は、とくに限定する必要はないが、加熱位置や温度の制御が容易な誘導加熱とすることが好ましい。   In addition, when the heating temperature of the post-seam weld post-heat treatment is less than 550 ° C, stable carbides are less likely to be generated, and the possibility of IGSCC occurring during the subsequent PWHT treatment increases, and the IGSCC resistance of the seam weld tends to decrease. Get higher. On the other hand, when it becomes high temperature exceeding 700 degreeC, the hardness of a welded part will increase and toughness will fall. For this reason, the heating temperature of the seam weld post-heat treatment was set to 550 to 700 ° C. In addition, Preferably it is 600-650 degreeC. Moreover, the heating method of the post-seam weld post-heat treatment is not particularly limited, but is preferably induction heating in which the heating position and temperature can be easily controlled.

また、上記した熱処理の加熱温度範囲で、保持時間が1min未満では、保持時間が短すぎて、安定した耐IGSCC性が確保できない。一方、20minを超えて保持時間が長くなると、生産性が低下する。このため、熱処理の保持時間は1〜20minとした。なお、好ましくは3〜10minである。
なお、シーム溶接部後熱処理は少なくとも、シーム溶接部の溶融部と熱影響部を合わせた幅の1倍以上2倍以下程度、あるいはシーム溶接部補修処理の溶融部と熱影響部を合わせた幅の1倍以上、好ましくは2倍以下とすることが好ましい。なお、ここでいう「シーム溶接部の熱影響部」や「シーム溶接部補修処理の熱影響部」とは、その処理によりAc変態点以上に加熱された領域をいう。
Further, if the holding time is less than 1 min in the heating temperature range of the heat treatment described above, the holding time is too short and stable IGSCC resistance cannot be ensured. On the other hand, when the holding time is longer than 20 min, the productivity is lowered. For this reason, the heat treatment holding time was set to 1 to 20 minutes. In addition, Preferably it is 3-10min.
In addition, the post heat treatment of the seam welded portion is at least about 1 to 2 times the combined width of the seam welded portion and the heat affected zone, or the combined width of the seam welded portion repair process and the heat affected zone. 1 times or more, preferably 2 times or less. Here, “the heat affected zone of the seam weld zone” and “the heat affected zone of the seam weld zone repair process” refer to a region heated to the Ac 1 transformation point or higher by the process.

表1に示す組成のマルテンサイト系ステンレス鋼鋼帯(板厚:6mm)を、図3に示す、連続ロール成形、スクイズロール、溶接手段等からなる溶接管製造設備を用いて、溶接鋼管(外径:219mmφ)とした。なお、使用した鋼帯は、熱間圧延後、室温まで空冷し、その後、580〜620℃で焼戻処理を行った。また、用いた溶接手段は、高周波抵抗溶接法、およびレーザ溶接法とした。高周波抵抗溶接法の溶接条件は、溶接速度:20m/min、N2雰囲気中とした。レーザ溶接法は、ファイバーレーザを用いて、レーザ出力:20kW、溶接速度:8m/min、Arガス雰囲気中で行った。 A martensitic stainless steel strip (thickness: 6 mm) having the composition shown in Table 1 is used to produce a welded steel pipe (outside) using a welded pipe manufacturing facility consisting of continuous roll forming, squeeze roll, welding means, etc. shown in FIG. Diameter: 219 mmφ). In addition, the steel strip used was air-cooled to room temperature after hot rolling, and then tempered at 580 to 620 ° C. The welding means used was a high frequency resistance welding method and a laser welding method. The welding conditions of the high frequency resistance welding method were a welding speed: 20 m / min and in an N 2 atmosphere. The laser welding method was performed using a fiber laser, laser output: 20 kW, welding speed: 8 m / min, in an Ar gas atmosphere.

シーム溶接後、シーム溶接部の内外面のビードを切削加工によりそれぞれ平滑化した。なお、一部の鋼管にはシーム溶接部の内面側から表2に示す条件でシーム溶接部補修処理を施した。
得られた溶接管の管円周方向が引張方向となるように、API-5LX規格に準拠して引張試験片(標点:50.4mm)を母材部から採取し、引張試験を実施し、母材部の引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。得られた引張特性を表2に示す。
After seam welding, the beads on the inner and outer surfaces of the seam welded portion were each smoothed by cutting. In addition, some steel pipes were subjected to seam weld repair treatment under the conditions shown in Table 2 from the inner surface side of the seam weld.
In order to make the pipe circumferential direction of the obtained welded pipe the tensile direction, a tensile test piece (marking point: 50.4 mm) is taken from the base material according to the API-5LX standard, and a tensile test is performed. Tensile properties (yield strength YS, tensile strength TS, elongation El) of the base material were determined. The obtained tensile properties are shown in Table 2.

さらに、得られた溶接管から、シーム溶接部を含む試験材(肉厚:3mm×幅15mm×115mm長さ)を採取した。該試験材に、表3に示す条件のシーム溶接部後熱処理を施し、ついで、試験片のシーム溶接部に直交する幅10mmの領域に、表3に示す条件の円周溶接部のPWHT相当熱処理を実施した。
上記した処理を施された試験材を、研磨して、4点曲げ応力腐食割れ試験用試験片とし、4点曲げ応力腐食割れ試験を実施した。
Further, a test material (wall thickness: 3 mm × width 15 mm × 115 mm length) including a seam weld was collected from the obtained welded pipe. The test material is subjected to a post-seam weld heat treatment under the conditions shown in Table 3, and then a PWHT equivalent heat treatment of the circumferential weld under the conditions shown in Table 3 in a region of 10 mm width orthogonal to the seam weld of the test piece. Carried out.
The test material subjected to the above treatment was polished to obtain a test piece for a four-point bending stress corrosion cracking test, and a four-point bending stress corrosion cracking test was performed.

4点曲げ応力腐食割れ試験は、図2に示すような治具20を用いて試験片を保持し、腐食環境中に浸漬する試験とした。試験期間は720hrとした。なお、腐食環境は、液温:100℃、CO圧:0.1MPa、pH:2.0の5%NaCl水溶液とした。負荷歪は0.6%とした。
試験後、試験片断面について、目視、および100倍の光学顕微鏡で割れの有無を観察し、耐粒界応力腐食割れ性(耐IGSCC性)を評価した。割れなしを○、割れありを×で表示した。
The 4-point bending stress corrosion cracking test was a test in which a test piece was held using a jig 20 as shown in FIG. 2 and immersed in a corrosive environment. The test period was 720 hours. The corrosive environment was a 5% NaCl aqueous solution having a liquid temperature of 100 ° C., a CO 2 pressure of 0.1 MPa, and a pH of 2.0. The load strain was 0.6%.
After the test, the cross section of the test piece was visually observed and observed for cracking with a 100 × optical microscope, and the intergranular stress corrosion cracking resistance (IGSCC resistance) was evaluated. No cracking was indicated by ○, and cracking was indicated by ×.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2011089159
Figure 2011089159

Figure 2011089159
Figure 2011089159

Figure 2011089159
Figure 2011089159

本発明例はいずれも、シーム溶接部のIGSCCを防止することができシーム溶接部の耐IGSCC性に優れた溶接鋼管となっている。一方、本発明の範囲を外れる比較例では、割れの発生が認められ、耐IGSCC性が低下している。   Each of the examples of the present invention is a welded steel pipe that can prevent IGSCC in the seam welded portion and has excellent IGSCC resistance in the seam welded portion. On the other hand, in the comparative example outside the scope of the present invention, the occurrence of cracks was observed, and the IGSCC resistance was lowered.

1 鋼帯
2 エッジミラー
3 ブレイクダウンロール
4 ケージロール
5 フィンパスロール
6 溶接手段
7 スクイズロール
8 サイジングロール
9 切断機
11 オープン管
12 溶接管
20 治具
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Edge mirror 3 Breakdown roll 4 Cage roll 5 Fin pass roll 6 Welding means 7 Squeeze roll 8 Sizing roll 9 Cutting machine
11 open tube
12 Welded pipe
20 Jig

Claims (5)

鋼帯を連続的に成形し、略円筒状断面のオープン管となし、該オープン管の両端面同士を突合せ、溶接接合して溶接管とする溶接管の製造方法において、前記鋼帯を、質量%で、
C:0.0200%未満、 N:0.0200%未満、
Si:1.0%以下、 Mn:2.0%以下、
P:0.03%以下、 S:0.010%以下、
Al:0.10%以下、 Cr:10〜14%、
Ni:3〜8%、 Mo:1〜4%、
V:0.02〜0.10%、 Ca:0.0005〜0.010%
を含有し、残部Feおよび不可避的不純物からなる組成を有するマルテンサイト系ステンレス鋼鋼帯とし、前記溶接接合したのち、
前記溶接管のシーム溶接部に、550〜700℃の範囲の温度で1〜20min間保持するシーム溶接部後熱処理を施し、
耐粒界応力腐食割れ性に優れたシーム溶接部を有する溶接管とすることを特徴とするマルテンサイト系ステンレス鋼溶接管の製造方法。
In the manufacturing method of a welded pipe in which a steel strip is continuously formed and formed into an open pipe having a substantially cylindrical cross section, both end faces of the open pipe are butted and welded to form a welded pipe, %so,
C: Less than 0.0200%, N: Less than 0.0200%,
Si: 1.0% or less, Mn: 2.0% or less,
P: 0.03% or less, S: 0.010% or less,
Al: 0.10% or less, Cr: 10-14%,
Ni: 3-8%, Mo: 1-4%
V: 0.02 to 0.10%, Ca: 0.0005 to 0.010%
And a martensitic stainless steel strip having a composition comprising the balance Fe and unavoidable impurities, and after the welding joint,
To the seam weld of the welded pipe, a post-heat treatment for the seam weld that is held for 1 to 20 minutes at a temperature in the range of 550 to 700 ° C.
A method for producing a martensitic stainless steel welded pipe, comprising a welded pipe having a seam welded portion having excellent intergranular stress corrosion cracking resistance.
前記組成に加えてさらに、質量%で、Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載のマルテンサイト系ステンレス鋼溶接管の製造方法。   In addition to the above composition, the composition further comprises, in mass%, one or more selected from Ti: 0.15% or less, Nb: 0.10% or less, Zr: 0.10% or less. The manufacturing method of the martensitic stainless steel welded pipe of Claim 1. 前記組成に加えてさらに、質量%で、Cu:4.0%以下、W:4.0%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または2にマルテンサイト系ステンレス鋼溶接管の製造方法。   The composition according to claim 1 or 2, further comprising one or two kinds selected from Cu: 4.0% or less and W: 4.0% or less by mass% in addition to the composition. Manufacturing method of martensitic stainless steel welded pipe. 前記溶接接合が、高密度エネルギービーム溶接法を用いた溶接接合であることを特徴とする請求項1ないし3のいずれかに記載のマルテンサイト系ステンレス鋼溶接管の製造方法。   The method for manufacturing a martensitic stainless steel welded pipe according to any one of claims 1 to 3, wherein the weld joint is a weld joint using a high-density energy beam welding method. 前記溶接接合したのちで、前記シーム溶接部後熱処理を施す前に、前記溶接管のシーム溶接部に、該シーム溶接部の内表面から肉厚方向に0.5mm以上再溶融させ凝固させるシーム溶接部補修処理を行うことを特徴とする請求項4に記載のマルテンサイト系ステンレス鋼溶接管の製造方法。   A seam welded part that is remelted and solidified by 0.5 mm or more in the thickness direction from the inner surface of the seam welded part to the seam welded part of the welded pipe after the welded joint and before the post-seam welded part heat treatment The method for manufacturing a martensitic stainless steel welded pipe according to claim 4, wherein repair treatment is performed.
JP2009242261A 2009-10-21 2009-10-21 Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance Active JP5549176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242261A JP5549176B2 (en) 2009-10-21 2009-10-21 Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242261A JP5549176B2 (en) 2009-10-21 2009-10-21 Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JP2011089159A true JP2011089159A (en) 2011-05-06
JP5549176B2 JP5549176B2 (en) 2014-07-16

Family

ID=44107665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242261A Active JP5549176B2 (en) 2009-10-21 2009-10-21 Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP5549176B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
JP2017040000A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Low carbon martensitic stainless steel welded tube and production method therefor
WO2017200083A1 (en) * 2016-05-20 2017-11-23 新日鐵住金株式会社 Steel bar for downhole member and downhole member
WO2018003248A1 (en) * 2016-06-30 2018-01-04 Jfeスチール株式会社 Electric seam welded stainless steel clad pipe and method for manufacturing same
CN108754113A (en) * 2018-06-15 2018-11-06 中国电建集团山东电力建设第工程有限公司 A kind of local heat dissipation type pipe group weld seam heat treatment process of whole heating
JP2019123937A (en) * 2018-01-16 2019-07-25 日本製鉄株式会社 Stainless steel pipe and method for producing weld joint
EP3604591A4 (en) * 2017-03-28 2020-09-02 Nippon Steel Corporation Martensitic stainless steel material
CN113462978A (en) * 2021-06-30 2021-10-01 重庆长安汽车股份有限公司 Ultrahigh-strength martensitic steel for automobile and rolling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147969A (en) * 1997-08-01 1999-02-23 Kawasaki Steel Corp Manufacture of welded steel tube for line pipe excellent in corrosion resistance
JP2001158945A (en) * 1999-12-03 2001-06-12 Nkk Corp High chromium welded steel pipe excellent in weld zone toughness and corrosion resistance
JP2002339044A (en) * 2001-05-15 2002-11-27 Nkk Corp High strength martensite stainless steel strip and production method therefor
JP2005336601A (en) * 2004-01-30 2005-12-08 Jfe Steel Kk Martensitic stainless steel tube
WO2009123330A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147969A (en) * 1997-08-01 1999-02-23 Kawasaki Steel Corp Manufacture of welded steel tube for line pipe excellent in corrosion resistance
JP2001158945A (en) * 1999-12-03 2001-06-12 Nkk Corp High chromium welded steel pipe excellent in weld zone toughness and corrosion resistance
JP2002339044A (en) * 2001-05-15 2002-11-27 Nkk Corp High strength martensite stainless steel strip and production method therefor
JP2005336601A (en) * 2004-01-30 2005-12-08 Jfe Steel Kk Martensitic stainless steel tube
WO2009123330A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US10005151B2 (en) * 2013-09-30 2018-06-26 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
JP2017040000A (en) * 2015-08-18 2017-02-23 Jfeスチール株式会社 Low carbon martensitic stainless steel welded tube and production method therefor
WO2017200083A1 (en) * 2016-05-20 2017-11-23 新日鐵住金株式会社 Steel bar for downhole member and downhole member
US10995394B2 (en) 2016-05-20 2021-05-04 Nippon Steel Corporation Steel bar for downhole member, and downhole member
JP6264521B1 (en) * 2016-05-20 2018-01-24 新日鐵住金株式会社 Steel bar for downhole member and downhole member
RU2710808C1 (en) * 2016-05-20 2020-01-14 Ниппон Стил Корпорейшн Steel long products for well element and well element
CN109414741A (en) * 2016-06-30 2019-03-01 杰富意钢铁株式会社 Electric resistance welding stainless steel composite pipe and its manufacturing method
JP6265311B1 (en) * 2016-06-30 2018-01-24 Jfeスチール株式会社 ERW Welded Stainless Clad Steel Pipe and Manufacturing Method Thereof
US10724670B2 (en) 2016-06-30 2020-07-28 Jfe Steel Corporation Method of producing electric-resistance-welded stainless clad steel pipe or tube
CN109414741B (en) * 2016-06-30 2020-08-14 杰富意钢铁株式会社 Electric resistance welded stainless steel composite steel pipe and method for manufacturing same
US10844993B2 (en) 2016-06-30 2020-11-24 Jfe Steel Corporation Electric-resistance-welded stainless clad steel pipe or tube
WO2018003248A1 (en) * 2016-06-30 2018-01-04 Jfeスチール株式会社 Electric seam welded stainless steel clad pipe and method for manufacturing same
EP3604591A4 (en) * 2017-03-28 2020-09-02 Nippon Steel Corporation Martensitic stainless steel material
JP2019123937A (en) * 2018-01-16 2019-07-25 日本製鉄株式会社 Stainless steel pipe and method for producing weld joint
JP7172623B2 (en) 2018-01-16 2022-11-16 日本製鉄株式会社 Method for manufacturing stainless steel pipes and welded joints
CN108754113A (en) * 2018-06-15 2018-11-06 中国电建集团山东电力建设第工程有限公司 A kind of local heat dissipation type pipe group weld seam heat treatment process of whole heating
CN113462978A (en) * 2021-06-30 2021-10-01 重庆长安汽车股份有限公司 Ultrahigh-strength martensitic steel for automobile and rolling method
CN113462978B (en) * 2021-06-30 2022-12-09 重庆长安汽车股份有限公司 Ultrahigh-strength martensitic steel for automobile and rolling method

Also Published As

Publication number Publication date
JP5549176B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5549176B2 (en) Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
WO2012144248A1 (en) Electric resistance welded (erw) steel pipe for oil well use and process for producing erw steel pipe for oil well use
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP2007314828A (en) High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
JP5782828B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP2009091653A (en) High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
JP5447698B2 (en) High-strength steel for steam piping and method for manufacturing the same
JP2009202167A (en) Welded steel pipe having excellent weld heat-affected zone toughness
JP4741528B2 (en) Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them
JP2007321181A (en) Method for forming martenstic stainless steel material welded part
JP2007023346A (en) Method for producing high strength welded steel tube excellent in strain-aging characteristic
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP3077576B2 (en) Method for producing low carbon martensitic stainless steel welded pipe
JP5040973B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP6390677B2 (en) Low carbon martensitic stainless steel welded pipe and method for producing the same
JP5292869B2 (en) High strength steel pipe excellent in internal pressure fracture resistance and method for producing the same
JP4765283B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP5782830B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP4997695B2 (en) Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250