JP4997695B2 - Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe - Google Patents

Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe Download PDF

Info

Publication number
JP4997695B2
JP4997695B2 JP2004299279A JP2004299279A JP4997695B2 JP 4997695 B2 JP4997695 B2 JP 4997695B2 JP 2004299279 A JP2004299279 A JP 2004299279A JP 2004299279 A JP2004299279 A JP 2004299279A JP 4997695 B2 JP4997695 B2 JP 4997695B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
martensitic stainless
pipe
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004299279A
Other languages
Japanese (ja)
Other versions
JP2006110585A (en
Inventor
由紀夫 宮田
光男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004299279A priority Critical patent/JP4997695B2/en
Publication of JP2006110585A publication Critical patent/JP2006110585A/en
Application granted granted Critical
Publication of JP4997695B2 publication Critical patent/JP4997695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、天然ガスや石油等の輸送用ラインパイプとして好適なマルテンサイト系ステンレス継目無鋼管に係り、とくにマルテンサイト系ステンレス鋼管円周溶接継手における溶接熱影響部の耐粒界応力腐食割れ性の改善に関する。
The present invention relates to a martensitic stainless steel seamless pipe suitable as a line pipe for transportation of natural gas, oil, etc., and particularly, intergranular stress corrosion cracking resistance of a weld heat affected zone in a martensitic stainless steel pipe circumferential welded joint. Related to improvements.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇に対処するために、従来省みられなかったような深層油田や、開発が一旦放棄されていた腐食性の強いサワーガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田において、使用される鋼管には、耐食性に富むことが求められている。   In recent years, in order to cope with the rise in crude oil prices and the expected depletion of oil resources in the near future, deep oil fields that have not been excluded in the past, and highly corrosive sour gas fields that were once abandoned. Development on the world is thriving on a global scale. In such oil and gas fields, the steel pipes used are required to have high corrosion resistance.

従来、例えば、炭酸ガスを多量に含む環境では、防食手段としてインヒビターの添加が行われてきた。しかし、インヒビターの添加は、コスト高となるだけでなく、高温では十分な効果が得られないことがあるため、最近ではインヒビターを使用せず、耐食性に優れた鋼管を使用する傾向となっている。   Conventionally, for example, in an environment containing a large amount of carbon dioxide, an inhibitor has been added as a means for preventing corrosion. However, the addition of an inhibitor not only increases the cost, but may not be sufficiently effective at high temperatures, so recently there has been a tendency to use a steel pipe with excellent corrosion resistance without using an inhibitor. .

ラインパイプ用材料としては、API規格にC量を低減した12%Crマルテンサイト系ステンレス鋼が規定され、最近では、CO を含有する天然ガス用のラインパイプとしてマルテンサイト系ステンレス鋼管が多く使用されるようになってきている。しかし、マルテンサイト系ステンレス鋼管は、円周溶接時に予熱や後熱を必要とするうえ、溶接部靭性が劣るという問題があった。 As a material for line pipes, 12% Cr martensitic stainless steel with reduced C content is defined in the API standard, and recently, martensitic stainless steel pipes are often used as line pipes for natural gas containing CO 2. It has come to be. However, the martensitic stainless steel pipe has problems that it requires preheating and post-heating at the time of circumferential welding and has poor weld toughness.

このような問題に対し、例えば、特許文献1には、C:0.02%以下、N:0.07%以下に低減するとともに、Cr、Ni、Mo量をC量との関係で、また、Cr、Ni、Mo量をC、N量との関係で、さらにNi、Mn量をC、N量との関係で、適正量に調整したマルテンサイト系ステンレス鋼が提案されている。特許文献1に記載された技術で製造されたマルテンサイト系ステンレス鋼管は、耐炭酸ガス腐食性、耐応力腐食割れ性、溶接性、高温強度および溶接部靭性がともに優れた鋼管であるとされる。
特開平9−316611号公報
For such a problem, for example, in Patent Document 1, C: 0.02% or less and N: 0.07% or less are reduced, and the Cr, Ni, and Mo amounts are related to the C amount, and Cr, Ni There has been proposed a martensitic stainless steel in which the Mo amount is adjusted to C and N amounts and the Ni and Mn amounts are adjusted to appropriate amounts in relation to the C and N amounts. The martensitic stainless steel pipe manufactured by the technique described in Patent Document 1 is said to be a steel pipe having excellent carbon dioxide corrosion resistance, stress corrosion cracking resistance, weldability, high temperature strength, and weld toughness. .
JP-A-9-316611

しかし、最近、CO を含有する環境下で、マルテンサイト系ステンレス鋼管を突き合わせて多層盛溶接で溶接した円周溶接部の溶接熱影響部(以下、HAZともいう)に割れが生じ、マルテンサイト系ステンレス鋼管における新たな問題となっている。 However, recently, cracking occurred in the weld heat affected zone (hereinafter also referred to as HAZ) of the circumferential welded portion where the martensitic stainless steel pipes were butted together and welded by multi-layer welding in an environment containing CO 2. This is a new problem in stainless steel pipes.

従来、COを含有する環境下で発生する腐食としては、母材の減肉を伴う、いわゆる炭酸ガス腐食、あるいは母材の応力腐食割れが知られている。しかし、最近問題となっている割れは、円周溶接部のHAZのみに発生し、しかも、いわゆる炭酸ガス腐食が全く問題とならないようなマイルドな環境でも発生するという特徴を有している。また、この割れは、粒界割れを呈することから、粒界応力腐食割れ(Intergranular Stress Corrosion Cracking)(以下、IGSCCともいう)であると推定されている。 Conventionally, as the corrosion that occurs in an environment containing CO 2 , so-called carbon dioxide gas corrosion accompanied by thinning of the base material, or stress corrosion cracking of the base material is known. However, the crack that has recently become a problem is characterized by occurring only in the HAZ of the circumferential weld, and also in a mild environment in which so-called carbon dioxide corrosion is not a problem at all. Moreover, since this crack exhibits a grain boundary crack, it is estimated that the crack is an intergranular stress corrosion cracking (hereinafter also referred to as IGSCC).

このような円周溶接部のHAZに発生するIGSCCを防止するには、600〜650℃で3〜5min間保持するという、短時間の溶接後熱処理が有効であることが知られている。しかし、溶接後熱処理は、短時間といえども、パイプライン敷設工程を複雑にし、かつ工期を長びかせ、敷設コストを上昇させるという問題がある。このようなことから、溶接後熱処理を行うことなく、CO を含有する環境下でもHAZのIGSCCを防止できる、マルテンサイト系ステンレス鋼管円周溶接継手の製造方法が要望されている。 In order to prevent IGSCC occurring in the HAZ of such a circumferential weld, it is known that a short post-weld heat treatment is effective, which is maintained at 600 to 650 ° C. for 3 to 5 minutes. However, the post-weld heat treatment has problems that it complicates the pipeline laying process, lengthens the construction period, and increases the laying cost, even for a short time. For these reasons, there is a demand for a method for manufacturing a martensitic stainless steel pipe circumferential welded joint that can prevent IGSCC of HAZ even in an environment containing CO 2 without performing post-weld heat treatment.

本発明は、かかる要望に鑑みて成されたものであり、溶接後熱処理を施す必要のない、耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手の製造方法を提案することを目的とする。   The present invention has been made in view of such demands, and proposes a method for producing a martensitic stainless steel pipe circumferential welded joint that does not require heat treatment after welding and has excellent intergranular stress corrosion cracking resistance. For the purpose.

本発明者らは、上記した課題を達成するために、マルテンサイト系ステンレス鋼管円周溶接部のHAZにおけるIGSCCの発生におよぼす各種要因について鋭意検討した。その結果、基地中に分散する炭化物が円周溶接時の溶接熱サイクルにより一旦基地中に固溶し、その後の溶接熱サイクルで旧オーステナイト粒界にCr炭化物として析出し、旧オーステナイト粒界近傍にCr欠乏層が形成されるため、COを含有する環境下に晒されるとIGSCCが発生することを突き止めた。 In order to achieve the above-described problems, the present inventors diligently studied various factors affecting the occurrence of IGSCC in the HAZ of a martensitic stainless steel pipe circumferential weld. As a result, the carbide dispersed in the base is once dissolved in the base by the welding heat cycle during circumferential welding, and then precipitated as Cr carbide in the prior austenite grain boundary in the subsequent welding thermal cycle, and in the vicinity of the old austenite grain boundary. Since a Cr-deficient layer is formed, it was found that IGSCC occurs when exposed to an environment containing CO 2 .

このようなメカニズムによる応力腐食割れは、オーステナイト系ステンレス鋼では知られていたが、マルテンサイト系ステンレス鋼で発生するとは考えられていなかった。というのは、マルテンサイト組織中のCrの拡散速度は、オーステナイト組織中のそれに比較し非常に大きいことから、マルテンサイト系ステンレス鋼では、Cr炭化物が生成してもCrが連続的に供給されるため、Cr欠乏層は形成されないと考えられていたからである。しかし、本発明者らは、マルテンサイト系ステンレス鋼でも鋼管円周溶接部のHAZにおける特定の溶接条件の下ではCr欠乏層が形成され、マイルドな腐食環境でもIGSCCに至ることを初めて見出した。   Stress corrosion cracking due to such a mechanism has been known in austenitic stainless steel, but was not considered to occur in martensitic stainless steel. This is because the diffusion rate of Cr in the martensite structure is much higher than that in the austenite structure, so in martensitic stainless steel, Cr is continuously supplied even if Cr carbide is generated. This is because it was thought that a Cr-deficient layer was not formed. However, the present inventors have found for the first time that even in martensitic stainless steel, a Cr-deficient layer is formed under specific welding conditions in the HAZ of the steel pipe circumferential weld, and IGSCC is reached even in a mild corrosive environment.

そして、本発明者らは更なる考究を行った結果、用いるマルテンサイト系ステンレス鋼管のP含有量を0.010mass%以下に制限することにより、旧オーステナイト粒界へのCr炭化物の析出が抑制され、実質的に鋼管円周溶接継手のHAZにおけるIGSCCを抑制できることを見出した。   And as a result of further studies, the present inventors limited the P content of the martensitic stainless steel pipe to be used to 0.010 mass% or less, thereby suppressing the precipitation of Cr carbide on the prior austenite grain boundaries, It was found that IGSCC in the HAZ of a steel pipe circumferential welded joint can be substantially suppressed.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数層の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を製造するに当たり、
前記マルテンサイト系ステンレス鋼管として、mass%で、C:0.015%以下、 N:0.015%以下、Cr:10〜14%、Ni:3〜8%、Si:1.0%以下、 Mn:2.0%以下、S:0.010%以下、P:0.010%以下、Al:0.10%以下、 V:0.10%以下、Mo:1〜4%を含み、さらに、Co:1〜4%、W:1〜4%のうちから選ばれた1種又は2種を含有し、残部Feおよび不可避的不純物からなる組成のマルテンサイト系ステンレス鋼管を用いることを特徴とする耐粒界応力腐食割れ性に優れたラインパイプ用マルテンサイト系ステンレス継目無鋼管円周溶接継手の製造方法
(2)mass%で、C:0.015%以下、N:0.015%以下、Cr:10〜14%、 Ni:3〜8%、Si:1.0%以下、Mn:2.0%以下、S:0.010%以下、 P:0.010%以下、Al:0.10%以下、V:0.10%以下、Mo:1〜4%を含み、さらに、Co:1〜4%、W:1〜4%のうちから選ばれた1種又は2種を含有し、残部Feおよび不可避的不純物からなる組成を有する溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用マルテンサイト系ステンレス継目無鋼管。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) After marching the end portions of martensitic stainless steel pipes, multi-pass welding consisting of multiple layers of welding passes is performed in the circumferential direction along the end portions to form a circumferential welded portion. In producing stainless steel pipe circumferential welded joints,
As the martensitic stainless steel pipe, mass%, C: 0.015% or less, N: 0.015% or less, Cr: 10-14%, Ni: 3-8%, Si: 1.0% or less, Mn: 2.0% or less, S: 0.010% or less, P: 0.010% or less, Al: 0.10% or less, V: 0.10% or less, Mo: 1-4% , Co: 1-4%, W: 1-4% Martensite for line pipes with excellent intergranular stress corrosion cracking resistance, characterized by using martensitic stainless steel pipes containing one or two selected from the group consisting of the remaining Fe and inevitable impurities Method of circumferentially welded joints of stainless steel seamless steel pipes .
(2 ) In mass%, C: 0.015% or less, N: 0.015% or less, Cr: 10-14%, Ni: 3-8%, Si: 1.0% or less, Mn: 2.0% or less, S: 0.010% or less P: 0.010% or less, Al: 0.10% or less, V: 0.10% or less, Mo: 1 to 4%, and Co: 1 to 4%, W: 1 to 4% A martensitic stainless steel seamless pipe for line pipes that is excellent in intergranular stress corrosion cracking resistance of a weld heat-affected zone having a composition comprising seeds or two kinds, the balance being Fe and inevitable impurities.

本発明によれば、溶接後熱処理を施すことなく、耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手を安定して製造でき、炭酸ガスを含む天然ガス等のパイプラインを安価に製造でき、産業上格段の効果を奏する。なお、本発明で好適に使用するマルテンサイト系ステンレス鋼管は、ラインパイプ用として母材の強度及び靭性に優れ、さらに母材の耐炭酸ガス腐食性、耐硫化物応力腐食割れ性にも優れており、パイプラインの耐久性が向上するという効果もある。   According to the present invention, it is possible to stably produce a martensitic stainless steel pipe circumferential welded joint excellent in intergranular stress corrosion cracking resistance without performing post-weld heat treatment, and a pipeline such as natural gas containing carbon dioxide gas. Can be manufactured at a low cost, and has a remarkable industrial effect. In addition, the martensitic stainless steel pipe suitably used in the present invention is excellent in the strength and toughness of the base material for line pipes, and further excellent in the carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance of the base material. This also has the effect of improving the durability of the pipeline.

本発明では、マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数層の溶接パスからなる多層盛溶接を施して、多層盛円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を構成する。   In the present invention, after the end portions of the martensitic stainless steel pipes are butted together, a multi-pass welding including a plurality of layers of welding passes is performed in the circumferential direction along the end portions to form a multi-pass circumferential welded portion. A martensitic stainless steel pipe circumferential weld joint is constructed.

本発明では、円周溶接部を形成する多層盛溶接の溶接方法はとくに限定する必要はない。公知の溶接法がいずれも好適に適用できるが、ラインパイプ用としては溶接効率、溶接作業性等の観点からは、ガスメタルアーク溶接(GMAW)、ガスタングステンアーク溶接(GTAW)とすることが好ましい。また、溶接条件も、マルテンサイト系ステンレス鋼管の端部同士を突き合わせて、端部に沿って円周方向に複数層の溶接パスからなる多層盛溶接を施して健全な円周溶接部が形成できる条件であればよく、とくに限定されない。溶接条件は、用途に応じて適宜決定すればよく、とくに限定する必要はない。   In the present invention, it is not necessary to specifically limit the welding method of the multi-layer welding for forming the circumferential weld. Any of the known welding methods can be suitably applied, but it is preferable to use gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) from the viewpoint of welding efficiency, welding workability, etc. for line pipes. . In addition, the welding conditions can also form a healthy circumferential welded portion by matching the ends of martensitic stainless steel pipes with each other and performing multi-layer welding consisting of multiple layers of welding passes in the circumferential direction along the ends. There is no particular limitation as long as the conditions are satisfied. The welding conditions may be determined as appropriate according to the application and need not be particularly limited.

本発明では、円周溶接部のHAZでのIGSCCの発生を防止するために、使用するマルテンサイト系ステンレス鋼管を、P含有量が0.010 mass%以下に制限された組成のマルテンサイト系ステンレス鋼管に限定する。これにより、鋼管円周溶接継手のHAZにおける旧オーステナイト粒界へのCr炭化物の析出が抑制され、鋼管円周溶接継手のHAZの耐粒界応力腐食割れ性が向上する。P含有量が0.010 mass%を超えると、HAZにおけるIGSCCの発生を抑制できなくなる。   In the present invention, in order to prevent the occurrence of IGSCC in the HAZ of the circumferential weld, the martensitic stainless steel pipe used is a martensitic stainless steel pipe having a composition in which the P content is limited to 0.010 mass% or less. limit. Thereby, precipitation of Cr carbide to the prior austenite grain boundary in the HAZ of the steel pipe circumferential welded joint is suppressed, and the intergranular stress corrosion cracking resistance of the HAZ of the steel pipe circumferential welded joint is improved. If the P content exceeds 0.010 mass%, the generation of IGSCC in the HAZ cannot be suppressed.

マルテンサイト系ステンレス鋼管のP含有量を0.010 mass%以下に制限することにより、HAZでのIGSCCの発生を抑制することができる理由については、現在までには明確となっていないが、本発明者らは、P含有量を0.010 mass%以下に制限することにより、HAZの旧オーステナイト粒界へのCr炭化物の析出が抑制されるものと考えている。なお、より厳しい腐食環境で使用される場合には、使用するマルテンサイト系ステンレス鋼管のP含有量は、0.005 mass%以下に低減することが好ましい。   The reason why the generation of IGSCC in the HAZ can be suppressed by limiting the P content of the martensitic stainless steel pipe to 0.010 mass% or less has not been clarified until now, but the present inventor Et al. Believe that by limiting the P content to 0.010 mass% or less, precipitation of Cr carbide on the prior austenite grain boundaries of HAZ is suppressed. When used in a more severe corrosive environment, the P content of the martensitic stainless steel pipe to be used is preferably reduced to 0.005 mass% or less.

P以外のマルテンサイト系ステンレス鋼管組成については、ラインパイプとして要求される鋼管母材の強度、靭性、熱間加工性や、耐炭酸ガス腐食性、耐硫化物応力腐食割れ性、さらには溶接熱影響部の靭性の観点から、各成分含有量に好ましい範囲がある。
For martensitic stainless steel composition other than P, the strength of a steel pipe base material required as line pipe, toughness, hot workability and,耐炭acid gas corrosion resistance, sulfide stress corrosion cracking resistance, and further welding From the viewpoint of the toughness of the heat affected zone, there is a preferred range for each component content.

以下、本発明で使用するマルテンサイト系ステンレス鋼管組成におけるP以外の成分の適正範囲について説明する。以下、組成におけるmass%は単に%と記す。   Hereinafter, the appropriate range of components other than P in the martensitic stainless steel pipe composition used in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.

C:0.015%以下
Cは、鋼に固溶し、鋼の強度増加に寄与する元素であるが、多量の含有は、HAZを硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させるため、本発明では、できるだけ低減することが望ましい。本発明では、とくにHAZのIGSCCを防止するため、Cr炭化物として析出してCr欠乏層形成の原因となるCを、0.015%以下に限定することが好ましい。Cを0.015%を超えて含有すると、HAZのIGSCCを防止することが困難となる。なお、より好ましくは0.010%以下である。
C: 0.015% or less C is an element that dissolves in steel and contributes to increasing the strength of the steel. However, if contained in a large amount, HAZ is hardened to cause weld cracks or toughness of the weld heat affected zone. Therefore, in the present invention, it is desirable to reduce as much as possible. In the present invention, in order to prevent HAZ IGSCC in particular, it is preferable to limit C, which precipitates as Cr carbide and causes Cr deficient layer formation, to 0.015% or less. When C is contained exceeding 0.015%, it becomes difficult to prevent IGSCC of HAZ. More preferably, it is 0.010% or less.

N:0.015%以下
Nは、Cと同様に、鋼に固溶し、鋼の強度増加に寄与する元素であり、多量の含有は、HAZを硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させる。また、Nは、Ti、Nb、Zr、V、Hf、Taと結合し窒化物を形成するため、炭化物を形成しCr炭化物の形成を防止できるTi、Nb、Zr、V、Hf、Ta量を実質的に低減することになり、これら元素のCr欠乏層形成を抑制しIGSCCを抑制する効果を低下させることになる。このため、Nはできるだけ低減することが望ましい。上記したNの悪影響は、0.015%以下であれば許容できるため、本発明では、Nは0.015%以下に限定することが好ましい。なお、より好ましくは0.010%以下である。
N: 0.015% or less N, like C, is an element that dissolves in steel and contributes to an increase in the strength of the steel. If a large amount is contained, it will harden HAZ, cause weld cracking, or affect the heat of welding. Deteriorates toughness. In addition, N combines with Ti, Nb, Zr, V, Hf, and Ta to form nitrides. Therefore, the amount of Ti, Nb, Zr, V, Hf, and Ta that can form carbides and prevent the formation of Cr carbides is reduced. This substantially reduces the effect of suppressing the formation of a Cr-deficient layer of these elements and reducing the effect of suppressing IGSCC. For this reason, it is desirable to reduce N as much as possible. Since the adverse effect of N described above is acceptable if it is 0.015% or less, in the present invention, N is preferably limited to 0.015% or less. More preferably, it is 0.010% or less.

Cr:10〜14%
Crは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性等の耐食性を向上させるための基本元素であり、本発明では10%以上含有することが望ましい。一方、14%を超える含有は、フェライト相が形成しやすくなり、マルテンサイト組織を安定して確保するために多量の合金元素添加を必要とし材料コストの上昇を招く。このため、本発明ではCrは10〜14%の範囲に限定することが好ましい。
Cr: 10-14%
Cr is a basic element for improving corrosion resistance such as carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and is desirably contained in an amount of 10% or more in the present invention. On the other hand, if the content exceeds 14%, a ferrite phase tends to be formed, and a large amount of alloying element is required to stably secure a martensite structure, leading to an increase in material cost. For this reason, in the present invention, Cr is preferably limited to a range of 10 to 14%.

Ni:3〜8%
Niは、耐炭酸ガス腐食性を向上させるとともに、固溶して強度上昇に寄与し、また靭性を向上させる元素である。また、Niはオーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、3%以上の含有を必要とする。一方、8%を超える含有は、変態点が低下しすぎて、所望の特性を確保するための焼戻し処理が長時間となるうえ、材料コストの高騰を招く。このため、Niは3〜8%の範囲に限定することが好ましい。なお、より好ましくは4〜7%である。
Ni: 3-8%
Ni is an element that improves the corrosion resistance of carbon dioxide gas, contributes to an increase in strength by solid solution, and improves toughness. Ni is an austenite-forming element and acts effectively to stably secure a martensite structure in a low carbon region. In order to obtain such an effect, the content of 3% or more is required. On the other hand, if the content exceeds 8%, the transformation point is excessively lowered, and the tempering treatment for securing the desired characteristics takes a long time, and the material cost increases. For this reason, it is preferable to limit Ni to the range of 3-8%. In addition, More preferably, it is 4 to 7%.

Si:1.0%以下
Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素であり、本発明では0.1%以上含有することが望ましい。しかし、Siはフェライト生成元素でもあり、1.0%を超える多量の含有は母材およびHAZ靭性を劣化させる。このため、Siは1.0%以下に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。
Si: 1.0% or less
Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In the present invention, Si is preferably contained in an amount of 0.1% or more. However, Si is also a ferrite-forming element, and a large content exceeding 1.0% deteriorates the base material and the HAZ toughness. For this reason, it is preferable to limit Si to 1.0% or less. In addition, More preferably, it is 0.1 to 0.5%.

Mn:2.0%以下
Mnは、固溶して鋼の強度上昇に寄与するとともに、オーステナイト生成元素であり、フェライト生成を抑制して母材および溶接熱影響部靭性を向上させる。このような効果を得るためには0.2%以上含有することが好ましい。一方、2.0%を超えて含有しても効果が飽和する。このため、Mnは2.0%以下に限定することが好ましい。なお、より好ましくは0.2〜1.2%である。
Mn: 2.0% or less
Mn dissolves and contributes to increasing the strength of the steel, and is an austenite-generating element, and suppresses ferrite formation to improve the base material and the weld heat-affected zone toughness. In order to acquire such an effect, it is preferable to contain 0.2% or more. On the other hand, even if the content exceeds 2.0%, the effect is saturated. For this reason, it is preferable to limit Mn to 2.0% or less. In addition, More preferably, it is 0.2 to 1.2%.

S:0.010%以下
Sは、MnS等の硫化物を形成し、加工性を低下させる元素であり、本発明ではできるだけ低減することが好ましいが、0.010%までは許容できる。このため、Sは0.010%以下に限定することが好ましい。
S: 0.010% or less S is an element that forms sulfides such as MnS and reduces workability. In the present invention, S is preferably reduced as much as possible, but 0.010% is acceptable. For this reason, it is preferable to limit S to 0.010% or less.

Al:0.10%以下
Alは、脱酸剤として作用し、0.01%以上含有することが好ましいが、0.10%を超える含有は靭性を劣化させる。このため、Alは0.10%以下に限定することが好ましい。なお、より好ましくは0.01〜0.04%である。
V:0.10%以下
Vは、炭化物形成元素であり、Crに比べて炭化物形成能が強く、溶接熱で固溶したCが、冷却時にCr炭化物として旧オーステナイト粒界に析出するのを抑制し、HAZの耐粒界応力腐食割れ性を向上させる効果を有する。また、Vの炭化物は、溶接熱で高温に加熱されても溶解しにくく固溶Cの発生が抑制され、このことを介してCr炭化物の形成を抑制し、HAZの耐粒界応力腐食割れ性を向上させるという効果もある。このような効果を得るためには、0.02%以上含有することが好ましい。一方、0.10%を超える含有は、耐溶接割れ性、靭性を劣化させる。このため、Vは0.10%以下に限定することが好ましい。なお、より好ましくは、0.02〜0.08%である。
Mo:1〜4%
Moは、CO を含有する天然ガスを輸送するラインパイプ用鋼管に要求される特性である耐炭酸ガス腐食性、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、その効果を得るためには1%以上含有することが好ましい。一方、4%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Moは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜3.0%である。
Al: 0.10% or less
Al acts as a deoxidizer and is preferably contained in an amount of 0.01% or more. However, if it exceeds 0.10%, the toughness deteriorates. For this reason, it is preferable to limit Al to 0.10% or less. In addition, More preferably, it is 0.01 to 0.04%.
V: 0.10% or less
V is a carbide forming element, has a carbide forming ability stronger than Cr, and suppresses precipitation of C, which is solid-solved by welding heat, as Cr carbide at the prior austenite grain boundaries during cooling, and HAZ grain resistance boundaries. It has the effect of improving the stress corrosion cracking property. In addition, the carbide of V is hardly dissolved even when heated to high temperature by welding heat, and the generation of solid solution C is suppressed. Through this, the formation of Cr carbide is suppressed, and the intergranular stress corrosion cracking resistance of HAZ. There is also an effect of improving. In order to acquire such an effect, it is preferable to contain 0.02% or more. On the other hand, the content exceeding 0.10% deteriorates weld crack resistance and toughness. For this reason, it is preferable to limit V to 0.10% or less. In addition, More preferably, it is 0.02 to 0.08%.
Mo: 1-4%
Mo has the characteristics required for steel pipes for line pipes that transport natural gas containing CO 2, such as carbon dioxide corrosion resistance, stress corrosion crack resistance, sulfide stress corrosion crack resistance, and pitting corrosion resistance. It is an element to improve, and in order to obtain the effect, it is preferable to contain 1% or more. On the other hand, if the content exceeds 4%, ferrite is easily generated, and the effect of improving the resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Mo to the range of 1-4%. In addition, More preferably, it is 1.5 to 3.0%.

Co:1〜4%、W:1〜4%のうちから選ばれた1種又は2種
Co、Wはいずれも、COを含有する天然ガスを輸送するラインパイプ用鋼管に要求される特性である耐炭酸ガス腐食性を向上させる元素であり、本発明では1種又は2種をCr、Niとともに、含有する。
Co: 1 to 4%, W: 1 to 4% selected from 1 to 4%
Co and W are both elements that improve the corrosion resistance of carbon dioxide, which is a characteristic required for steel pipes for line pipes that transport natural gas containing CO 2. In the present invention, one or two of them are used. Cr, together with Ni, it contains.

Co:1〜4%、
Coは、Cuと同様に、耐炭酸ガス腐食性を向上させるとともに、オーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、1%以上含有することが好ましい。一方、4%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Coは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜2.5%である。
Co: 1-4%
Co, like Cu, improves the corrosion resistance of carbon dioxide gas and is an austenite forming element, and effectively acts to stably secure a martensite structure in a low carbon region. In order to acquire such an effect, it is preferable to contain 1% or more. On the other hand, if the content exceeds 4%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Co to the range of 1-4%. In addition, More preferably, it is 1.5 to 2.5%.

W:1〜4%
Wは、Moと同様に、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、その効果を得るためには1%以上含有することが好ましい。一方、4%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Wは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜3.0%である。
W: 1-4%
W, like Mo, is an element that improves stress corrosion cracking resistance, further sulfide stress corrosion cracking resistance, and pitting corrosion resistance. In order to obtain the effect, W is preferably contained in an amount of 1% or more. On the other hand, if the content exceeds 4%, ferrite is easily generated, and the effect of improving the resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit W to the range of 1-4%. In addition, More preferably, it is 1.5 to 3.0%.

Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上
Ti、Nb、Zr、Hf、Taはいずれも、炭化物形成元素であり、1種または2種以上を選択して含有することが好ましい。Ti、Nb、Zr、Hf、Ta はいずれも、Crに比べて炭化物形成能が強く、溶接熱で固溶したCが、冷却時にCr炭化物として旧オーステナイト粒界に析出するのを抑制し、HAZの耐粒界応力腐食割れ性を向上させる効果を有する。また、Ti、Nb、Zr、Hf、Ta の炭化物は、溶接熱で高温に加熱されても溶解しにくく固溶Cの発生が抑制され、このことを介してCr炭化物の形成を抑制し、HAZの耐粒界応力腐食割れ性を向上させるという効果もある。このような効果を得るためには、Ti:0.03%以上、Nb:0.03%以上、Zr:0.03%以上、Hf:0.03%以上、Ta:0.03%以上、をそれぞれ含有することが好ましい。一方、Ti:0.15%、Nb:0.10%、Zr:0.10%、Hf:0.20%、Ta:0.20%を超える含有は、耐溶接割れ性、靭性を劣化させる。このため、Ti:0.15%以下、Nb:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下にそれぞれ限定することが好ましい。なお、より好ましくは、Ti:0.03〜0.12%、Nb:0.03〜0.08%、Zr:0.03〜0.08%、Hf:0.10〜0.18%、Ta:0.10〜0.18%である。
One or more selected from Ti: 0.15% or less, Nb: 0.10% or less , Zr : 0.10% or less, Hf: 0.20% or less, Ta: 0.20% or less
Ti, Nb , Zr , Hf, and Ta are all carbide-forming elements, and it is preferable that one or two or more are selected and contained. Ti, Nb , Zr , Hf, and Ta all have a higher carbide forming ability than Cr, and suppress the precipitation of C as a Cr carbide on the prior austenite grain boundary during cooling, by reducing the HAZ. It has the effect of improving the intergranular stress corrosion cracking resistance. In addition, carbides of Ti, Nb , Zr , Hf, and Ta are difficult to dissolve even when heated to a high temperature by welding heat, and the generation of solute C is suppressed. Through this, the formation of Cr carbides is suppressed, and HAZ There is also an effect of improving the intergranular stress corrosion cracking resistance. In order to obtain such effects, it is preferable to contain Ti: 0.03% or more, Nb: 0.03% or more , Zr : 0.03% or more, Hf: 0.03% or more, Ta: 0.03% or more. On the other hand, the content exceeding Ti: 0.15%, Nb: 0.10% , Zr : 0.10%, Hf: 0.20%, Ta: 0.20% deteriorates weld crack resistance and toughness. Therefore, it is preferable to limit to Ti: 0.15% or less, Nb: 0.10% or less , Zr : 0.10% or less, Hf: 0.20% or less, and Ta: 0.20% or less. More preferably, Ti: 0.03-0.12%, Nb: 0.03-0.08% , Zr : 0.03-0.08%, Hf: 0.10-0.18%, Ta: 0.10-0.18%.

Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上
Ca、Mg、REM、Bは、いずれも熱間加工性、連続鋳造における安定製造性の向上に有効に作用する元素であり、必要に応じ選択して含有できる。このような効果を得るためには、Ca:0.0005%以上、Mg:0.0010%以上、REM:0.0010%以上、B:0.0005%以上、それぞれ含有することが好ましい。一方、Ca:0.010%、Mg:0.010%、REM:0.010%、B:0.010%を超えて含有すると粗大介在物として存在しやすくなるため耐食性の劣化、靭性の低下が著しくなる。このため、Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、B:0.010%以下にそれぞれ限定することが好ましい。なお、Caは、鋼管の品質安定性が高く、製造コストも低く抑えることができ、品質安定性、経済性の観点から最も有効である。Caのより好ましい範囲は0.0005〜0.0030%である。
One or more selected from Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.010% or less, B: 0.010% or less
Ca, Mg, REM, and B are all elements that effectively work to improve hot workability and stable manufacturability in continuous casting, and can be selected and contained as necessary. In order to acquire such an effect, it is preferable to contain Ca: 0.0005% or more, Mg: 0.0010% or more, REM: 0.0010% or more, and B: 0.0005% or more. On the other hand, if Ca exceeds 0.010%, Mg: 0.010%, REM: 0.010%, B: more than 0.010%, it tends to exist as coarse inclusions, so that the corrosion resistance is deteriorated and the toughness is significantly reduced. For this reason, it is preferable to limit to Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.010% or less, and B: 0.010% or less. Ca is the most effective from the viewpoints of quality stability and economical efficiency because the quality stability of the steel pipe is high and the manufacturing cost can be kept low. A more preferable range of Ca is 0.0005 to 0.0030%.

上記した成分以外の残部はFeおよび不可避的不純物とすることが好ましい。   The balance other than the above components is preferably Fe and inevitable impurities.

つぎに、本発明で使用する鋼管は、上記した組成の継目無鋼管とする。本発明で使用する継目無鋼管は、上記した組成の鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式等の製造設備を用いて熱間加工、造管して、所望寸法の継目無鋼管としたものすることが好ましい。なお、得られた継目無鋼管は、空冷以上の冷却速度で室温まで冷却することが好ましい。なお、鋼管素材を、プレス方式の熱間押出設備を用いて継目無鋼管としても何ら問題はない。
Next, the steel pipe for use in the present invention shall be the seamless steel pipe having the composition described above. The seamless steel pipe used in the present invention is obtained by heating a steel pipe material having the above-described composition, and hot-working and pipe-making using a normal Mannesmann-plug mill method or Mannesmann-Mandrel mill method manufacturing equipment. It is preferable to use a seamless steel pipe of dimensions. In addition, it is preferable that the obtained seamless steel pipe is cooled to room temperature at a cooling rate equal to or higher than air cooling. In addition, there is no problem even if a steel pipe raw material is used as a seamless steel pipe using a press type hot extrusion equipment.

上記した組成の継目無鋼管であれば、熱間加工後、空冷以上の冷却速度で冷却すれば、マルテンサイト組織とすることができるが、熱間加工後室温まで冷却し、焼戻し処理を施すことが好ましい。また、熱間加工後、室温まで冷却したのち、さらにAc3 変態点以上の温度に再加熱したのち空冷以上の冷却速度で冷却する焼入れ処理を行ってもよい。焼入れ処理を施された継目無鋼管は、ついでAc1 変態点以下の温度で焼戻し処理を行うことが好ましい。 If it is a seamless steel pipe having the above composition, it can be made into a martensite structure if it is cooled at a cooling rate higher than air cooling after hot working, but it is cooled to room temperature after hot working and subjected to tempering treatment. Is preferred. In addition, after hot working, after cooling to room temperature, reheating to a temperature not lower than the Ac 3 transformation point and then cooling at a cooling rate not lower than air cooling may be performed. The seamless steel pipe subjected to the quenching treatment is preferably subjected to a tempering treatment at a temperature not higher than the Ac 1 transformation point.

表1に示す組成の溶鋼を脱ガス後、100kg鋼塊に鋳造し、さらに熱間鍛造したのち、モデルシームレス圧延機を用いた熱間加工により造管し、外径65mm×肉厚5.5mmの継目無鋼管とした。なお、造管後、空冷した。   After degassing the molten steel with the composition shown in Table 1, it was cast into a 100kg steel ingot, further hot forged, and then piped by hot working using a model seamless rolling mill, with an outer diameter of 65mm x wall thickness of 5.5mm It was a seamless steel pipe. In addition, it air-cooled after pipe making.

得られた継目無鋼管について、造管後冷却のままで内外表面の割れ発生の有無を目視で調査し、熱間加工性を評価した。   About the obtained seamless steel pipe, the presence or absence of the crack generation | occurrence | production of the inner and outer surface was visually examined with cooling after pipe making, and hot workability was evaluated.

ついで、得られた継目無鋼管に、焼入れ焼戻し処理を施し、X−80グレードの鋼管とした。なお、一部の鋼管では、焼入れ処理を行わず、焼戻し処理のみとした。   Subsequently, the obtained seamless steel pipe was subjected to quenching and tempering treatment to obtain an X-80 grade steel pipe. Some steel pipes were not tempered but only tempered.

得られた鋼管について、引張試験、シャルピー衝撃試験、炭酸ガス腐食試験、硫化物応力腐食割れ試験、U曲げ応力腐食割れ試験を実施した。試験方法はつぎのとおりとした。
(1)引張試験
得られた継目無鋼管から、API 弧状引張試験片を採取し、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求め、母材強度を評価した。
(2)シャルピー衝撃試験
得られた継目無鋼管から、JIS Z 2202の規定に準拠してVノッチ試験片(厚さ:5.0mm)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、−40℃における吸収エネルギーvE−40(J)を求め、母材靭性を評価した。
(3)炭酸ガス腐食試験
得られた継目無鋼管から、厚さ3mm×幅25mm×長さ50mmの腐食試験片を機械加工によって採取し、腐食試験を実施し、耐炭酸ガス腐食性、耐孔食性を評価した。腐食試験は、オートクレーブ中に保持された3.0MPaの炭酸ガスを飽和させた150℃の20%NaCl水溶液中に腐食試験片を浸漬し、浸漬期間を30日間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。孔食が発生しなかった場合を○、発生した場合を×とした。
(4)硫化物応力腐食割れ試験
得られた継目無鋼管から、4点曲げ試験片(大きさ:厚さ4mm×幅15mm×長さ115mm)を採取し、EFC No.17に準拠した4点曲げ試験を実施し、耐硫化物応力腐食割れ性を評価した。使用した試験液は、5%NaCl+NaHCO3液(pH:4.5 )とし、10%H2S+CO2 混合ガスを流しながら試験を行った。付加応力はYSとし、試験期間は720時間とし、破断の有無を測定した。破断しなかった場合を○、破断したものを×とした。なお、YSは母材降伏強さである。
(5)U曲げ応力腐食割れ試験
得られた継目無鋼管から、厚さ4mm×幅15m×長さ15mmの試験用素材を採取した。ついで、採取した試験用素材の中央部に、溶接熱サイクルを付与した。
The obtained steel pipe was subjected to a tensile test, a Charpy impact test, a carbon dioxide corrosion test, a sulfide stress corrosion cracking test, and a U bending stress corrosion cracking test. The test method was as follows.
(1) Tensile test API arc-shaped tensile test specimens were collected from the obtained seamless steel pipes, tensile tests were performed, tensile properties (yield strength YS, tensile strength TS) were determined, and base metal strength was evaluated. .
(2) Charpy impact test V-notch specimens (thickness: 5.0 mm) were collected from the obtained seamless steel pipe in accordance with JIS Z 2202, and Charpy impact test in accordance with JIS Z 2242. The absorbed energy vE -40 (J) at -40 ° C was obtained, and the base material toughness was evaluated.
(3) Carbon dioxide corrosion test From the obtained seamless steel pipe, a corrosion test piece with a thickness of 3mm x width 25mm x length 50mm was sampled by machining, and the corrosion test was conducted. Eating habit was evaluated. The corrosion test was performed by immersing the corrosion test piece in a 20% NaCl aqueous solution at 150 ° C. saturated with 3.0 MPa of carbon dioxide gas held in an autoclave, and setting the immersion period to 30 days. The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Moreover, about the corrosion test piece after a test, the presence or absence of pitting corrosion on the test piece surface was observed using a magnifying glass with a magnification of 10 times. The case where pitting corrosion did not occur was marked with ◯, and the case where pitting corrosion occurred was marked with ×.
(4) Sulfide stress corrosion cracking test Four-point bending specimens (size: thickness 4mm x width 15mm x length 115mm) were collected from the obtained seamless steel pipe, and four points in accordance with EFC No.17 were obtained. A bending test was conducted to evaluate the resistance to sulfide stress corrosion cracking. The test solution used was 5% NaCl + NaHCO 3 solution (pH: 4.5), and the test was conducted while flowing a 10% H 2 S + CO 2 mixed gas. The applied stress was YS, the test period was 720 hours, and the presence or absence of fracture was measured. The case where it did not break was marked with ◯, and the case where it broke was marked with x. YS is the base material yield strength.
(5) U-bending stress corrosion cracking test A test material having a thickness of 4 mm, a width of 15 m, and a length of 15 mm was collected from the obtained seamless steel pipe. Next, a welding heat cycle was applied to the central portion of the collected test material.

付与した溶接熱サイクルは、図1に示す条件とした。   The applied welding heat cycle was set to the conditions shown in FIG.

ついで、これら溶接熱サイクル付与済みの試験用素材中央部から、厚さ2mm×幅15mm×長さ75mmの試験片を切出し、U曲げ応力腐食割れ試験を実施した。   Next, a test piece having a thickness of 2 mm, a width of 15 mm, and a length of 75 mm was cut out from the center of the test material to which the welding heat cycle had been applied, and a U-bending stress corrosion cracking test was performed.

U曲げ応力腐食割れ試験は、図2に示すような治具を用いて試験片を内半径:8mmでU字型に曲げ、腐食環境中に浸漬する試験とした。試験期間は168時間とした。使用した腐食環境は、液温:100℃または150℃、CO圧:0.1MPa 、pH:2.0の5%NaCl液とした。試験後、試験片断面について、100倍の光学顕微鏡で割れの有無を観察し、耐粒界応力腐食割れ性を評価した。割れがある場合を×、割れがない場合を○とした。 The U bending stress corrosion cracking test was a test in which a test piece was bent into a U shape with an inner radius of 8 mm using a jig as shown in FIG. 2 and immersed in a corrosive environment. The test period was 168 hours. The corrosive environment used was a 5% NaCl solution having a liquid temperature of 100 ° C. or 150 ° C., a CO 2 pressure of 0.1 MPa, and a pH of 2.0. After the test, the cross section of the test piece was observed for cracking with a 100 × optical microscope to evaluate the intergranular stress corrosion cracking resistance. The case where there was a crack was rated as x, and the case where there was no crack was marked as ○.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

本発明例はいずれも、溶接後熱処理を施すことなく、円周溶接部HAZのIGSCCを防止することができ、HAZの耐粒界応力腐食割れ性に優れていることがわかる。また、本発明例はいずれも、ラインパイプ用として優れた母材強度、母材靭性を有するうえ、母材の耐炭酸ガス腐食性、耐硫化物応力腐食割れ性にも優れ、さらに充分な熱間加工性をも有している。これに対し、本発明の範囲を外れる比較例は、HAZにIGSCCが発生し、HAZの耐粒界応力腐食割れ性が不足している。   It can be seen that all of the inventive examples can prevent IGSCC of the circumferential weld HAZ without performing post-weld heat treatment, and is excellent in HAZ intergranular stress corrosion cracking resistance. In addition, all of the examples of the present invention have excellent base material strength and base material toughness for use in line pipes, as well as excellent resistance to carbon dioxide corrosion and sulfide stress corrosion cracking of the base material, and sufficient heat. Also has inter-workability. On the other hand, in the comparative example outside the scope of the present invention, IGSCC is generated in the HAZ, and the intergranular stress corrosion cracking resistance of the HAZ is insufficient.

使用した溶接熱サイクルを模式的に示す説明図である。It is explanatory drawing which shows the used welding heat cycle typically. 使用したU曲げ応力腐食割れ試験用試験片の曲げ状況を模式的に示す説明図である。It is explanatory drawing which shows typically the bending condition of the test piece for used U bending stress corrosion cracking test.

Claims (2)

マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数層の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を製造するに当たり、
前記マルテンサイト系ステンレス鋼管として、mass%で、
C:0.015%以下、 N:0.015%以下、
Cr:10〜14%、 Ni:3〜8%、
Si:1.0%以下、 Mn:2.0%以下、
S:0.010%以下、 P:0.010%以下、
Al:0.10%以下、 V:0.10%以下、
Mo:1〜4%
を含み、さらに、Co:1〜4%、W:1〜4%のうちから選ばれた1種又は2種を含有し、残部Feおよび不可避的不純物からなる組成のマルテンサイト系ステンレス鋼管を用いることを特徴とする耐粒界応力腐食割れ性に優れたラインパイプ用マルテンサイト系ステンレス継目無鋼管円周溶接継手の製造方法。
After the end portions of the martensitic stainless steel pipes are butted together, a multi-layer welding consisting of a plurality of layers of welding passes is performed in the circumferential direction along the end portions to form a circumferential welded portion, thereby forming a martensitic stainless steel tube circle. In manufacturing the circumference welded joint,
As the martensitic stainless steel pipe, mass%,
C: 0.015% or less, N: 0.015% or less,
Cr: 10-14%, Ni: 3-8%,
Si: 1.0% or less, Mn: 2.0% or less,
S: 0.010% or less, P: 0.010% or less,
Al: 0.10% or less, V: 0.10% or less,
Mo: 1-4%
In addition, a martensitic stainless steel pipe having a composition comprising one or two selected from Co: 1 to 4% and W: 1 to 4% and the balance consisting of Fe and unavoidable impurities is used. A method for manufacturing a martensitic stainless steel seamless steel pipe circumferential welded joint with excellent intergranular stress corrosion cracking resistance.
mass%で、
C:0.015%以下、 N:0.015%以下、
Cr:10〜14%、 Ni:3〜8%、
Si:1.0%以下、 Mn:2.0%以下、
S:0.010%以下、 P:0.010%以下、
Al:0.10%以下、 V:0.10%以下、
Mo:1〜4%
を含み、さらに、Co:1〜4%、W:1〜4%のうちから選ばれた1種又は2種を含有し、残部Feおよび不可避的不純物からなる組成を有する溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用マルテンサイト系ステンレス継目無鋼管。
mass%
C: 0.015% or less, N: 0.015% or less,
Cr: 10-14%, Ni: 3-8%,
Si: 1.0% or less, Mn: 2.0% or less,
S: 0.010% or less, P: 0.010% or less,
Al: 0.10% or less, V: 0.10% or less,
Mo: 1-4%
Of welding heat-affected zone having a composition comprising one or two selected from Co: 1 to 4% and W: 1 to 4%, and having the balance Fe and unavoidable impurities. Martensitic stainless steel seamless pipe for line pipes with excellent intergranular stress corrosion cracking properties.
JP2004299279A 2004-10-13 2004-10-13 Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe Active JP4997695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299279A JP4997695B2 (en) 2004-10-13 2004-10-13 Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299279A JP4997695B2 (en) 2004-10-13 2004-10-13 Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe

Publications (2)

Publication Number Publication Date
JP2006110585A JP2006110585A (en) 2006-04-27
JP4997695B2 true JP4997695B2 (en) 2012-08-08

Family

ID=36379530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299279A Active JP4997695B2 (en) 2004-10-13 2004-10-13 Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe

Country Status (1)

Country Link
JP (1) JP4997695B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058412A4 (en) 2006-08-31 2016-02-17 Nippon Steel & Sumitomo Metal Corp Martensitic stainless steel for welded structure
JP6743992B1 (en) * 2018-11-05 2020-08-19 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
CN113510340B (en) * 2021-08-10 2022-06-14 哈尔滨电气动力装备有限公司 Welding and postweld heat treatment process method for martensite precipitation hardening stainless steel material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412926B2 (en) * 1994-09-30 2003-06-03 新日本製鐵株式会社 CO2 corrosion resistant and sulfide stress crack resistant martensitic stainless steel with excellent weldability
JPH11256281A (en) * 1998-03-11 1999-09-21 Sumitomo Metal Ind Ltd Martensitic stainless steel excellent in welding performance characteristic
JP3536687B2 (en) * 1998-11-04 2004-06-14 Jfeスチール株式会社 Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JP4529269B2 (en) * 2000-10-05 2010-08-25 Jfeスチール株式会社 High Cr martensitic stainless steel pipe for line pipe excellent in corrosion resistance and weldability and method for producing the same
JP4774588B2 (en) * 2000-10-26 2011-09-14 Jfeスチール株式会社 Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP2002212684A (en) * 2001-01-23 2002-07-31 Sumitomo Metal Ind Ltd Martensitic stainless steel having high temperature strength
JP4876350B2 (en) * 2001-08-30 2012-02-15 Jfeスチール株式会社 Manufacturing method of high strength steel pipe joint for oil well

Also Published As

Publication number Publication date
JP2006110585A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP6102798B2 (en) Manufacturing method of martensitic stainless steel pipe for line pipe excellent in reel barge laying
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
JP4400423B2 (en) Martensitic stainless steel pipe
JP5549176B2 (en) Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance
JP4250851B2 (en) Martensitic stainless steel and manufacturing method
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP2007321181A (en) Method for forming martenstic stainless steel material welded part
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
JP5045178B2 (en) Method for manufacturing bend pipe for line pipe and bend pipe for line pipe
JP5014831B2 (en) ERW steel pipe for expanded oil well with excellent pipe expansion performance and corrosion resistance and method for producing the same
JP2009114471A (en) High strength stainless steel pipe
JP3509604B2 (en) High Cr steel pipe for line pipe
JP4997695B2 (en) Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe
JP4765283B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP2008100277A (en) Method for producing low yield-ratio thick electric resistance welded pipe having weld zone excellent in toughness
JP2004107773A (en) Stainless steel pipe for line pipe having excellent corrosion resistance
WO2013161089A1 (en) Cr-CONTAINING STEEL PIPE FOR LINEPIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELDED HEAT AFFECTED ZONE
JP5040973B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JP2000080416A (en) MANUFACTURE OF HIGH Cr MARTENSITIC WELDED STEEL PIPE FOR LINE PIPE EXCELLENT IN WELDABILITY AND CORROSION RESISTANCE
JP3009126B2 (en) Method for producing high Cr martensitic steel pipe for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250