JP2011085041A - Thermal power generation equipment and method of operating the same - Google Patents

Thermal power generation equipment and method of operating the same Download PDF

Info

Publication number
JP2011085041A
JP2011085041A JP2009236991A JP2009236991A JP2011085041A JP 2011085041 A JP2011085041 A JP 2011085041A JP 2009236991 A JP2009236991 A JP 2009236991A JP 2009236991 A JP2009236991 A JP 2009236991A JP 2011085041 A JP2011085041 A JP 2011085041A
Authority
JP
Japan
Prior art keywords
steam
driven
water
output range
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009236991A
Other languages
Japanese (ja)
Other versions
JP5072935B2 (en
Inventor
Masakatsu Matsuwaka
雅勝 松若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009236991A priority Critical patent/JP5072935B2/en
Publication of JP2011085041A publication Critical patent/JP2011085041A/en
Application granted granted Critical
Publication of JP5072935B2 publication Critical patent/JP5072935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide thermal power generation equipment capable of excellently generating power in response to conditions, restricting wasted consumption of energy in a circulating water system in the starting operation and in the stopping operation. <P>SOLUTION: This thermal power generation equipment includes: a steam turbine for driving a power generator; a condenser for condensing the steam discharged form the steam turbine into water; a boiler for heating the water from the condenser to convert it to steam; and two or more circulation pumps for supplying cooling water to the condenser. When output of a generator is in a low-output region lower than a rated output region, at least any one of the circulation pumps is stopped and the residual circulation pump is driven, and on the other hand, when output of the generator is in a high-output region higher than the low-output region including the rated output region, all the circulation pumps are driven. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、火力発電設備、及び火力発電設備の運転方法に関し、より詳しくは、発電機を駆動する蒸気タービンからの蒸気を水に戻すべく、復水器に冷却水を供給する循環ポンプを備えた火力発電設備、及び火力発電設備の運転方法に関する。   The present invention relates to a thermal power generation facility and a method for operating the thermal power generation facility. More specifically, the present invention includes a circulation pump that supplies cooling water to a condenser so that steam from a steam turbine that drives the generator is returned to water. The present invention relates to a thermal power generation facility and a method for operating the thermal power generation facility.

一般的に、火力発電設備は、水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水(飽和水)にするための復水器と、復水器で得られた水をボイラに供給する給水ポンプと、復水器で蒸気を冷却すべく、復水器に冷却水を供給する循環ポンプとを備えている。   Generally, a thermal power generation facility includes a boiler that heats water to make steam, a steam turbine that is driven by steam generated by the boiler, a generator that generates power by being driven by the steam turbine, and a steam turbine In order to cool the steam with the condenser, the condenser for cooling the steam discharged from the water into saturated water, the feed pump that supplies the water obtained by the condenser to the boiler, And a circulation pump for supplying cooling water to the condenser.

すなわち、この種の火力発電設備は、復水器で得られた水をボイラに供給するための復水・給水系と、ボイラで得られた蒸気を復水器にまで送る蒸気系と、復水器に冷却水を供給するための循環水系とを備えており、復水・給水系内に給水ポンプが、蒸気系内に蒸気タービンが、循環水系内に循環ポンプが設置されている。   In other words, this type of thermal power generation equipment includes a condensate / water supply system for supplying water obtained by the condenser to the boiler, a steam system for sending the steam obtained by the boiler to the condenser, A circulating water system for supplying cooling water to the water device, a feed water pump in the condensate / feed water system, a steam turbine in the steam system, and a circulation pump in the circulating water system.

前記給水ポンプは、二台以上設けられており、一部(少なくとも一台)の給水ポンプが電動式のポンプ(以下、電動式給水ポンプという)で構成され、残りの給水ポンプが蒸気タービン式のポンプ(以下、蒸気駆動式給水ポンプという)で構成されている。これに伴い、復水・給水系は、発電機の出力が小さなとき(復水器に対する熱負荷が小さいとき)に電動式給水ポンプでボイラに給水し、発電機の出力が大きな定格運転時(復水器に対する熱負荷が大きいとき)に蒸気駆動式給水ポンプでボイラに給水するようになっている。   Two or more water supply pumps are provided, and a part (at least one) of the water supply pumps is constituted by an electric pump (hereinafter referred to as an electric water supply pump), and the remaining water supply pumps are steam turbine type. It is comprised with the pump (henceforth a steam drive type feed water pump). Along with this, the condensate / water supply system supplies water to the boiler with an electric water pump when the output of the generator is small (when the heat load on the condenser is small), and during the rated operation when the output of the generator is high ( When the heat load on the condenser is large), the steam is supplied to the boiler by a steam-driven feed water pump.

また、前記循環ポンプは、二台以上設けられており、定格運転時のように発電機の出力が大きい状態(復水器に対する熱負荷が大きい状態)で、それぞれが協働して必要量の冷却水を復水器に供給するようになっている(例えば、特許文献1乃至3参照)。   In addition, two or more circulation pumps are provided, and in a state where the output of the generator is large (in a state where the heat load on the condenser is large) as in rated operation, Cooling water is supplied to the condenser (see, for example, Patent Documents 1 to 3).

前記火力発電設備は、運転を開始する起動運転において、二台以上の循環ポンプのうちの一部の循環ポンプ(例えば、二台の循環ポンプが設けられている場合には一台の循環ポンプ)を駆動して復水器に冷却水を供給した上で蒸気タービンを駆動して発電機に発電させ、該発電機の出力が予め設定された定格出力域よりも低い低出力域の下限値に到達すると、発電機が発電した電力を送電する(並列状態にする)のに併せて停止状態であった残りの循環ポンプを駆動するようになっている。すなわち、該火力発電設備は、予め一部の循環ポンプを駆動して復水器で蒸気を冷却できる状態にしておき、発電機の出力が次第に大きくなる(復水器の熱負荷が大きくなる)ことを踏まえ、発電機の出力が低出力域にある状態で全ての循環ポンプを駆動して復水器に冷却水を供給するようになっている。   In the start-up operation in which the thermal power generation facility starts operation, a part of the two or more circulation pumps (for example, one circulation pump when two circulation pumps are provided) After driving the steam and supplying the cooling water to the condenser, the steam turbine is driven to cause the generator to generate power, and the output of the generator is set to the lower limit value of the low output range lower than the preset rated output range. When the power reaches, the remaining circulating pump that has been in a stopped state is driven in conjunction with transmitting the power generated by the generator (in a parallel state). That is, the thermal power generation equipment is set in a state in which some circulation pumps are driven in advance so that steam can be cooled by the condenser, and the output of the generator gradually increases (the heat load of the condenser increases). Based on this, all the circulation pumps are driven in a state where the output of the generator is in a low output range, and cooling water is supplied to the condenser.

また、前記火力発電設備は、運転を停止する停止運転において、ボイラから蒸気タービンに供給する蒸気を徐々に減らして発電機の出力を低下させ、該出力が定格出力域よりも低い低出力域の下限値になると、発電機が発電した電力の送電を停止する(解列状態にする)のに併せて一部の循環ポンプ(例えば、二台の循環ポンプが設けられている場合には一台の循環ポンプ)を停止し、蒸気タービンが停止した後に駆動状態にあった残りの循環ポンプを停止するようになっている。すなわち、該火力発電設備は、発電機の出力が低出力域に到達しても並列状態であるため、全ての循環ポンプが駆動されており、発電機の出力が送電することのできない(並列状態を維持できない)非常に小さな出力になってから一部の循環ポンプを停止し、復水器に熱負荷が完全にかからない状態で全ての循環ポンプを停止するようなっている。   In addition, the thermal power generation facility, in the stop operation to stop the operation, gradually reduce the steam supplied from the boiler to the steam turbine to reduce the output of the generator, the output of the low output region is lower than the rated output region When the lower limit value is reached, a part of the circulation pumps (for example, one unit when two circulation pumps are provided) in addition to stopping the transmission of the electric power generated by the generator (to be disconnected) The other circulation pumps that have been in the drive state after the steam turbine has stopped are stopped. That is, since the thermal power generation facility is in a parallel state even when the output of the generator reaches a low output range, all the circulation pumps are driven, and the output of the generator cannot transmit power (in a parallel state). However, some circulation pumps are stopped when the output becomes very small, and all circulation pumps are stopped in a state where the heat load is not completely applied to the condenser.

特公昭46−28046号公報Japanese Patent Publication No.46-28046 特開2007−107761号公報JP 2007-107761 A 特開平6−249586号公報JP-A-6-249586

ところで、起動運転及び停止運転における発電機の出力は、上述の如く、定格出力域よりも低い低出力域にあるため、起動運転時及び停止運転時の復水器の熱負荷は、通常運転(発電機の出力が定格出力域にある運転状態)よりも小さい。   Incidentally, since the output of the generator in the start operation and the stop operation is in a low output region lower than the rated output region as described above, the heat load of the condenser during the start operation and the stop operation is normal operation ( The output of the generator is smaller than the operating state in the rated output range.

しかしながら、従来の火力発電設備では、発電機の出力が低出力域にある状態(復水器に対する熱負荷が小さい状態)で全ての循環ポンプを駆動するようになっているため、起動運転及び停止運転において復水器に過剰な冷却水を供給し、循環水系を駆動するエネルギー(循環ポンプを駆動するエネルギー)を無駄に消費するといった問題があった。   However, in the conventional thermal power generation facilities, all the circulation pumps are driven in a state where the output of the generator is in a low output range (a state where the heat load on the condenser is small). In operation, there has been a problem that excessive cooling water is supplied to the condenser and energy for driving the circulating water system (energy for driving the circulation pump) is wasted.

そこで、本発明は、起動運転及び停止運転における循環水系でのエネルギーの無駄な消費を抑えることができ、定格運転時に安定した発電を行うことのできる火力発電設備、及び火力発電設備の運転方法を提供することを課題とする。   Therefore, the present invention provides a thermal power generation facility capable of suppressing wasteful consumption of energy in the circulating water system during start-up operation and stop operation, and capable of performing stable power generation during rated operation, and a method for operating the thermal power generation facility. The issue is to provide.

本発明に係る火力発電設備は、水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備えた火力発電設備において、発電機の出力が定格出力域よりも低い低出力域にあるときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動し、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動するように構成されていることを特徴とする。なお、ここで「定格出力域」とは、火力発電設備の設計仕様である発電機の定格(安定)運転時の出力範囲を意味する。また、「高出力域」とは、低出力域に対して高出力側で連続する範囲であって、定格出力域を含んだ範囲を意味する。すなわち、「高出力域」とは、高出力域自体が定格出力域であることを意味する他、低出力域と定格出力域との間に設定される中間出力域と定格出力域とを合わせた出力域であることを含めた概念である。   A thermal power generation facility according to the present invention includes a boiler that heats water into steam, a steam turbine that is driven by steam generated by the boiler, a generator that generates power by being driven by the steam turbine, and a steam turbine Power generator with a condenser for cooling the steam discharged from the water into water and two or more circulation pumps for supplying cooling water to the condenser to cool the steam with the condenser In the facility, when the output of the generator is in a low output range lower than the rated output range, a part of the two or more circulation pumps is driven, and the output of the generator is lower than the low output range. In the high output range including the high rated output range, the circulation pump is configured to drive a larger number of circulation pumps than when the output of the generator is in the low output range. Here, the “rated output range” means an output range during rated (stable) operation of the generator, which is a design specification of the thermal power generation facility. The “high output range” means a range that is continuous on the high output side with respect to the low output range and includes the rated output range. In other words, “high output range” means that the high output range itself is the rated output range, as well as the intermediate output range and the rated output range set between the low output range and the rated output range. This is a concept that includes the output region.

上記構成の火力発電設備は、発電機の出力が定格出力域よりも低い低出力域にあるときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動するため、復水器に対する熱負荷が小さいときに、必要最小限の循環ポンプを駆動して復水器の熱負荷に応じた必要最小限の冷却水を供給することができる。   The thermal power generation facility with the above configuration drives a part of the circulation pumps of the two or more circulation pumps when the output of the generator is in a low output range lower than the rated output range. When the heat load is small, the minimum necessary circulating pump can be driven to supply the minimum necessary cooling water according to the heat load of the condenser.

また、上記火力発電設備は、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動するため、復水器に対する熱負荷が大きいときに該復水器の熱負荷に対して必要な冷却水を供給することができる。   In addition, the thermal power generation facility has a larger number of generators than when the generator output is in the low output range when the output of the generator is in a high output range including the rated output range higher than the low output range. Since the circulation pump is driven, the necessary cooling water can be supplied to the heat load of the condenser when the heat load to the condenser is large.

従って、上記構成の火力発電設備によれば、発電機の出力が定格出力域よりも低い低出力域にある状態で循環水系を駆動するエネルギー(循環ポンプを駆動するエネルギー)を無駄に消費することを防止でき、また、発電機の出力が定格出力域にある状態で、復水器の熱負荷が過大になることを防止して安定した発電を行うことができる。   Therefore, according to the thermal power generation facility configured as described above, energy that drives the circulating water system (energy that drives the circulation pump) is wasted in a state where the output of the generator is in a low output range lower than the rated output range. In addition, in a state where the output of the generator is in the rated output range, it is possible to prevent the heat load of the condenser from becoming excessive and to perform stable power generation.

本発明に係る火力発電設備は、水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で得られた水をボイラに供給する二台以上の給水ポンプと、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備え、二台以上の給水ポンプのうちの一部の給水ポンプが電動で駆動する電動式給水ポンプで構成され、残りの給水ポンプがボイラからの蒸気で駆動する蒸気駆動式給水ポンプで構成され、発電機の出力が定格出力域よりも低い低出力域にあるときに電動式給水ポンプを駆動し、発電機の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに蒸気駆動式給水ポンプを駆動するように構成された火力発電設備において、電動式給水ポンプが駆動しているときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動し、蒸気駆動式給水ポンプが駆動しているときに、電動式給水ポンプを駆動しているときよりも多い台数の循環ポンプを駆動するように構成されていることを特徴とする。なお、ここで「定格出力域」とは、火力発電設備の設計仕様である発電機の定格(安定)運転時の出力範囲を意味する。   A thermal power generation facility according to the present invention includes a boiler that heats water into steam, a steam turbine that is driven by steam generated by the boiler, a generator that generates power by being driven by the steam turbine, and a steam turbine In order to cool the steam with the condenser, the condenser for cooling the steam discharged from the water, two or more water supply pumps that supply the boiler with the water obtained by the condenser, Two or more circulation pumps for supplying cooling water to the condenser, and a part of the two or more water supply pumps is composed of an electric water supply pump that is electrically driven, and the remaining water supply pumps Is composed of a steam-driven feed pump driven by steam from the boiler, and when the output of the generator is in a low output range lower than the rated output range, the electric feed pump is driven, and the output of the generator is low Set within the output range between the output range and the rated output range. In a thermal power generation facility configured to drive the steam-driven feed water pump when the set value is greater than or equal to the set value, when the electric feed water pump is driven, some of the two or more circulation pumps When the circulation pump is driven and the steam-driven feed water pump is driven, the circulation pump is configured to drive a larger number of circulation pumps than when the electric feed water pump is driven. . Here, the “rated output range” means an output range during rated (stable) operation of the generator, which is a design specification of the thermal power generation facility.

上記構成の火力発電設備は、発電機の出力が定格出力域よりも低い低出力域にあるときに駆動する電動式給水ポンプを駆動し、該電動式給水ポンプが駆動しているときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動するため、復水器に対する熱負荷が小さいときに、必要最小限の循環ポンプを駆動して復水器の熱負荷に応じた必要最小限の冷却水を供給することができる。   The thermal power generation facility having the above configuration drives an electric water supply pump that is driven when the output of the generator is in a low output range lower than the rated output range, and when the electric water supply pump is driven, When the heat load on the condenser is small to drive some of the circulation pumps above the stand, the necessary minimum circulation pump is driven and the minimum necessary according to the heat load of the condenser Limited amount of cooling water can be supplied.

また、上記火力発電設備は、発電機の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに蒸気駆動式給水ポンプを駆動し、該蒸気駆動式給水ポンプが駆動しているときに、電動式給水ポンプを駆動しているときよりも多い台数の循環ポンプを駆動するため、復水器に対する熱負荷が大きいときに該復水器の熱負荷に対して必要な冷却水を供給することができる。   The thermal power generation facility drives the steam-driven feed water pump when the output of the generator is equal to or higher than a set value set in an output range between the low output range and the rated output range, and the steam drive When the water supply pump is being driven, a larger number of circulation pumps are driven than when the electric water supply pump is being driven. Therefore, when the heat load on the condenser is large, the heat load of the condenser Necessary cooling water can be supplied.

従って、上記構成の火力発電設備によれば、発電機の出力が定格出力域よりも低い低出力域にある状態で循環水系を駆動するエネルギー(循環ポンプを駆動するエネルギー)を無駄に消費することを防止でき、また、発電機の出力が定格出力域にある状態で、復水器の熱負荷が過大になることを防止して安定した発電を行うことができる。   Therefore, according to the thermal power generation facility configured as described above, energy that drives the circulating water system (energy that drives the circulation pump) is wasted in a state where the output of the generator is in a low output range lower than the rated output range. In addition, in a state where the output of the generator is in the rated output range, it is possible to prevent the heat load of the condenser from becoming excessive and to perform stable power generation.

本発明に係る火力発電設備の運転方法は、水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備えた火力発電設備の運転方法において、発電機の出力が定格出力域よりも低い低出力域にあるときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動させ、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動させることを特徴とする。なお、ここで「定格出力域」とは、火力発電設備の運転方法の設計仕様である発電機の定格(安定)運転時の出力範囲を意味する。また、「高出力域」とは、低出力域に対して高出力側で連続する範囲であって、定格出力域を含んだ範囲を意味する。すなわち、「高出力域」とは、高出力域自体が定格出力域であることを意味する他、低出力域と定格出力域との間に設定される中間出力域と定格出力域とを合わせた出力域であることを含めた概念である。   An operation method of a thermal power generation facility according to the present invention includes a boiler that heats water to make steam, a steam turbine that is driven by steam generated by the boiler, and a generator that generates power by being driven by the steam turbine, , Equipped with a condenser for cooling the steam discharged from the steam turbine into water, and two or more circulation pumps for supplying cooling water to the condenser for cooling the steam with the condenser In the operation method of the thermal power plant, when the output of the generator is in a low output range lower than the rated output range, some of the two or more circulation pumps are driven to output the generator Is in a high output range including a higher rated output range than the low output range, and more circulating pumps are driven than when the generator output is in the low output range. Here, the “rated output range” means an output range during rated (stable) operation of the generator, which is a design specification of the operation method of the thermal power generation facility. The “high output range” means a range that is continuous on the high output side with respect to the low output range and includes the rated output range. In other words, “high output range” means that the high output range itself is the rated output range, as well as the intermediate output range and the rated output range set between the low output range and the rated output range. This is a concept that includes the output region.

上記構成の火力発電設備の運転方法は、発電機の出力が定格出力域よりも低い低出力域にあるときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動させるため、復水器に対する熱負荷が小さいときに、必要最小限の循環ポンプを駆動して復水器の熱負荷に応じた必要最小限の冷却水を供給することができる。   The operation method of the thermal power generation facility with the above configuration is to restore some of the circulation pumps of the two or more circulation pumps when the output of the generator is in a low output range lower than the rated output range. When the heat load on the water device is small, the minimum necessary amount of cooling water corresponding to the heat load of the condenser can be supplied by driving the minimum necessary circulation pump.

また、上記火力発電設備の運転方法は、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動させるため、復水器に対する熱負荷が大きいときに該復水器の熱負荷に対して必要な冷却水を供給することができる。   Further, the operation method of the thermal power generation facility is such that when the output of the generator is in a high output range including a rated output range higher than the low output range, the output of the generator is in a low output range. Since a large number of circulation pumps are driven, it is possible to supply necessary cooling water to the heat load of the condenser when the heat load on the condenser is large.

従って、上記構成の火力発電設備の運転方法によれば、発電機の出力が定格出力域よりも低い低出力域にある状態で循環水系を駆動するエネルギー(循環ポンプを駆動するエネルギー)を無駄に消費することを防止でき、また、発電機の出力が定格出力域にある状態で、復水器の熱負荷が過大になることを防止して安定した発電を行うことができる。   Therefore, according to the operation method of the thermal power generation facility having the above configuration, energy for driving the circulating water system (energy for driving the circulation pump) is wasted in a state where the output of the generator is in a low output range lower than the rated output range. Consumption can be prevented, and in the state where the output of the generator is in the rated output range, the heat load of the condenser can be prevented from becoming excessive, and stable power generation can be performed.

本発明に係る火力発電設備の運転方法は、水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で得られた水をボイラに供給する二台以上の給水ポンプと、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備え、二台以上の給水ポンプのうちの一部の給水ポンプが電動で駆動する電動式給水ポンプで構成され、残りの給水ポンプがボイラからの蒸気で駆動する蒸気駆動式給水ポンプで構成され、発電機の出力が定格出力域よりも低い低出力域にあるときに電動式給水ポンプを駆動し、発電機の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに蒸気駆動式給水ポンプを駆動するように構成された火力発電設備の運転方法において、電動式給水ポンプが駆動しているときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動させ、蒸気駆動式給水ポンプが駆動しているときに、電動式給水ポンプを駆動しているときよりも多い台数の循環ポンプを駆動させることを特徴とする。なお、ここで「定格出力域」とは、火力発電設備の運転方法の設計仕様である発電機の定格(安定)運転時の出力範囲を意味する。   An operation method of a thermal power generation facility according to the present invention includes a boiler that heats water to make steam, a steam turbine that is driven by steam generated by the boiler, and a generator that generates power by being driven by the steam turbine, , A condenser for cooling the steam discharged from the steam turbine into water, two or more water supply pumps supplying the boiler with water obtained by the condenser, and cooling the steam with the condenser Therefore, it comprises two or more circulation pumps for supplying cooling water to the condenser, and a part of the two or more water supply pumps is composed of an electric water supply pump that is electrically driven, and the rest The water supply pump is composed of a steam-driven feed water pump that is driven by steam from the boiler, and when the generator output is in a low output range lower than the rated output range, the electric feed pump is driven and the generator output Is the output range between the low output range and the rated output range In the operation method of the thermal power generation equipment configured to drive the steam-driven feed water pump when the set value is equal to or greater than the set value, the two or more circulation pumps when the electric feed water pump is driven When one of the circulation pumps is driven and the steam-driven feed water pump is being driven, a larger number of circulation pumps are driven than when the electric feed water pump is being driven. . Here, the “rated output range” means an output range during rated (stable) operation of the generator, which is a design specification of the operation method of the thermal power generation facility.

上記構成の火力発電設備の運転方法は、発電機の出力が定格出力域よりも低い低出力域にあるときに駆動する電動式給水ポンプを駆動させ、該電動式給水ポンプが駆動しているときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動させるため、復水器に対する熱負荷が小さいときに、必要最小限の循環ポンプを駆動して復水器の熱負荷に応じた必要最小限の冷却水を供給することができる。   The operation method of the thermal power generation facility having the above configuration is such that when the output of the generator is in a low output range lower than the rated output range, the electric feed pump that is driven is driven, and the electric feed pump is being driven. In order to drive some of the two or more circulation pumps, when the heat load on the condenser is small, the minimum necessary circulation pump is driven to meet the heat load of the condenser. The minimum necessary amount of cooling water can be supplied.

また、上記火力発電設備の運転方法は、発電機の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに蒸気駆動式給水ポンプを駆動させ、該蒸気駆動式給水ポンプが駆動しているときに、電動式給水ポンプを駆動しているときよりも多い台数の循環ポンプを駆動させるため、復水器に対する熱負荷が大きいときに該復水器の熱負荷に対して必要な冷却水を供給することができる。   Further, the operation method of the thermal power generation facility, when the output of the generator is equal to or higher than a set value set in the output range between the low output range and the rated output range, to drive the steam-driven feed water pump, When the steam-driven water supply pump is being driven, a larger number of circulation pumps are driven than when the electric water supply pump is being driven. Necessary cooling water can be supplied with respect to the heat load.

従って、上記構成の火力発電設備の運転方法によれば、発電機の出力が定格出力域よりも低い低出力域にある状態で循環水系を駆動するエネルギー(循環ポンプを駆動するエネルギー)を無駄に消費することを防止でき、また、発電機の出力が定格出力域にある状態で、復水器の熱負荷が過大になることを防止して安定した発電を行うことができる。   Therefore, according to the operation method of the thermal power generation facility having the above configuration, energy for driving the circulating water system (energy for driving the circulation pump) is wasted in a state where the output of the generator is in a low output range lower than the rated output range. Consumption can be prevented, and in the state where the output of the generator is in the rated output range, the heat load of the condenser can be prevented from becoming excessive, and stable power generation can be performed.

以上のように、本発明に係る火力発電設備によれば、起動運転及び停止運転における循環水系でのエネルギーの無駄な消費を抑えることができ、定格運転時に安定した発電を行うことができるという優れた効果を奏し得る。   As described above, according to the thermal power generation facility according to the present invention, it is possible to suppress wasteful consumption of energy in the circulating water system during start-up operation and stop operation, and it is possible to perform stable power generation during rated operation. The effects can be achieved.

また、本発明に係る火力発電設備の運転方法によれば、起動運転及び停止運転における循環水系でのエネルギーの無駄な消費を抑えることができ、定格運転時に安定した発電を行うことができるという優れた効果を奏し得る。   Further, according to the operation method of the thermal power generation facility according to the present invention, it is possible to suppress wasteful consumption of energy in the circulating water system during start-up operation and stop operation, and it is possible to perform stable power generation during rated operation. The effects can be achieved.

本発明の一実施形態に係る火力発電設備の概略概念図を示す。1 shows a schematic conceptual diagram of a thermal power generation facility according to an embodiment of the present invention. 同実施形態に係る火力発電設備の復水器及び循環水系の概念図を示す。The conceptual diagram of the condenser and circulating water system of the thermal power generation equipment which concerns on the embodiment is shown.

以下、本発明の一実施形態に係る火力発電設備について添付図面を参照しつつ説明する。   Hereinafter, a thermal power generation facility according to an embodiment of the present invention will be described with reference to the accompanying drawings.

かかる火力発電設備は、図1に示す如く、水を加熱して蒸気にするボイラ10と、該ボイラ10で発生させた蒸気で駆動する蒸気タービン20,21,22,23と、該蒸気タービン20,21,22,23の駆動を受けて発電する発電機30と、蒸気タービン20,21,22,23から排出される蒸気を冷却して水(飽和水)にするための復水器40と、復水器40で得られた水をボイラ10に供給する二台以上の給水ポンプ50,51と、復水器40で蒸気を冷却すべく、復水器40に冷却水を供給する二台以上の循環ポンプ60,61とを備えている。   As shown in FIG. 1, such a thermal power generation facility includes a boiler 10 that heats water into steam, steam turbines 20, 21, 22, 23 driven by steam generated in the boiler 10, and the steam turbine 20. , 21, 22, 23 to generate electric power, and a condenser 40 for cooling the steam discharged from the steam turbines 20, 21, 22, 23 into water (saturated water), Two or more water supply pumps 50 and 51 for supplying water obtained by the condenser 40 to the boiler 10 and two units for supplying cooling water to the condenser 40 in order to cool the steam by the condenser 40 The above circulation pumps 60 and 61 are provided.

すなわち、該火力発電設備1は、復水器40で得られた水をボイラ10に供給するための復水・給水系WLと、ボイラ10で得られた蒸気を復水器40にまで送る蒸気系SLと、復水器40に冷却水を供給するための循環水系RLとを備えている。そして、該火力発電設備1は、復水・給水系WL内に給水ポンプ50,51が、蒸気系SL内に蒸気タービン20,21,22,23が、循環水系RL内に循環ポンプ60,61が設置されている。   That is, the thermal power generation facility 1 includes a condensate / water supply system WL for supplying water obtained by the condenser 40 to the boiler 10, and steam for sending the steam obtained by the boiler 10 to the condenser 40. A system SL and a circulating water system RL for supplying cooling water to the condenser 40 are provided. The thermal power generation facility 1 includes feed water pumps 50 and 51 in the condensate / feed water system WL, steam turbines 20, 21, 22, and 23 in the steam system SL, and circulation pumps 60 and 61 in the circulating water system RL. Is installed.

前記ボイラ10は、復水・給水系WLから供給される水を蒸発させる蒸発器11と、蒸発器11で蒸発させた飽和蒸気を過熱する過熱器12と、蒸発タービン(後述する高圧タービン)20の排気を過熱する再熱器13とを備えている。そして、本実施形態に係るボイラ10は、過熱器12よって過熱した蒸気を蒸気タービン(高圧タービン)20に供給し、再熱器13によって過熱した蒸気を別の蒸気タービン(後述する一段目の中圧タービン)21に供給するようになっている。   The boiler 10 includes an evaporator 11 that evaporates water supplied from the condensate / water supply system WL, a superheater 12 that superheats saturated steam evaporated by the evaporator 11, and an evaporation turbine (a high-pressure turbine described later) 20. And a reheater 13 for overheating the exhaust gas. The boiler 10 according to the present embodiment supplies the steam superheated by the superheater 12 to the steam turbine (high-pressure turbine) 20 and the steam superheated by the reheater 13 in another steam turbine (the first stage described later). (Pressure turbine) 21 is supplied.

本実施形態に係る火力発電設備1は、蒸気タービン20,21,22,23として、高圧タービン20、中圧タービン21,22、及び低圧タービン23を備えており、高圧タービン20、及び低圧タービン23が一台ずつ設けられ、中圧タービン21,22が二台設けられている。   The thermal power generation facility 1 according to the present embodiment includes a high pressure turbine 20, an intermediate pressure turbine 21, 22, and a low pressure turbine 23 as steam turbines 20, 21, 22, 23. Are provided one by one, and two intermediate pressure turbines 21 and 22 are provided.

そして、これらの蒸気タービン20,21,22,23は、高圧タービン20、中圧タービン21、中圧タービン22、低圧タービン23の順でそれぞれの出力軸が同軸になるように並列に配置され、出力軸が隣り合う蒸気タービン20,21,22,23の出力軸に連結されている。そして、前記発電機30は、蒸気タービン20,21,22,23に対して横並びに配置されており、入力軸が低圧タービン23の出力軸に接続されている。これにより、発電機30は、高圧タービン20、中圧タービン21,22、及び低圧タービン23の駆動を受けて発電するようになっている。   These steam turbines 20, 21, 22, and 23 are arranged in parallel so that their output shafts are coaxial in the order of the high-pressure turbine 20, the intermediate-pressure turbine 21, the intermediate-pressure turbine 22, and the low-pressure turbine 23, The output shaft is connected to the output shafts of the adjacent steam turbines 20, 21, 22, 23. The generator 30 is arranged side by side with respect to the steam turbines 20, 21, 22, and 23, and the input shaft is connected to the output shaft of the low-pressure turbine 23. Thereby, the generator 30 receives the drive of the high pressure turbine 20, the intermediate pressure turbines 21 and 22, and the low pressure turbine 23 to generate power.

前記復水器40は、蒸気タービン22,23の排気(蒸気)を冷却して水にするもので、本実施形態においては、図2に示す如く、蒸気タービン22,23(二段目の中圧タービン22及び低圧タービン23)からの蒸気が導入される内部空間を画定するハウジング400と、該ハウジング400内に配設され、前記循環水系RLからの冷却水を流通させる冷却管401とを備え、ハウジング400内に導入された蒸気を冷却管401内の冷却水によって間接的に冷却し、これによって蒸気を凝縮させて水にするようになっている。すなわち、本実施形態に係る復水器40には、表面復水器が採用されている。   The condenser 40 cools the exhaust (steam) of the steam turbines 22 and 23 into water, and in this embodiment, as shown in FIG. 2, the steam turbines 22 and 23 (in the second stage) A housing 400 that defines an internal space into which steam from the pressure turbine 22 and the low-pressure turbine 23) is introduced, and a cooling pipe 401 that is disposed in the housing 400 and distributes the cooling water from the circulating water system RL. The steam introduced into the housing 400 is indirectly cooled by the cooling water in the cooling pipe 401, thereby condensing the steam into water. That is, the surface condenser is employ | adopted for the condenser 40 which concerns on this embodiment.

そして、本実施形態に係る火力発電設備1は、上記構成の復水器40,40が二台並列に配置されており、それぞれの復水器40に対して蒸気タービン22,23の排気(蒸気)が導入され、また、それぞれの復水器40から蒸気を凝縮させた水(飽和水)を復水・給水系WLに向けて供給できるようになっている。   In the thermal power generation facility 1 according to the present embodiment, two condensers 40, 40 having the above-described configuration are arranged in parallel, and the exhaust (steam) of the steam turbines 22, 23 is connected to each condenser 40. In addition, water (saturated water) obtained by condensing steam from each condenser 40 can be supplied to the condensate / water supply system WL.

図1に戻り、前記復水・給水系WLは、上述の如く、復水器40からの水をボイラ10に供給する系統であり、上述の如く、二台以上の給水ポンプ50,51を備えている。ここで、復水・給水系WLについて具体的に説明すると、本実施形態に係る復水・給水系WLは、復水器40から水を吸引して下流側に送り出す復水ポンプ52と、復水ポンプ52によって送り出された水を加熱する低圧給水加熱器(低圧ヒータ)53と、低圧給水加熱器53で加熱された水内の溶存ガスを分離除去する脱気器54と、脱気器54からの水を下流側に送り出す前記二台以上の給水ポンプ50,51と、給水ポンプ50,51で送り出された水を加熱する高圧給水加熱器(高圧ヒータ)55とを備えており、高圧給水加熱器55で加熱した水をボイラ10に供給するようになっている。   Returning to FIG. 1, the condensate / water supply system WL is a system for supplying water from the condenser 40 to the boiler 10 as described above, and includes two or more water supply pumps 50 and 51 as described above. ing. Here, the condensate / water supply system WL will be described in detail. The condensate / water supply system WL according to the present embodiment includes a condensate pump 52 that sucks water from the condenser 40 and sends the water downstream. A low pressure feed water heater (low pressure heater) 53 that heats the water sent out by the water pump 52, a deaerator 54 that separates and removes dissolved gas in the water heated by the low pressure feed water heater 53, and a deaerator 54 The two or more water supply pumps 50 and 51 for sending water from the downstream to the downstream side, and a high-pressure water heater (high-pressure heater) 55 for heating the water sent by the water supply pumps 50 and 51 are provided. The water heated by the heater 55 is supplied to the boiler 10.

前記低圧給水加熱器53及び高圧給水加熱器55は、同種の給水加熱器であり、蒸気タービン20,21,22,23からの排気で水を加熱するようになっている。なお、これらの給水加熱器53,55は、給水ポンプ50,51の配置を基準にして命名されており、通常、給水ポンプ50,51よりも復水器40側にある給水加熱器53を低圧給水加熱器といい、給水ポンプ50,51よりもボイラ10側にある給水加熱器55を高圧給水加熱器という。   The low-pressure feed water heater 53 and the high-pressure feed water heater 55 are the same type of feed water heater, and heat water by exhaust from the steam turbines 20, 21, 22, and 23. Note that these feed water heaters 53 and 55 are named based on the arrangement of the feed water pumps 50 and 51, and normally the feed water heater 53 located on the condenser 40 side of the feed water pumps 50 and 51 has a low pressure. The feed water heater 55 is referred to as a feed water heater, and the feed water heater 55 located closer to the boiler 10 than the feed water pumps 50 and 51 is referred to as a high pressure feed water heater.

前記給水ポンプ50,51は、上述の如く、二台以上設けられており、その一部の給水ポンプ50が電動で駆動する電動式のポンプで構成され、残りの給水ポンプ51が蒸気で駆動する蒸気タービン式のポンプで構成されている。本実施形態において、給水ポンプ50,51が二台設けられており、そのうちの一台の給水ポンプ50が電動で駆動する電動式のポンプ(以下、この給水ポンプ50を電動式給水ポンプという)で構成され、残りの一台の給水ポンプ51が蒸気で駆動する蒸気タービン式のポンプ(以下、この給水ポンプ51を蒸気駆動式給水ポンプという)で構成されている。   Two or more of the water supply pumps 50 and 51 are provided as described above, and a part of the water supply pumps 50 is constituted by an electric pump that is electrically driven, and the remaining water supply pumps 51 are driven by steam. It consists of a steam turbine pump. In the present embodiment, two water supply pumps 50 and 51 are provided, and one of the water supply pumps 50 is electrically driven (hereinafter, this water supply pump 50 is referred to as an electric water supply pump). It is comprised and the remaining one feed pump 51 is comprised with the steam turbine type pump (henceforth this feed pump 51 is called a steam drive type feed pump) which drives with steam.

そして、電動式給水ポンプ50は、発電機30の出力が定格出力域よりも低い低出力域にあるときに駆動するようになっている。これに対し、蒸気駆動式給水ポンプ51は、発電機30の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに駆動するようになっている。すなわち、蒸気駆動式給水ポンプ51は、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域の下限域内に予め設定された設定値以上であるときに駆動するようになっている。なお、ここで「定格出力域」とは、火力発電設備1の設計仕様である発電機30の定格(安定)運転時の出力範囲を意味し、本実施形態において、「高出力域」とは、低出力域に対して高出力側で連続する範囲であって、低出力域と定格出力域との間に設定される中間出力域と定格出力域とを合わせた出力域を意味する。   The electric water supply pump 50 is driven when the output of the generator 30 is in a low output range lower than the rated output range. On the other hand, the steam-driven feed water pump 51 is driven when the output of the generator 30 is equal to or higher than a set value set in the output range between the low output range and the rated output range. . That is, the steam-driven feed water pump 51 is driven when the output of the generator is equal to or higher than a preset value within a lower limit range of a high output range including a rated output range higher than the low output range. It has become. Here, the “rated output range” means an output range during rated (stable) operation of the generator 30, which is a design specification of the thermal power generation facility 1, and in this embodiment, the “high output range” This means a range that is continuous on the high output side with respect to the low output range, and that combines the intermediate output range and the rated output range set between the low output range and the rated output range.

従って、本実施形態に係る火力発電設備1の復水・給水系WLは、起動運転時や停止運転時のように発電機30の出力が小さく、復水器40に対する熱負荷が小さいときに、電動式給水ポンプ50でボイラ10に給水し、定格運転時のように発電機30の出力が大きく、復水器40に対する熱負荷が大きいときに、蒸気駆動式給水ポンプ51でボイラ10に給水するようになっている。すなわち、本実施形態に係る復水・給水系WLは、発電機30の出力が低出力域と定格出力域との間の出力域内に設定された設定値になったときに、駆動する給水ポンプ50,51を電動式給水ポンプ50から蒸気駆動式給水ポンプ51に、或いは、蒸気駆動式給水ポンプ51から電動式給水ポンプ50に切り換えるようになっている。   Therefore, the condensate / water supply system WL of the thermal power generation facility 1 according to the present embodiment has a low output of the generator 30 and a small thermal load on the condenser 40 as in the start-up operation and the stop operation. Water is supplied to the boiler 10 by the electric water supply pump 50, and water is supplied to the boiler 10 by the steam-driven water supply pump 51 when the output of the generator 30 is large and the heat load on the condenser 40 is large as in rated operation. It is like that. That is, the condensate / water supply system WL according to the present embodiment is a water supply pump that is driven when the output of the generator 30 reaches a set value set in the output range between the low output range and the rated output range. 50 and 51 are switched from the electric feed pump 50 to the steam-driven feed pump 51 or from the steam-driven feed pump 51 to the electric feed pump 50.

前記蒸気系SLは、蒸気タービン20,21,22,23が上述のように配列されることを前提に、ボイラ10と高圧タービン20の吸気側とを接続した第一スチーム管路SL1、高圧タービン20の排気側とボイラ10内の再熱器13とを接続した第二スチーム管路SL2、再熱器13と一方(一段目)の中圧タービン21の吸気側とを接続した第三スチーム管路SL3、一方(一段目)の中圧タービン21の排気側と他方(二段目)の中圧タービン22の吸気側、及び低圧タービン23の吸気側とを接続した第四スチーム管路SL4、他方(二段目)の中圧タービン22の排気側、及び低圧タービン23の排気側と復水器40とを接続する第五スチーム管路SL5を備えている。   The steam system SL includes a first steam line SL1 that connects the boiler 10 and the intake side of the high-pressure turbine 20, and the high-pressure turbine on the assumption that the steam turbines 20, 21, 22, and 23 are arranged as described above. The second steam line SL2 connecting the exhaust side of 20 and the reheater 13 in the boiler 10, and the third steam pipe connecting the reheater 13 and the intake side of one (first stage) intermediate pressure turbine 21. Path SL3, a fourth steam line SL4 connecting the exhaust side of one (first stage) intermediate pressure turbine 21 and the intake side of the other (second stage) intermediate pressure turbine 22 and the intake side of the low pressure turbine 23, The other (second stage) intermediate-pressure turbine 22 is provided with a fifth steam line SL5 that connects the exhaust side of the low-pressure turbine 23 and the exhaust side of the low-pressure turbine 23 to the condenser 40.

なお、本実施形態に係る火力発電設備1の蒸気系SLは、上述のスチーム管路SL1〜SL5に加え、ボイラ10と高圧タービン20とを接続する第一スチーム管路SL1からバルブBを介して分岐し、復水器40に繋がるバイパス管路SL6を備えている。   In addition, the steam system SL of the thermal power generation facility 1 according to the present embodiment is connected to the steam line SL1 to SL5 described above and the first steam line SL1 that connects the boiler 10 and the high-pressure turbine 20 via the valve B. A bypass pipe SL6 that branches and connects to the condenser 40 is provided.

前記循環水系RLは、上述の如く、二台以上の循環ポンプ60,61を備えており、本実施形態においては、二台の循環ポンプ60,61を備えている。ここで、循環水系RLについて具体的に説明すると、本実施形態に係る循環水系RLは、図2に示す如く、水源(本実施形態においては海)に繋がる取水路62と、水源から取水路62に取り入れた冷却水を復水器40に供給する前記二台の循環ポンプ60,61と、復水器40で熱交換(蒸気の冷却)に利用された冷却水を水源に戻す放水路63とを備えており、前記二台の循環ポンプ60,61は取水路62上に設けられている。   As described above, the circulating water system RL includes two or more circulating pumps 60 and 61. In the present embodiment, the circulating water system RL includes two circulating pumps 60 and 61. Here, the circulating water system RL will be described in detail. The circulating water system RL according to the present embodiment includes an intake channel 62 connected to a water source (in the present embodiment, the sea) and a water source to the intake channel 62 as shown in FIG. The two circulating pumps 60 and 61 for supplying the cooling water taken into the condenser 40 to the condenser 40, and the water discharge path 63 for returning the cooling water used for heat exchange (steam cooling) in the condenser 40 to the water source, The two circulation pumps 60 and 61 are provided on a water intake passage 62.

そして、本実施形態に係る循環水系RLは、上述の如く、循環ポンプ60,61が二台設けられているため、前記取水路62は、水源から冷却水を取り入れるための取水口を有する二本の一次取水路62a,62bと、各一次取水路62a,62bが合流し、復水器40に繋がる二次取水路62cとを備えており、前記一次取水路62a,62bのそれぞれの途中位置に循環ポンプ60,61が介設されている。なお、本実施形態において循環水系RLの水源は海であるが、発電設備1の立地条件によっては、河川が循環水系RLの水源とされる場合がある。   And since the circulation water system RL which concerns on this embodiment is provided with the two circulation pumps 60 and 61 as mentioned above, the said intake path 62 has two intakes for taking in cooling water from a water source. Primary intake passages 62a and 62b and secondary intake passages 62c joined to the condenser 40, and the primary intake passages 62a and 62b are joined to each other. Circulation pumps 60 and 61 are interposed. In this embodiment, the water source of the circulating water system RL is the sea. However, depending on the location conditions of the power generation facility 1, the river may be used as the water source of the circulating water system RL.

該火力発電設備1は、上述の如く、復水器40,40が二台並列に設けられているため、前記二次取水路62cは、各復水器40に冷却水を供給すべく、各復水器40の冷却管401に繋がっている。すなわち、本実施形態に係る循環水系RLの取水路62は、二次取水路62cが一本の管路で構成されており、その両端が各復水器40の冷却管401の入口端部に繋がっており、該二次取水路62cの途中位置に二本の一次取水路62a,62bのそれぞれが流体的に接続されている。これにより、各一次取水路62a,62bからの冷却水が二次取水路62cで合流した上で、各復水器40(冷却管401)に供給されるようになっている。これに対し、放水路63は、二本の管路で構成されており、それぞれが各復水器40の冷却管401の出口端部に流体的に接続されている。   Since the thermal power generation facility 1 is provided with two condensers 40, 40 in parallel as described above, the secondary intake channel 62c is provided with each condenser 40 to supply cooling water to each condenser 40. It is connected to the cooling pipe 401 of the condenser 40. That is, in the intake channel 62 of the circulating water system RL according to the present embodiment, the secondary intake channel 62c is configured by a single conduit, and both ends thereof are at the inlet ends of the cooling tubes 401 of the condensers 40. Each of the two primary intake passages 62a and 62b is fluidly connected to an intermediate position of the secondary intake passage 62c. Thereby, after the cooling water from each primary intake channel 62a, 62b merges in the secondary intake channel 62c, it is supplied to each condenser 40 (cooling pipe 401). On the other hand, the water discharge channel 63 is composed of two pipes, each of which is fluidly connected to the outlet end of the cooling pipe 401 of each condenser 40.

そして、該火力発電設備1は、電動式給水ポンプ50が駆動しているときに、一部の循環ポンプ60を駆動し、蒸気駆動式給水ポンプ51が駆動しているときに、電動式給水ポンプ50が駆動しているときよりも多い台数の循環ポンプ60,61を駆動させるように構成されている。すなわち、本実施形態に係る火力発電設備1は、起動運転や停止運転のように電動式給水ポンプ50が駆動している状態(発電機30の出力が低出力域にある状態)で、一台の循環ポンプ60だけを駆動して冷却水を復水器40に供給するが、蒸気駆動式給水ポンプ51が駆動している状態(発電機30の出力が定格出力域を含んだ高出力域にある状態)で、全ての循環ポンプ60,61を駆動して冷却水を復水器40に供給するようになっている。   The thermal power generation facility 1 drives a part of the circulation pump 60 when the electric water supply pump 50 is driven and the electric water supply pump 51 when the steam driven water supply pump 51 is driven. A larger number of circulating pumps 60 and 61 are driven than when 50 is driven. That is, the thermal power generation facility 1 according to the present embodiment is one unit in a state in which the electric feed water pump 50 is driven as in the start-up operation and the stop operation (the state in which the output of the generator 30 is in the low output range). Only the circulation pump 60 is driven to supply the cooling water to the condenser 40, but the steam-driven feed water pump 51 is driven (the output of the generator 30 is in a high output range including the rated output range). In a certain state), all the circulation pumps 60 and 61 are driven to supply cooling water to the condenser 40.

本実施形態に係る火力発電設備1は、以上の通りであり、次に、上記火力発電設備1の運転方法について図1を参照して説明する。なお、以下の説明においては、発電機30の定格出力域を105MW以上で320MW以下に、高出力域を75MW以上で320MW以下に、低出力域を10.5MW以上で75MW未満に設定し、これに伴って、低出力域と定格出力域との間にある中間出力域を75MW以上で105MW未満に設定した場合を一例に、循環水系RLにおける運転に関連する事項を重点に説明することとする。   The thermal power generation facility 1 according to the present embodiment is as described above. Next, an operation method of the thermal power generation facility 1 will be described with reference to FIG. In the following description, the rated output range of the generator 30 is set to 105 MW to 320 MW, the high output range is set to 75 MW to 320 MW, and the low output range is set to 10.5 MW to less than 75 MW. Accordingly, the case where the intermediate output range between the low output range and the rated output range is set to 75 MW or more and less than 105 MW will be described with emphasis on matters related to operation in the circulating water system RL. .

まず、火力発電設備1の運転を開始する起動運転について説明する。起動前の火力発電設備1は、送電線に対して解列状態になっている。そして、該火力発電設備1は、ボイラ10が停止しているため、復水器40には熱負荷がかかっていないが、ボイラ10で発生させた蒸気が蒸気系SLを介して復水器40に供給されたときに該蒸気を凝縮させることのできるように、予め循環水系RLの循環ポンプ60を駆動する。このとき、本実施形態においては、一方の循環ポンプ60のみが駆動され、取水路62を介して復水器40内の冷却管401内に冷却水(海水)を供給し、冷却管401を通った冷却水が放水路63を介して水源(海)に戻される。   First, the start-up operation for starting the operation of the thermal power generation facility 1 will be described. The thermal power generation facility 1 before activation is in a disconnected state with respect to the transmission line. In the thermal power generation facility 1, since the boiler 10 is stopped, no heat load is applied to the condenser 40. However, the steam generated in the boiler 10 is supplied to the condenser 40 via the steam system SL. The circulation pump 60 of the circulating water system RL is driven in advance so that the steam can be condensed when supplied to the tank. At this time, in the present embodiment, only one circulation pump 60 is driven, and the cooling water (seawater) is supplied into the cooling pipe 401 in the condenser 40 via the intake passage 62 and passes through the cooling pipe 401. The cooled water is returned to the water source (sea) through the water discharge channel 63.

そして、ボイラ10を駆動するのに併せて電動式給水ポンプ50を駆動し、蒸気系SL(バイパス管路SL5)を介してボイラ10で発生させた蒸気を復水器40に供給して復水器40の真空度を高める。そして、復水器40が所定の真空度になるとボイラ10からの蒸気が蒸気タービン20,21,22,23(高圧、中圧、低圧の各蒸気タービン20,21,22,23)に供給され、該蒸気タービン20,21,22,23の駆動で発電機30が発電を開始する。そして、発電機30の出力が低出力域の下限値(10.5MW)に到達すると、当該火力発電設備1(発電機30)が送電線との関係において並列状態にされ、発電機30で発電した電力が送電されることになる。   Then, the electric feed water pump 50 is driven in conjunction with driving the boiler 10, and steam generated in the boiler 10 is supplied to the condenser 40 via the steam system SL (bypass line SL5) to condensate the water. Increase the vacuum of the vessel 40. When the condenser 40 reaches a predetermined degree of vacuum, steam from the boiler 10 is supplied to the steam turbines 20, 21, 22, and 23 (high-pressure, intermediate-pressure, and low-pressure steam turbines 20, 21, 22, and 23). The generator 30 starts power generation by driving the steam turbines 20, 21, 22, and 23. When the output of the generator 30 reaches the lower limit value (10.5 MW) of the low output range, the thermal power generation facility 1 (generator 30) is brought into a parallel state in relation to the power transmission line, and the generator 30 generates power. Power will be transmitted.

そして、発電機30の出力が徐々に大きくなるが、発電機30の出力が定格出力域よりも低い低出力域(10.5MW以上で75MW未満)である状態では、復水・給水系WLにおいては起動当初と同様に電動式給水ポンプ50が復水器40からの水をボイラ10に供給し、循環水系RLにおいては一台の循環ポンプ61が冷却水を復水器40に供給する。   And although the output of the generator 30 becomes large gradually, in the state where the output of the generator 30 is a low output range (10.5 MW or more and less than 75 MW) lower than the rated output range, in the condensate / water supply system WL In the same manner as at the start of operation, the electric water supply pump 50 supplies water from the condenser 40 to the boiler 10, and one circulating pump 61 supplies cooling water to the condenser 40 in the circulating water system RL.

そして、蒸気タービン20,21,22,23から排出される蒸気の冷却に伴って復水器40内の真空度がさらに高まると、この真空度の上昇に対応して発電機30の発電量が多くなり、その発電量(発電機30の出力)が前記低出力域(10.5MW以上で75MW未満)から脱し、該低出力域(10.5MW以上で75MW未満)と定格出力域(105MW以上で320MW以下)との間の中間出力域(75MW以上で105MW未満)内に予め設定された設定値(例えば、80MW)になると、ボイラ10に水を供給する給水ポンプ50,51が電動式ものから蒸気駆動式ものに切り替わる。すなわち、発電機30の出力が高出力域(75MW以上で320MW以下)の下限域にある設定値(例えば、80MW)になると、電動式給水ポンプ50が停止して蒸気駆動式給水ポンプ51が駆動する。そして、発電機30の出力が高出力域(75MW以上で320MW以下)にある状態で、蒸気駆動式給水ポンプ51が駆動し続けてボイラ10に給水を行う。   And when the vacuum degree in the condenser 40 further increases with the cooling of the steam discharged from the steam turbines 20, 21, 22, and 23, the power generation amount of the generator 30 corresponds to the increase in the vacuum degree. The power generation amount (output of the generator 30) deviates from the low output range (10.5 MW or more and less than 75 MW), and the low output range (10.5 MW or more and less than 75 MW) and the rated output range (105 MW or more) The feed water pumps 50 and 51 for supplying water to the boiler 10 are electrically driven when a preset value (for example, 80 MW) is set in an intermediate output range between 75 MW and less (less than 105 MW). Switch to steam driven type. That is, when the output of the generator 30 reaches a set value (for example, 80 MW) in the lower limit region of the high output range (75 MW or more and 320 MW or less), the electric feed pump 50 stops and the steam drive feed pump 51 is driven. To do. And in the state which the output of the generator 30 exists in a high output area (75 MW or more and 320 MW or less), the steam drive type feed water pump 51 continues driving and supplies water to the boiler 10.

そして、本実施形態に係る火力発電設備1は、発電機30の出力が低出力域(10.5MW以上で75MW未満)から脱した後、上述のように給水ポンプ50,51が電動式のものから蒸気駆動式のものに切り換えられる前において、全ての循環ポンプ60,61が駆動される。すなわち、本実施形態において、発電機30の出力値が高出力域(75MW以上で320MW以下)の下限値(75MW)になると、蒸気駆動式給水ポンプ51の駆動に先だって全ての循環ポンプ60,61が駆動される。   In the thermal power generation facility 1 according to the present embodiment, the power supply pumps 50 and 51 are electrically driven as described above after the output of the power generator 30 is released from the low output range (10.5 MW or more and less than 75 MW). All the circulation pumps 60 and 61 are driven before switching from the steam-driven type to the steam-driven type. That is, in this embodiment, when the output value of the generator 30 reaches the lower limit value (75 MW) of the high output range (75 MW or more and 320 MW or less), all the circulation pumps 60 and 61 are driven prior to driving the steam-driven feed water pump 51. Is driven.

これにより、蒸気駆動式給水ポンプ51が駆動しているとき(蒸気駆動式給水ポンプ51の駆動状態にあるとき)の全期間において、電動式給水ポンプ50が駆動しているときよりも多い台数の循環ポンプ60,61が駆動するため、復水器40の熱負荷に応じた必要量の冷却水が供給される。すなわち、発電機30の出力が定格出力域(105MW以上で320MW以下)に到達してその出力域(105MW以上で320MW以下)内にある状態になっても、復水器40に必要な最大量の冷却水を供給することができる。従って、発電機30の負荷が最大となる定格運転時に復水器40で蒸気を確実且つ適正に冷却することができ、復水器40に対する熱負荷のバランスを崩すことなく良好に発電することができる。   Thereby, in the whole period when the steam drive type feed pump 51 is driven (when the steam drive type feed pump 51 is in a driving state), the number of units is larger than that when the electric feed pump 50 is driven. Since the circulation pumps 60 and 61 are driven, a necessary amount of cooling water corresponding to the heat load of the condenser 40 is supplied. That is, even if the output of the generator 30 reaches the rated output range (105 MW or more and 320 MW or less) and is in the output range (105 MW or more and 320 MW or less), the maximum amount required for the condenser 40 Cooling water can be supplied. Therefore, the steam can be reliably and appropriately cooled by the condenser 40 during rated operation at which the load on the generator 30 is maximized, and power can be generated satisfactorily without breaking the balance of the heat load on the condenser 40. it can.

これに対し、火力発電を停止する停止運転を行う場合には、まず、ボイラ10の蒸気の供給量を少なくする。そうすると、発電機30の出力が定格出力域(105MW以上で320MW以下)から下方域(低出力域(10.5MW以上で75MW未満))に向けて低下することになる。そして、発電機30の出力が中間出力域(75MW以上で105MW未満)に設定された設定値(例えば、80MW)になるまで、復水・給水系WLにおいて蒸気駆動式給水ポンプ51でボイラ10に給水する。この状態で、蒸気駆動式給水ポンプ51が駆動していることから、循環水系RLにおいては、二台の循環ポンプ60,61が駆動して冷却水を復水器40に供給する。   On the other hand, when performing the stop operation to stop the thermal power generation, first, the steam supply amount of the boiler 10 is decreased. Then, the output of the generator 30 decreases from the rated output range (105 MW or more to 320 MW or less) toward the lower range (low output range (10.5 MW or more and less than 75 MW)). And until the output of the generator 30 reaches the set value (for example, 80 MW) set in the intermediate output range (75 MW or more and less than 105 MW), the steam-driven feed water pump 51 in the boiler 10 in the condensate / water supply system WL Supply water. In this state, since the steam-driven feed water pump 51 is driven, in the circulating water system RL, the two circulating pumps 60 and 61 are driven to supply cooling water to the condenser 40.

そして、発電機30の出力が中間出力域(75MW以上105MW未満)内の設定値(80MW)に到達すると、ボイラ10に給水する給水ポンプ50,51が蒸気駆動式ものから電動式ものに切り替わる。そして、循環水系RLにおいては、引き続き二台の循環ポンプ60,61で復水器40に冷却水を供給し、発電機30の出力が中間出力域(75MW以上105MW未満)の下限値(75MW)、すなわち、高出力域(75MW以上320MW以下)の下限値(75M)になると、一台の循環ポンプ60を停止し、残りの一台の循環ポンプ61のみを駆動させる。   When the output of the generator 30 reaches the set value (80 MW) in the intermediate output range (75 MW or more and less than 105 MW), the feed pumps 50 and 51 for supplying water to the boiler 10 are switched from the steam-driven type to the electric type. In the circulating water system RL, the cooling water is continuously supplied to the condenser 40 by the two circulating pumps 60 and 61, and the output of the generator 30 is the lower limit value (75 MW) of the intermediate output range (75 MW or more and less than 105 MW). That is, when the lower limit value (75 M) of the high output range (75 MW or more and 320 MW or less) is reached, one circulating pump 60 is stopped and only the remaining one circulating pump 61 is driven.

この状態において、発電機30の出力が低出力域(10.5MW以上で75MW未満)にあり、該火力発電設備1が送電線との関係で並列状態になっているが、運転を停止させる過程(解列に向かう過程)であるため、復水器40に供給される蒸気量が漸減することから、一台の循環ポンプ61で給水しても復水器40に必要十分な冷却水が供給される。   In this state, the output of the generator 30 is in a low output range (10.5 MW or more and less than 75 MW), and the thermal power generation facility 1 is in a parallel state in relation to the transmission line, but the process of stopping the operation Since the amount of steam supplied to the condenser 40 gradually decreases because of the process toward the disconnection, the necessary and sufficient cooling water is supplied to the condenser 40 even if water is supplied by one circulation pump 61. Is done.

そして、発電機30の出力が低出力域から脱すると、火力発電設備1が送電線との関係で解列状態にされた後、蒸気タービン20,21,22,23が停止し、復水器40の熱負荷が無くなると、給水ポンプ50を停止するとともに、循環ポンプ60,61を停止する。   And if the output of the generator 30 departs from the low output range, after the thermal power generation facility 1 is disconnected from the transmission line, the steam turbines 20, 21, 22, 23 are stopped, and the condenser When the heat load of 40 is lost, the feed water pump 50 is stopped and the circulation pumps 60 and 61 are stopped.

このように、本実施形態に係る火力発電設備1は、電動式給水ポンプ50が駆動している状態で一部(一台)の循環ポンプ60を駆動し、蒸気駆動式給水ポンプ51が駆動している状態で、前記一部の循環ポンプ60に加えて残りの循環ポンプ61を駆動させるように構成されているので、発電機30の出力が定格出力域よりも低い低出力域となる運転状態で循環水系RLを駆動するエネルギー(循環ポンプ60,61を駆動するエネルギー)を無駄に消費することを防止でき、また、発電機30の出力が定格出力域にある運転状態で、復水器40の熱負荷が過大になることを防止して安定した発電を行うことができる   Thus, the thermal power generation facility 1 according to the present embodiment drives a part (one unit) of the circulation pump 60 while the electric feed water pump 50 is driven, and the steam driven feed water pump 51 drives. In this state, the remaining circulating pumps 61 are driven in addition to the part of the circulating pumps 60, so that the output of the generator 30 is in a low output range lower than the rated output range. Thus, wasteful consumption of energy for driving the circulating water system RL (energy for driving the circulating pumps 60 and 61) can be prevented, and the condenser 40 can be operated in an operating state where the output of the generator 30 is in the rated output range. Stable power generation can be prevented by preventing excessive heat load

従って、本実施形態に係る火力発電設備1によれば、起動運転及び停止運転における循環水系RLでのエネルギーの無駄な消費を抑えることができ、定格運転時に安定した発電を行うことができるという優れた効果を奏し得る。   Therefore, according to the thermal power generation facility 1 according to the present embodiment, it is possible to suppress wasteful consumption of energy in the circulating water system RL in the start-up operation and the stop operation, and it is possible to perform stable power generation during the rated operation. The effects can be achieved.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更することは可能である。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.

上記実施形態において、循環水系RLの循環ポンプ60,61を二台設けるようにしたが、これに限定されるものではなく、例えば、循環ポンプ60,61を三台以上設けるようにしてもよい。この場合、電動式給水ポンプ50が駆動しているときや、発電機30の出力が定格出力域よりも低い低出力域にあるときに、一部(最低一台)の循環ポンプ60を駆動し、蒸気駆動式給水ポンプ51が駆動しているときや、発電機30の出力が定格出力域を含んだ前記低出力域よりも高い高出力域にあるときに、前記一部の循環ポンプ60に加えて他の循環ポンプ61を駆動する(駆動する循環ポンプ60,61の台数を増やす)ようにしてもよい。   In the above embodiment, two circulating pumps 60 and 61 of the circulating water system RL are provided. However, the present invention is not limited to this. For example, three or more circulating pumps 60 and 61 may be provided. In this case, when the electric water supply pump 50 is driven or when the output of the generator 30 is in a low output range lower than the rated output range, a part (at least one) of the circulation pumps 60 is driven. When the steam-driven feed water pump 51 is driven, or when the output of the generator 30 is in a high output range higher than the low output range including the rated output range, In addition, another circulation pump 61 may be driven (the number of circulation pumps 60 and 61 to be driven is increased).

上記実施形態において、復水・給水系WLの給水ポンプ50,51の運転状態に合わせて循環水系RLの循環ポンプ60,61の駆動台数を変更するようにしたが、これに限定されるものではなく、例えば、発電機30の出力値(発電量)を基準にして循環水系RLの循環ポンプ60,61の駆動台数を変更するようにしてもよい。すなわち、発電機30の出力が定格出力域よりも低い低出力域にあるときに、一部の循環ポンプ60を駆動し、発電機30の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機30の出力が定格出力域よりも低い低出力域にあるときよりも多い台数の循環ポンプ60,61を駆動するようにしてもよい。   In the above embodiment, the number of driven circulation pumps 60 and 61 of the circulating water system RL is changed in accordance with the operation state of the feed water pumps 50 and 51 of the condensate / water supply system WL. However, the present invention is not limited to this. For example, the number of circulating pumps 60 and 61 in the circulating water system RL may be changed based on the output value (power generation amount) of the generator 30. That is, when the output of the generator 30 is in a low output range lower than the rated output range, some circulating pumps 60 are driven, and the rated output range in which the output of the generator 30 is higher than the low output range is included. When the output is in the high output range, a larger number of circulation pumps 60 and 61 may be driven than in the low output range where the output of the generator 30 is lower than the rated output range.

このようにすれば、起動運転や停止運転のように発電機30の出力が所定の定格出力域よりも低い出力域にあるときに、必要最小限の循環ポンプ60,61を駆動して復水器40の熱負荷に応じた必要最小限の冷却水を供給し、発電機30の出力が低出力域よりも高い高出力域にあるときに、多くの循環ポンプ60,61を駆動して復水器40の熱負荷に対して必要な冷却水を供給するため、発電機30の出力が定格出力域よりも低い低出力域にある運転状態で循環水系RLを駆動するエネルギー(循環ポンプ60,61を駆動するエネルギー)を無駄に消費することを防止でき、また、発電機30の出力が定格出力域にある状態で、復水器40の熱負荷が過大になることを防止して安定した発電を行うことができる。   In this way, when the output of the generator 30 is in an output range lower than a predetermined rated output range as in the start-up operation and the stop operation, the minimum necessary circulation pumps 60 and 61 are driven to condensate. When the necessary minimum amount of cooling water corresponding to the heat load of the generator 40 is supplied and the output of the generator 30 is in a high output region higher than the low output region, many circulation pumps 60 and 61 are driven to recover. In order to supply the necessary cooling water to the heat load of the water device 40, energy for driving the circulating water system RL in the operation state where the output of the generator 30 is in a low output region lower than the rated output region (circulation pump 60, The energy that drives 61) can be prevented from being wasted, and in the state where the output of the generator 30 is in the rated output range, the heat load of the condenser 40 is prevented from becoming excessive and stable. It can generate electricity.

この場合、上記実施形態と同様に、高出力域を中間出力域と定格出力域とを合わせた範囲に設定してもよいが、給水ポンプ50,51の切換のタイミングに拘束されないため、高出力域と定格出力域とを一致させる、すなわち、定格出力域を高出力域として設定してもよい。また、循環ポンプ60,61の駆動台数の切り替えを復水・給水系WLの給水ポンプ50,51の動作に起因させる必要がないため、給水ポンプ50,51を複数設ける場合、何れも電動のものにしてもよい。但し、エネルギーの消費を抑える点において、上記実施形態と同様に給水ポンプ50,51で電動式ものと蒸気駆動式ものとの組み合わせにすることが好ましいことは言うまでもない。   In this case, as in the above-described embodiment, the high output range may be set to a range that combines the intermediate output range and the rated output range. However, the high output range is not restricted by the switching timing of the feed water pumps 50 and 51. The rated output range may be set as the high output range. Further, since it is not necessary to switch the number of circulating pumps 60 and 61 driven by the operation of the water supply pumps 50 and 51 of the condensate / water supply system WL, when providing a plurality of water supply pumps 50 and 51, both are electrically driven. It may be. However, it goes without saying that, in terms of suppressing energy consumption, it is preferable to use a combination of an electric type and a steam driven type in the feed water pumps 50 and 51 as in the above embodiment.

上記実施形態において、発電機30の出力が高出力域にあるときに、全ての循環ポンプ60,61を駆動するようにしたが、例えば、循環ポンプを複数台設け、そのうちの一台又は複数台が予備的に設けられている場合には、全ての循環ポンプを駆動する必要はない。すなわち、発電機30の出力が定格出力域を含んだ前記低出力域よりも高い高出力域にあるときに、発電機30の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動すればよい。   In the above embodiment, when the output of the generator 30 is in the high output range, all the circulation pumps 60 and 61 are driven. For example, a plurality of circulation pumps are provided, and one or more of them are provided. Is preliminarily provided, it is not necessary to drive all the circulation pumps. That is, when the output of the generator 30 is in a high output range higher than the low output range including the rated output range, a larger number of circulation pumps are driven than in the case where the output of the generator 30 is in a low output range. do it.

上記実施形態において、発電機30の定格出力域を105MW以上で320MW以下、高出力域を75MW以上で320MW以下、低出力域を10.5MW以上で75MW未満、中間出力域を75MW以上で105MW未満に設定した場合を一例に説明したが、これに限定されるものではなく、定格出力域、高出力域、低出力域、中間出力域は、火力発電設備1の設計仕様に応じて適宜決定すればよい。但し、何れの出力域においても、発電機30が発電した電力を送電している、或いは送電できる状態(並列状態)と対応する出力域であることが前提である。   In the above embodiment, the rated output range of the generator 30 is 105 MW or more and 320 MW or less, the high output range is 75 MW or more and 320 MW or less, the low output range is 10.5 MW or more and less than 75 MW, and the intermediate output range is 75 MW or more and less than 105 MW. However, the present invention is not limited to this, and the rated output range, high output range, low output range, and intermediate output range are appropriately determined according to the design specifications of the thermal power generation facility 1. That's fine. However, in any output region, it is a premise that the output region corresponds to a state in which the power generated by the generator 30 is transmitted or can be transmitted (parallel state).

1…火力発電設備、10…ボイラ、11…蒸発器、12…過熱器、13…再熱器、20…高圧タービン(蒸気タービン)、21,22…中圧タービン(蒸気タービン)、23…低圧タービン(蒸気タービン)、30…発電機、40…復水器、50…電動式給水ポンプ(給水ポンプ)、51…蒸気駆動式給水ポンプ(給水ポンプ)、52…復水ポンプ、53…低圧給水加熱器(給水加熱器)、54…脱気器、55…高圧給水加熱器(給水加熱器)、60,61…循環ポンプ、62…取水路、62a,62b…一次取水路、62c…二次取水路、63…放水路、400…ハウジング、401…冷却管、B…バルブ、WL…復水・給水系、SL…蒸気系、RL…循環水系、SL1…第一スチーム管路、SL2…第二スチーム管路、SL3…第三スチーム管路、SL4…第四スチーム管路、SL5…第五スチーム管路、SL6…バイパス管路   DESCRIPTION OF SYMBOLS 1 ... Thermal power generation equipment, 10 ... Boiler, 11 ... Evaporator, 12 ... Superheater, 13 ... Reheater, 20 ... High pressure turbine (steam turbine), 21, 22 ... Medium pressure turbine (steam turbine), 23 ... Low pressure Turbine (steam turbine), 30 ... generator, 40 ... condenser, 50 ... electric feed pump (feed pump), 51 ... steam-driven feed pump (feed pump), 52 ... condensate pump, 53 ... low pressure feed water Heater (feed water heater), 54 ... deaerator, 55 ... high pressure feed water heater (feed water heater), 60, 61 ... circulating pump, 62 ... intake channel, 62a, 62b ... primary intake channel, 62c ... secondary Intake channel, 63 ... Discharge channel, 400 ... Housing, 401 ... Cooling pipe, B ... Valve, WL ... Condensate / water supply system, SL ... Steam system, RL ... Circulating water system, SL1 ... First steam pipeline, SL2 ... No. Second steam line, SL3 ... Beam pipe, SL4 ... the fourth steam pipe, SL5 ... fifth steam pipe, SL6 ... bypass line

Claims (4)

水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備えた火力発電設備において、発電機の出力が定格出力域よりも低い低出力域にあるときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動し、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動するように構成されていることを特徴とする火力発電設備。   A boiler that heats water into steam, a steam turbine that is driven by the steam generated by the boiler, a generator that generates electric power by driving the steam turbine, and cools steam discharged from the steam turbine The output of the generator is rated in a thermal power generation facility equipped with a condenser for making water and two or more circulation pumps that supply cooling water to the condenser to cool the steam with the condenser. When in a low output range lower than the output range, drive a part of the circulation pumps of two or more circulating pumps, and the generator output is a high output that includes a rated output range higher than the low output range. A thermal power generation facility configured to drive a greater number of circulation pumps when in the output range than when the output of the generator is in a low output range. 水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で得られた水をボイラに供給する二台以上の給水ポンプと、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備え、二台以上の給水ポンプのうちの一部の給水ポンプが電動で駆動する電動式給水ポンプで構成され、残りの給水ポンプがボイラからの蒸気で駆動する蒸気駆動式給水ポンプで構成され、発電機の出力が定格出力域よりも低い低出力域にあるときに電動式給水ポンプを駆動し、発電機の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに蒸気駆動式給水ポンプを駆動するように構成された火力発電設備において、電動式給水ポンプが駆動しているときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動し、蒸気駆動式給水ポンプが駆動しているときに、電動式給水ポンプを駆動しているときよりも多い台数の循環ポンプを駆動するように構成されていることを特徴とする火力発電設備。   A boiler that heats water into steam, a steam turbine that is driven by the steam generated by the boiler, a generator that generates electric power by driving the steam turbine, and cools steam discharged from the steam turbine Condenser to make water, two or more water supply pumps that supply the boiler with water obtained from the condenser, and supply cooling water to the condenser to cool the steam with the condenser Steam that includes two or more circulation pumps and that is configured by an electric water pump that is electrically driven by a part of the two or more water pumps, and the remaining water pump is driven by steam from a boiler It is composed of a driven feed pump, and when the generator output is in a low output range lower than the rated output range, the electric feed pump is driven, and the generator output is between the low output range and the rated output range. When it is over the set value within the output range of In a thermal power generation facility configured to drive a driven feedwater pump, when the electric feedwater pump is being driven, a part of the two or more circulation pumps is driven, and a steam driven type A thermal power generation facility configured to drive a larger number of circulation pumps when the water supply pump is being driven than when the electric water supply pump is being driven. 水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備えた火力発電設備の運転方法において、発電機の出力が定格出力域よりも低い低出力域にあるときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動させ、発電機の出力が前記低出力域よりも高い定格出力域を包括した高出力域にあるときに、発電機の出力が低出力域にあるときよりも多い台数の循環ポンプを駆動させることを特徴とする火力発電設備の運転方法。   A boiler that heats water into steam, a steam turbine that is driven by the steam generated by the boiler, a generator that generates electric power by driving the steam turbine, and cools steam discharged from the steam turbine In a method of operating a thermal power generation facility comprising a condenser for making water and two or more circulation pumps for supplying cooling water to the condenser to cool the steam in the condenser, When the output is in a low output range lower than the rated output range, some circulating pumps of two or more circulating pumps are driven, and the generator output has a rated output range higher than the low output range. A method for operating a thermal power generation facility, characterized in that, when in a comprehensive high power range, a greater number of circulation pumps are driven than when the generator output is in a low power range. 水を加熱して蒸気にするボイラと、該ボイラで発生させた蒸気で駆動する蒸気タービンと、該蒸気タービンの駆動を受けて発電する発電機と、蒸気タービンから排出される蒸気を冷却して水にするための復水器と、復水器で得られた水をボイラに供給する二台以上の給水ポンプと、復水器で蒸気を冷却すべく、復水器に冷却水を供給する二台以上の循環ポンプとを備え、二台以上の給水ポンプのうちの一部の給水ポンプが電動で駆動する電動式給水ポンプで構成され、残りの給水ポンプがボイラからの蒸気で駆動する蒸気駆動式給水ポンプで構成され、発電機の出力が定格出力域よりも低い低出力域にあるときに電動式給水ポンプを駆動し、発電機の出力が前記低出力域と定格出力域との間の出力域内に設定された設定値以上であるときに蒸気駆動式給水ポンプを駆動するように構成された火力発電設備の運転方法において、電動式給水ポンプが駆動しているときに、二台以上の循環ポンプのうちの一部の循環ポンプを駆動させ、蒸気駆動式給水ポンプが駆動しているときに、電動式給水ポンプを駆動しているときよりも多い台数の循環ポンプを駆動させることを特徴とする火力発電設備の運転方法。   A boiler that heats water into steam, a steam turbine that is driven by the steam generated by the boiler, a generator that generates electric power by driving the steam turbine, and cools steam discharged from the steam turbine Condenser to make water, two or more water supply pumps that supply the boiler with water obtained from the condenser, and supply cooling water to the condenser to cool the steam with the condenser Steam that includes two or more circulation pumps and that is configured by an electric water pump that is electrically driven by a part of the two or more water pumps, and the remaining water pump is driven by steam from a boiler It is composed of a driven feed pump, and when the generator output is in a low output range lower than the rated output range, the electric feed pump is driven, and the generator output is between the low output range and the rated output range. When it is over the set value within the output range of In the operation method of the thermal power generation facility configured to drive the drive type water supply pump, when the electric type water supply pump is driven, a part of the two or more circulation pumps is driven, A method for operating a thermal power generation facility, characterized in that when a steam-driven feed water pump is being driven, a greater number of circulation pumps are driven than when an electric feed water pump is being driven.
JP2009236991A 2009-10-14 2009-10-14 Thermal power generation facility and operation method of thermal power generation facility Active JP5072935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236991A JP5072935B2 (en) 2009-10-14 2009-10-14 Thermal power generation facility and operation method of thermal power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236991A JP5072935B2 (en) 2009-10-14 2009-10-14 Thermal power generation facility and operation method of thermal power generation facility

Publications (2)

Publication Number Publication Date
JP2011085041A true JP2011085041A (en) 2011-04-28
JP5072935B2 JP5072935B2 (en) 2012-11-14

Family

ID=44078178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236991A Active JP5072935B2 (en) 2009-10-14 2009-10-14 Thermal power generation facility and operation method of thermal power generation facility

Country Status (1)

Country Link
JP (1) JP5072935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062502A (en) * 2012-09-21 2014-04-10 Chugoku Electric Power Co Inc:The Operation method and system of circulation pump in thermal power plant

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413802A (en) * 1977-07-05 1979-02-01 Toshiba Corp Automatic running of steam turbine for driving boiler feed pump
JPS5436401A (en) * 1977-08-29 1979-03-17 Toshiba Corp Water-supply flow control equipment
JPS55116009A (en) * 1979-02-28 1980-09-06 Tokyo Shibaura Electric Co Feed water controller
JPS5721782A (en) * 1980-07-11 1982-02-04 Hitachi Ltd Flow regulator in cooling system for condenser
JPS57212386A (en) * 1981-06-25 1982-12-27 Toshiba Corp Apparatus for controlling starting operation of feed water pump
JPS5883104A (en) * 1981-11-12 1983-05-18 株式会社東芝 Feedwater controller
JPS58214703A (en) * 1982-06-09 1983-12-14 株式会社日立製作所 Method of controlling feed pump
JPS58217103A (en) * 1982-06-11 1983-12-17 株式会社日立製作所 Controller for feedwater pump
JPS6060401A (en) * 1983-09-13 1985-04-08 三菱重工業株式会社 Method of operating pump in steam generating plant
JPS6079108A (en) * 1983-10-07 1985-05-04 Toshiba Corp Circulating water pump controller
JPS6191405A (en) * 1984-10-11 1986-05-09 株式会社東芝 Feedwater facility in thermal power plant
JPS61190205A (en) * 1985-02-20 1986-08-23 北海道電力株式会社 Controller for turbine for driving feed water pump
JPS61197992A (en) * 1985-02-28 1986-09-02 Sumitomo Metal Ind Ltd Control of operation of condensed water cooling pump
JPS61231308A (en) * 1985-04-08 1986-10-15 株式会社東芝 Method of controlling feed pump for nuclear reactor
JPS6273004A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Flow controller for feedwater of nuclear reactor
JPS62196505A (en) * 1986-02-21 1987-08-29 株式会社日立製作所 Feedwater flow controller
JP2005155372A (en) * 2003-11-21 2005-06-16 Toshiba Corp Thermal power plant and method for operating the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413802A (en) * 1977-07-05 1979-02-01 Toshiba Corp Automatic running of steam turbine for driving boiler feed pump
JPS5436401A (en) * 1977-08-29 1979-03-17 Toshiba Corp Water-supply flow control equipment
JPS55116009A (en) * 1979-02-28 1980-09-06 Tokyo Shibaura Electric Co Feed water controller
JPS5721782A (en) * 1980-07-11 1982-02-04 Hitachi Ltd Flow regulator in cooling system for condenser
JPS57212386A (en) * 1981-06-25 1982-12-27 Toshiba Corp Apparatus for controlling starting operation of feed water pump
JPS5883104A (en) * 1981-11-12 1983-05-18 株式会社東芝 Feedwater controller
JPS58214703A (en) * 1982-06-09 1983-12-14 株式会社日立製作所 Method of controlling feed pump
JPS58217103A (en) * 1982-06-11 1983-12-17 株式会社日立製作所 Controller for feedwater pump
JPS6060401A (en) * 1983-09-13 1985-04-08 三菱重工業株式会社 Method of operating pump in steam generating plant
JPS6079108A (en) * 1983-10-07 1985-05-04 Toshiba Corp Circulating water pump controller
JPS6191405A (en) * 1984-10-11 1986-05-09 株式会社東芝 Feedwater facility in thermal power plant
JPS61190205A (en) * 1985-02-20 1986-08-23 北海道電力株式会社 Controller for turbine for driving feed water pump
JPS61197992A (en) * 1985-02-28 1986-09-02 Sumitomo Metal Ind Ltd Control of operation of condensed water cooling pump
JPS61231308A (en) * 1985-04-08 1986-10-15 株式会社東芝 Method of controlling feed pump for nuclear reactor
JPS6273004A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Flow controller for feedwater of nuclear reactor
JPS62196505A (en) * 1986-02-21 1987-08-29 株式会社日立製作所 Feedwater flow controller
JP2005155372A (en) * 2003-11-21 2005-06-16 Toshiba Corp Thermal power plant and method for operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062502A (en) * 2012-09-21 2014-04-10 Chugoku Electric Power Co Inc:The Operation method and system of circulation pump in thermal power plant

Also Published As

Publication number Publication date
JP5072935B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP6245404B1 (en) Combustion equipment and power generation equipment
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
JP2007163126A (en) Composite cycle power generation system improved in efficiency
JP2011102540A (en) Steam turbine power generation facility and method of operating the same
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
JP2011179494A (en) Systems and methods for prewarming heat recovery steam generator piping
JP2014034924A (en) Exhaust heat recovery device of internal combustion engine and cogeneration system
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
JP5334885B2 (en) Boiler heat recovery apparatus and heat recovery method in power generation facilities
JP2011157854A (en) Heat recovery device and heat recovery method for steam generator in power generation facility
JP5388884B2 (en) Heat recovery apparatus and heat recovery method for turbine in power generation equipment
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP5072935B2 (en) Thermal power generation facility and operation method of thermal power generation facility
CN105765179A (en) Selective pressure kettle boiler for rotor air cooling applications
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JP2012102980A (en) Blow tank and method of using the same
KR101520238B1 (en) Gas turbine cooling system, and gas turbine cooling method
JP5450132B2 (en) Operation method of power generation equipment
JP6152155B2 (en) LNG satellite equipment
JP4920070B2 (en) Thermal power generation facility and operation method of thermal power generation facility
JP2022124996A (en) Thermal power generation plant and control method for thermal power generation plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250