JP2015068314A - Fuel gas heating facility and combined cycle power generation plant - Google Patents

Fuel gas heating facility and combined cycle power generation plant Download PDF

Info

Publication number
JP2015068314A
JP2015068314A JP2013205396A JP2013205396A JP2015068314A JP 2015068314 A JP2015068314 A JP 2015068314A JP 2013205396 A JP2013205396 A JP 2013205396A JP 2013205396 A JP2013205396 A JP 2013205396A JP 2015068314 A JP2015068314 A JP 2015068314A
Authority
JP
Japan
Prior art keywords
heating
fuel
heating device
water
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013205396A
Other languages
Japanese (ja)
Inventor
康晴 前田
Yasuharu Maeda
康晴 前田
服部 祐太
Yuta Hattori
祐太 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013205396A priority Critical patent/JP2015068314A/en
Publication of JP2015068314A publication Critical patent/JP2015068314A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To improve plant efficiency without lowering plant output when a double pressure type exhaust heat recovery boiler is employed.SOLUTION: Fuel gas heating facilities includes: a water extraction line L1 which extracts heating water from a heating water outlet of an intermediate-pressure fuel economizer 19 installed at an exhaust heat recovery boiler 4; a low-temperature fuel heating device 33 which heats a fuel gas to be used by a gas turbine plant 2 using the heating water extracted through the water extraction line L1; a water extraction line L2 which extracts heating water from a heating water outlet of a high-pressure secondary fuel economizer 14 located in an exhaust gas flow passage upstream from the intermediate-pressure fuel economizer 19 installed at the exhaust heat recovery boiler 4; a high-temperature fuel heating device 31 which further heats the fuel gas having been heated by the low-temperature fuel heating device 33 using the heating water extracted through the water extraction line L2; and a heating water return line L3 which returns the heating water after the heating of the fuel gas by the high-temperature fuel heating device 31 to the heating water outlet of the intermediate-pressure fuel economizer 19.

Description

本発明の実施形態は、ガスタービンプラント、蒸気タービンプラント、および排熱回収ボイラを組み合わせたコンバインドサイクル発電プラントに適用される燃料ガス加熱設備に関する。   Embodiments of the present invention relate to a fuel gas heating facility applied to a combined cycle power plant that combines a gas turbine plant, a steam turbine plant, and an exhaust heat recovery boiler.

コンバインドサイクル発電プラントにおいて、燃料ガスを加熱することでプラント効率を向上させる技術がある(例えば、特許文献1)。これを実現する基本構成を図3に示す。   In a combined cycle power plant, there is a technique for improving plant efficiency by heating fuel gas (for example, Patent Document 1). A basic configuration for realizing this is shown in FIG.

コンバインドサイクル発電プラント40は、ガスタービンプラント41、蒸気タービンプラント42、および排熱回収ボイラ43を組み合わせて成る。   The combined cycle power plant 40 is configured by combining a gas turbine plant 41, a steam turbine plant 42, and an exhaust heat recovery boiler 43.

ガスタービンプラント41は、空気圧縮機44、ガスタービン燃焼器45、ガスタービン46、燃料加熱装置57を備え、空気圧縮機44で吸い込んだ大気を高圧化し、その高圧空気に燃料加熱装置57からの加熱された燃料ガスを加えてガスタービン燃焼器45で燃焼ガスを生成し、その燃焼ガスを駆動ガスとしてガスタービン46を駆動する。   The gas turbine plant 41 includes an air compressor 44, a gas turbine combustor 45, a gas turbine 46, and a fuel heating device 57, and the atmosphere sucked by the air compressor 44 is increased in pressure, and the high-pressure air is supplied from the fuel heating device 57. The heated fuel gas is added to generate a combustion gas in the gas turbine combustor 45, and the gas turbine 46 is driven using the combustion gas as a driving gas.

蒸気タービンプラント42は、発電機52に軸直結した蒸気タービン53、復水器54、復水ポンプ55、給水ポンプ56を備え、排熱回収ボイラ43から供給されたタービン駆動蒸気を蒸気タービン53で膨張仕事をさせ、その膨張仕事の際に発生した回転トルクで発電機52を回転駆動して電気出力を得る一方、膨張仕事を終えたタービン排気を復水器54で凝縮させて復水にし、その復水を復水ポンプ55、給水ポンプ56で昇圧し、排熱回収ボイラ43に給水する。   The steam turbine plant 42 includes a steam turbine 53 directly connected to the generator 52, a condenser 54, a condensate pump 55, and a feed water pump 56, and turbine-driven steam supplied from the exhaust heat recovery boiler 43 is converted by the steam turbine 53. The expansion work is performed and the generator 52 is rotationally driven with the rotational torque generated during the expansion work to obtain an electrical output, while the turbine exhaust that has finished the expansion work is condensed in the condenser 54 to be condensed water, The condensate is pressurized by the condensate pump 55 and the feed water pump 56 and supplied to the exhaust heat recovery boiler 43.

排熱回収ボイラ43は、ガスタービン46から出た排ガスの流れに沿ってその上流側から下流側に向って配置された過熱器47、蒸気ドラム48に連通する蒸発器49、節炭器50をケーシング58に収容し、蒸気タービンプラント42からの給水を節炭器50で予熱し、調節弁51を介して蒸気ドラム48に案内し、ここで加熱水を比重を利用して蒸発器49で自然循環させて飽和蒸気にし、その飽和蒸気を再び過熱器47で加熱して過熱蒸気を発生させ、その過熱蒸気をタービン駆動蒸気として蒸気タービンプラント42に供給する。   The exhaust heat recovery boiler 43 includes a superheater 47 arranged from the upstream side to the downstream side along the flow of exhaust gas from the gas turbine 46, an evaporator 49 communicating with the steam drum 48, and a economizer 50. Housed in a casing 58, water supplied from the steam turbine plant 42 is preheated by the economizer 50 and guided to the steam drum 48 through the control valve 51, where the heated water is naturally used by the evaporator 49 using the specific gravity. The saturated steam is circulated to be saturated, and the saturated steam is heated again by the superheater 47 to generate superheated steam, and the superheated steam is supplied to the steam turbine plant 42 as turbine drive steam.

この従来技術では、排熱回収ボイラ43の節炭器50で加熱される給水の温度に着目し、負荷変動があっても熱影響の少ない、その加熱水の熱エネルギを巧みに利用して、プラント熱効率の向上を図っている。すなわち、ガスタービン燃焼器45に投入される燃料ガスの発熱量を高めることにより、プラント効率の改善に努めている。より具体的には、ガスタービンプラント41に燃料加熱装置57を設け、この燃料加熱装置57の加熱源として負荷変動の影響の少ない排熱回収ボイラ43の節炭器50の出口側の加熱水に求め、燃料ガスを加熱させ、燃料ガスに含まれる水蒸気が蒸発する際に必要な潜熱を取り除いて、結果として発熱量を高めることにより、相対的に少ない燃料流量で燃焼ガスを生成し、プラント熱効率の向上に努めている。   In this prior art, paying attention to the temperature of the feed water heated by the economizer 50 of the exhaust heat recovery boiler 43, skillfully utilizing the heat energy of the heating water that has little thermal effect even if there is a load fluctuation, The plant thermal efficiency is improved. That is, efforts are made to improve plant efficiency by increasing the calorific value of the fuel gas introduced into the gas turbine combustor 45. More specifically, a fuel heating device 57 is provided in the gas turbine plant 41, and the heating water at the outlet side of the economizer 50 of the exhaust heat recovery boiler 43 that is less affected by load fluctuations is used as a heating source for the fuel heating device 57. The fuel gas is heated, the latent heat required when the water vapor contained in the fuel gas evaporates is removed, and as a result, the calorific value is increased. We are striving to improve.

上記技術を複圧式の排熱回収ボイラに適用する際は、中圧節炭器の出口側から加熱水を抽水する構成が広く用いられている。   When applying the above technique to a double pressure exhaust heat recovery boiler, a configuration in which heated water is extracted from the outlet side of the medium pressure economizer is widely used.

特開平02−283803号公報Japanese Patent Laid-Open No. 02-283803

上述のように、複圧式の排熱回収ボイラでは、プラント効率を向上させるべく燃料ガス温度を高めるために、中圧節炭器の出口側からの抽水を熱源に燃料ガス温度を上げる手法が広く用いられている。   As described above, in the double pressure exhaust heat recovery boiler, in order to increase the fuel gas temperature in order to improve the plant efficiency, there is a wide range of methods for increasing the fuel gas temperature using the extraction water from the outlet side of the medium pressure economizer as a heat source. It is used.

しかし、複圧式の排熱回収ボイラにおいて、中圧節炭器の出口側からの抽水を熱源に燃料ガス温度を上げる場合、燃料ガス温度は200℃程度までしか高めることが出来ないため、その際のプラント効率の向上には限度がある。一方、排熱回収ボイラの高圧節炭器の出口側からの抽水を熱源にすることで燃料ガス温度を200℃以上に上げることは可能であるが、プラント出力の観点では、高圧タービン、中圧タービン、低圧タービンの仕事量の減少につながるため、中圧節炭器の出口側からの抽水する場合(この場合は中圧タービン、低圧タービンの仕事量が減少)に比べてプラント出力が低下してしまうことから、通常行われていない。   However, in a multi-pressure type exhaust heat recovery boiler, when the fuel gas temperature is raised by using the extraction water from the outlet side of the medium pressure economizer as the heat source, the fuel gas temperature can only be increased up to about 200 ° C. There are limits to improving plant efficiency. On the other hand, it is possible to raise the fuel gas temperature to 200 ° C. or more by using extracted water from the outlet side of the high pressure economizer of the exhaust heat recovery boiler as a heat source. Since the work of the turbine and the low-pressure turbine will be reduced, the plant output will be lower than when extracting water from the outlet side of the medium-pressure economizer (in this case, the work of the medium-pressure turbine and low-pressure turbine will be reduced). This is not usually done.

本発明は、このような事情に鑑みてなされたもので、複圧式の排熱回収ボイラを採用するに際し、プラント出力を低下させずにプラント効率を向上させることが可能な燃料ガス加熱設備およびコンバインドサイクル発電プラントを提供することを目的とする。   The present invention has been made in view of such circumstances, and a fuel gas heating facility and a combined apparatus capable of improving plant efficiency without reducing plant output when adopting a double pressure exhaust heat recovery boiler. An object is to provide a cycle power plant.

実施形態の燃料ガス加熱設備は、ガスタービンプラントに蒸気タービンプラントおよび排熱回収ボイラを組み合わせたコンバインドサイクル発電プラントに適用される燃料ガス加熱設備であって、前記排熱回収ボイラに設置される第1の節炭器の加熱水出口より加熱水を抽水する第1の抽水ラインと、前記第1の抽水ラインを通じて抽水された加熱水を用いて、前記ガスタービンプラントで使用する燃料ガスを加熱する第1の燃料加熱装置と、前記排熱回収ボイラに設置される前記第1の節炭器よりも排ガス流路上流に位置する第2の節炭器の加熱水出口より加熱水を抽水する第2の抽水ラインと、前記第2の抽水ラインを通じて抽水された加熱水を用いて、前記第1の燃料加熱装置により加熱された燃料ガスをさらに加熱する第2の燃料加熱装置と、前記第2の燃料加熱装置における燃料ガス加熱後の加熱水を前記第1の節炭器の加熱水出口へ戻す第1の加熱水戻しラインとを具備する。   The fuel gas heating facility of the embodiment is a fuel gas heating facility applied to a combined cycle power plant in which a steam turbine plant and an exhaust heat recovery boiler are combined with a gas turbine plant, and is installed in the exhaust heat recovery boiler. Fuel gas used in the gas turbine plant is heated using a first extraction line that extracts heating water from a heating water outlet of the first economizer and heated water extracted through the first extraction line. A first fuel heating device and a first water heater for extracting heated water from a heated water outlet of a second economizer located upstream of the first economizer installed in the exhaust heat recovery boiler. 2 and a second fuel addition unit for further heating the fuel gas heated by the first fuel heating device using heated water extracted through the second extraction line. A device comprises a second heated water after the fuel gas heating in the fuel heating system return first heating water returning to the heating water outlet of the first economizer line.

実施形態によれば、複圧式の排熱回収ボイラを採用するに際し、プラント出力を低下させずにプラント効率を向上させることができる。   According to the embodiment, when adopting a double pressure exhaust heat recovery boiler, plant efficiency can be improved without reducing plant output.

第1の実施形態に係るコンバインドサイクル発電プラントの構成を示す概略系統図。1 is a schematic system diagram showing a configuration of a combined cycle power plant according to a first embodiment. 第2の実施形態に係るコンバインドサイクル発電プラントの構成を示す概略系統図。The schematic system diagram which shows the structure of the combined cycle power plant concerning 2nd Embodiment. 従来のコンバインドサイクル発電プラントの構成を示す概略系統図。The schematic system diagram which shows the structure of the conventional combined cycle power plant.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(第1の実施形態)
最初に、図1を参照して第1の実施形態を説明する。
(First embodiment)
First, a first embodiment will be described with reference to FIG.

図1は、第1の実施形態に係るコンバインドサイクル発電プラントの構成を示す概略系統図である。   FIG. 1 is a schematic system diagram showing the configuration of the combined cycle power plant according to the first embodiment.

コンバインドサイクル発電プラント1は、ガスタービンプラント2、蒸気タービンプラント3、および排熱回収ボイラ4を組み合わせて成る。   The combined cycle power plant 1 is configured by combining a gas turbine plant 2, a steam turbine plant 3, and an exhaust heat recovery boiler 4.

ガスタービンプラント2は、空気圧縮機5、ガスタービン燃焼器6、ガスタービン7、高温燃料加熱装置31、低温燃料加熱装置33を備え、空気圧縮機5で吸い込んだ大気を高圧化し、その高圧空気に高温燃料加熱装置31および低温燃料加熱装置33からの加熱された燃料ガスを加えてガスタービン燃焼器6で燃焼ガスを生成し、その燃焼ガスを駆動ガスとしてガスタービン7を駆動する。   The gas turbine plant 2 includes an air compressor 5, a gas turbine combustor 6, a gas turbine 7, a high temperature fuel heating device 31, and a low temperature fuel heating device 33. The heated fuel gas from the high temperature fuel heating device 31 and the low temperature fuel heating device 33 is added to the gas turbine, the combustion gas is generated in the gas turbine combustor 6, and the gas turbine 7 is driven using the combustion gas as a driving gas.

蒸気タービンプラント3は、発電機27に軸直結した蒸気タービン28、復水器29、低圧給水ポンプ30を備え、排熱回収ボイラ4から供給されたタービン駆動蒸気を蒸気タービン28で膨張仕事をさせ、その膨張仕事の際に発生した回転トルクで発電機27を回転駆動して電気出力を得る一方、膨張仕事を終えたタービン排気を復水器29で凝縮させて復水にし、その復水を低圧給水ポンプ30で昇圧し、排熱回収ボイラ4へ給水ラインL0を通じて給水する。   The steam turbine plant 3 includes a steam turbine 28 directly connected to the generator 27, a condenser 29, and a low-pressure feed water pump 30, and causes the steam-driven steam supplied from the exhaust heat recovery boiler 4 to perform expansion work in the steam turbine 28. The generator 27 is rotationally driven with the rotational torque generated during the expansion work to obtain an electrical output, while the turbine exhaust that has finished the expansion work is condensed in the condenser 29 to be condensed into condensate. The pressure is increased by the low-pressure feed water pump 30 and the water is supplied to the exhaust heat recovery boiler 4 through the feed water line L0.

排熱回収ボイラ4は、高圧、中圧、低圧からなる複圧式の排熱回収ボイラであり、ガスタービン7から出た排ガスの流れに沿ってその上流側から下流側に向って配置された高圧過熱器8、再熱器9、高圧蒸気ドラム10に連通する高圧蒸発器11、高圧三次節炭器12、中圧過熱器13、高圧二次節炭器14、中圧蒸気ドラム15に連通する低圧蒸発器16、低圧過熱器17、高圧一次節炭器18、中圧節炭器19、低圧蒸気ドラム20に連通する低圧蒸発器21、低圧節炭器22をケーシング37に収容し、蒸気タービンプラント3からの給水を低圧節炭器22で予熱し、調節弁23を介して低圧蒸気ドラム20に案内し、ここで加熱水の一部を比重を利用して低圧蒸発器21でそれぞれ自然循環させて飽和蒸気にし、その飽和蒸気を再び低圧過熱器17で加熱して過熱蒸気を発生させ、その過熱蒸気をタービン駆動蒸気として蒸気タービンプラント3に供給する。また、残りの加熱水の一部を高中圧給水ポンプ24、中圧節炭器19、調節弁25、中圧蒸気ドラム15を介して中圧過熱器13に、さらに残りの加熱水の一部を高中圧給水ポンプ24、高圧一次節炭器18、高圧二次節炭器14、高圧三次節炭器12、調節弁26、高圧蒸気ドラム10を介して高圧過熱器8にそれぞれ連続的に供給する。また、高圧蒸気ドラム10および中圧蒸気ドラム15にそれぞれにおいて、加熱水の比重を利用して高圧蒸発器11および中圧蒸発器16でそれぞれ自然循環させて飽和蒸気にし、その飽和蒸気を再び高圧過熱器8および中圧過熱器13でそれぞれ加熱して過熱蒸気を発生させ、その過熱蒸気をタービン駆動蒸気として蒸気タービンプラント3に供給する。   The exhaust heat recovery boiler 4 is a multi-pressure exhaust heat recovery boiler having a high pressure, a medium pressure, and a low pressure, and is a high pressure disposed from the upstream side to the downstream side along the flow of exhaust gas from the gas turbine 7. A superheater 8, a reheater 9, a high-pressure evaporator 11 that communicates with the high-pressure steam drum 10, a high-pressure tertiary economizer 12, an intermediate-pressure superheater 13, a high-pressure secondary economizer 14, and a low-pressure that communicates with the intermediate-pressure steam drum 15. An evaporator 16, a low-pressure superheater 17, a high-pressure primary economizer 18, an intermediate-pressure economizer 19, a low-pressure evaporator 21 and a low-pressure economizer 22 communicating with the low-pressure steam drum 20 are accommodated in a casing 37, and a steam turbine plant 3 is preheated by the low-pressure economizer 22 and guided to the low-pressure steam drum 20 through the control valve 23. Here, a part of the heated water is naturally circulated in the low-pressure evaporator 21 by using the specific gravity. To saturated steam It was heated at pressure superheater 17 by generating superheated steam supplied to the steam turbine plant 3 the superheated steam as a turbine driving steam. Further, a part of the remaining heating water is further transferred to the intermediate pressure superheater 13 via the high and medium pressure feed water pump 24, the intermediate pressure economizer 19, the control valve 25, and the intermediate pressure steam drum 15. Are continuously supplied to the high pressure superheater 8 through the high and medium pressure feed water pump 24, the high pressure primary economizer 18, the high pressure secondary economizer 14, the high pressure tertiary economizer 12, the control valve 26, and the high pressure steam drum 10. . Further, in each of the high-pressure steam drum 10 and the intermediate-pressure steam drum 15, using the specific gravity of the heated water, the high-pressure evaporator 11 and the intermediate-pressure evaporator 16 are each naturally circulated into saturated steam, and the saturated steam is again high-pressure. The superheater 8 and the medium pressure superheater 13 are respectively heated to generate superheated steam, and the superheated steam is supplied to the steam turbine plant 3 as turbine drive steam.

高温燃料加熱装置31は、高圧二次節炭器14と高圧三次節炭器12とを結ぶ連絡管より抽水ラインL2を通じて抽水した温水を加熱源として燃料ガスを加熱する。高温燃料加熱装置31で燃料ガスを加熱した加熱水は加熱水戻しラインL3に送られる。加熱水戻しラインL3は、中圧節炭器19から中圧蒸気ドラム15への連絡ラインのうち、低温燃料加熱装置33へ通じる抽水ラインL1への分岐点35と中側節炭器出口36との間の区間に接続される。   The high-temperature fuel heating device 31 heats the fuel gas using hot water extracted through the extraction line L2 from the connecting pipe connecting the high-pressure secondary economizer 14 and the high-pressure tertiary economizer 12 as a heating source. The heated water obtained by heating the fuel gas with the high-temperature fuel heating device 31 is sent to the heated water return line L3. The heating water return line L3 includes a branch point 35 and a middle side economizer outlet 36 to the extraction water line L1 leading to the low temperature fuel heating device 33 among the communication lines from the intermediate pressure economizer 19 to the intermediate pressure steam drum 15. Connected to the section between.

燃料ガス温度の制御は、制御装置100からの操作信号もしくは手動により、高温燃料加熱装置31の加熱水出口に高温燃料加熱装置出口温度調節弁32にて行う。このとき、例えば図示しない温度検出器により高温燃料加熱装置31の加熱水出口の温度および中圧節炭器出口36の温度を計測し、高温燃料加熱装置出口温度調節弁32により高温燃料加熱装置31の加熱水出口の温度が中圧節炭器出口36の温度と同等になるよう温度調節し、熱バランスを変えないようにする。   The fuel gas temperature is controlled by the high-temperature fuel heating device outlet temperature control valve 32 at the heating water outlet of the high temperature fuel heating device 31 by an operation signal from the control device 100 or manually. At this time, for example, the temperature of the heating water outlet of the high temperature fuel heating device 31 and the temperature of the medium pressure economizer outlet 36 are measured by a temperature detector (not shown), and the high temperature fuel heating device outlet temperature control valve 32 measures the temperature of the high temperature fuel heating device 31. The temperature of the heated water outlet is adjusted to be equal to the temperature of the medium pressure economizer outlet 36 so that the heat balance is not changed.

低温燃料加熱装置33は、中圧節炭器19と中圧蒸気ドラム15とを結ぶ連絡管より抽水ラインL1を通じて抽水した温水を加熱源として加熱する。低温燃料加熱装置33で燃料ガスを加熱した加熱水は加熱水戻しラインL4に送られる。加熱水戻しラインL4は、低圧給水ポンプ30から低圧節炭器22へ通じる給水ラインL0に還流するように接続される。   The low-temperature fuel heating device 33 heats the hot water extracted from the connecting pipe connecting the intermediate pressure economizer 19 and the intermediate pressure steam drum 15 through the extraction line L1 as a heating source. The heated water obtained by heating the fuel gas with the low temperature fuel heating device 33 is sent to the heated water return line L4. The heating water return line L4 is connected so as to return to the feed water line L0 leading from the low pressure feed pump 30 to the low pressure economizer 22.

燃料ガス温度の制御は、制御装置100からの操作信号もしくは手動により、低温燃料加熱装置33の加熱水出口に低温燃料加熱装置出口温度調節弁34にて行う。このとき、例えば図示しない温度検出器により低温燃料加熱装置33の加熱水出口の温度および低圧節炭器22へ通じる給水ラインL0の温度を計測し、低温燃料加熱装置出口温度調節弁34により低温燃料加熱装置33の加熱水出口の温度が低圧節炭器22へ通じる給水ラインL0の温度と同等になるよう温度調節し、熱バランスを変えないようにする。   The fuel gas temperature is controlled by the low temperature fuel heating device outlet temperature control valve 34 at the heating water outlet of the low temperature fuel heating device 33 by an operation signal from the control device 100 or manually. At this time, for example, the temperature of the heating water outlet of the low temperature fuel heating device 33 and the temperature of the feed water line L0 leading to the low pressure economizer 22 are measured by a temperature detector (not shown), and the low temperature fuel heating device outlet temperature control valve 34 measures the low temperature fuel. The temperature is adjusted so that the temperature of the heating water outlet of the heating device 33 is equal to the temperature of the water supply line L0 leading to the low-pressure economizer 22, so that the heat balance is not changed.

なお、高温燃料加熱装置出口温度調節弁32や低温燃料加熱装置出口温度調節弁34は、必ずしも設置を必要とするものではない。同様な温度調節を行えるものであれば、別のものを採用しても構わない。また、温度調節を行わなくとも所望の温度が継続して得られるのであれば、これら温度調節弁の設置を省くことができる。   The high temperature fuel heating device outlet temperature control valve 32 and the low temperature fuel heating device outlet temperature control valve 34 are not necessarily required to be installed. As long as the same temperature control can be performed, another one may be adopted. Further, if the desired temperature can be continuously obtained without adjusting the temperature, the installation of these temperature control valves can be omitted.

このように燃料ガスを段階的に加熱する複数の加熱温度が異なる加熱装置として低温燃料加熱装置33および高温燃料加熱装置31を設け、燃料ガスを加熱する加熱源としてそれぞれ中圧節炭器19の出口側および高圧二次節炭器14の出口側より抽水ラインL1,L2を通じて抽水される温水を用いることで、燃料ガスの段階的な300℃程度までの加熱が可能となることに加え、高温燃料加熱装置31および低温燃料加熱装置33での燃料ガス加熱後の加熱水をそれぞれ加熱水戻しラインL3,L4を通じて中圧節炭器19の出口側および給水ラインL0に戻し、それぞれの燃料ガス加熱後の加熱水の温度を、戻し先の温水の温度と同等になるように温度調節を行うことで、熱バランスの崩れを防ぐことができる。すなわち、プラント出力低下を抑えつつ、燃料ガス温度を300℃程度まで効率良く高め、かつプラントの熱バランスを保ち、プラント効率を高めることが可能となる。   As described above, the low-temperature fuel heating device 33 and the high-temperature fuel heating device 31 are provided as heating devices having different heating temperatures for heating the fuel gas in stages, and the medium pressure economizer 19 is used as a heating source for heating the fuel gas. By using warm water extracted through the extraction lines L1 and L2 from the outlet side and the outlet side of the high-pressure secondary economizer 14, the fuel gas can be heated up to about 300 ° C. in addition to high temperature fuel. The heated water after heating the fuel gas in the heating device 31 and the low-temperature fuel heating device 33 is returned to the outlet side of the medium pressure economizer 19 and the feed water line L0 through the heating water return lines L3 and L4, respectively, and after each fuel gas is heated By adjusting the temperature so that the temperature of the heated water becomes equal to the temperature of the warm water of the return destination, it is possible to prevent the heat balance from being lost. That is, while suppressing a decrease in plant output, the fuel gas temperature can be efficiently increased to about 300 ° C., the heat balance of the plant can be maintained, and the plant efficiency can be increased.

(第2の実施形態)
次に、図2を参照して第2の実施形態を説明する。なお、第1の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element which is common in 1st Embodiment, and the overlapping description is abbreviate | omitted.

図2は、第2の実施形態に係るコンバインドサイクル発電プラントの構成を示す概略系統図である。   FIG. 2 is a schematic system diagram showing the configuration of the combined cycle power plant according to the second embodiment.

第2の実施形態では、高温燃料加熱装置31を経由せずに高温燃料加熱装置31の加熱水入口側の抽水ラインL2と加熱水出口側の加熱水戻しラインL3とを結ぶバイパスラインL5を設け、加熱水戻しラインL3とバイパスラインL5との合流点に三方弁38を設ける。なお、加熱水戻しラインL3とバイパスラインL5との合流点に三方弁38を設ける代わりに、抽水ラインL2とバイパスラインL5との分岐点に三方弁38を設けるようにしてもよい。   In the second embodiment, a bypass line L5 is provided that connects the extraction line L2 on the heating water inlet side of the high temperature fuel heating device 31 and the heating water return line L3 on the heating water outlet side without passing through the high temperature fuel heating device 31. The three-way valve 38 is provided at the junction of the heating water return line L3 and the bypass line L5. Instead of providing the three-way valve 38 at the junction of the heating water return line L3 and the bypass line L5, the three-way valve 38 may be provided at the branch point of the extraction line L2 and the bypass line L5.

また、低温燃料加熱装置33を経由せずに低温燃料加熱装置33の加熱水入口側の抽水ラインL1と加熱水出口側の加熱水戻しラインL4とを結ぶバイパスラインL6を設け、加熱水戻しラインL4とバイパスラインL6との合流点に三方弁39を設ける。なお、加熱水戻しラインL4とバイパスラインL6との合流点に三方弁39を設ける代わりに、抽水ラインL1とバイパスラインL6との分岐点に三方弁39を設けるようにしてもよい。   Further, a bypass line L6 that connects the extraction line L1 on the heating water inlet side of the low temperature fuel heating apparatus 33 and the heating water return line L4 on the heating water outlet side of the low temperature fuel heating apparatus 33 without using the low temperature fuel heating apparatus 33 is provided. A three-way valve 39 is provided at the junction of L4 and bypass line L6. Instead of providing the three-way valve 39 at the junction of the heated water return line L4 and the bypass line L6, the three-way valve 39 may be provided at the branch point between the extraction line L1 and the bypass line L6.

三方弁38,39は、それぞれ、高温燃料加熱装置31、低温燃料加熱装置33に流入する加熱水の一部をバイパスさせ、制御装置100からの操作信号もしくは手動により、それぞれの加熱水流量が一定となるように調整する。   The three-way valves 38 and 39 bypass part of the heating water flowing into the high temperature fuel heating device 31 and the low temperature fuel heating device 33, respectively, and the flow rate of each heating water is constant by an operation signal from the control device 100 or manually. Adjust so that

高中圧給水ポンプ24は、高温燃料加熱装置31および低温燃料加熱装置33に加熱水を供給するとともに、排熱回収ボイラ4内の高・中圧系統に加熱水を給水しているため、上記加熱水流量が一定となることにより、給水系統での流量変動要因が少なくなり、プラント効率を高めるとともに、系統の安定性を高めることができる。   The high / medium-pressure feed water pump 24 supplies heated water to the high-temperature fuel heating device 31 and the low-temperature fuel heating device 33 and also supplies heated water to the high / medium-pressure system in the exhaust heat recovery boiler 4. By making the water flow rate constant, the flow rate fluctuation factor in the water supply system is reduced, and the plant efficiency can be improved and the stability of the system can be improved.

以上詳述したように、各実施形態によれば、複圧式の排熱回収ボイラを採用するに際し、プラント出力を低下させずにプラント効率を向上させることができる。   As described above in detail, according to each embodiment, when adopting a multi-pressure type exhaust heat recovery boiler, plant efficiency can be improved without reducing plant output.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…コンバインドサイクル発電プラント、2…ガスタービンプラント、3…蒸気タービンプラント、4…排熱回収ボイラ、5…空気圧縮機、6…ガスタービン燃焼器、7…ガスタービン、8…高圧過熱器、9…再熱器、10…高圧蒸気ドラム、11…高圧蒸発器、12…高圧三次節炭器、13…中圧過熱器、14…高圧二次節炭器、15…中圧蒸気ドラム、16…中圧蒸発器、17…低圧過熱器、18…高圧一次節炭器、19…中圧節炭器、20…低圧蒸発ドラム、21…低圧蒸発器、22…低圧節炭器、23…調節弁、24…高中圧給水ポンプ、25,26…調節弁、27…発電機、28…蒸気タービン、29…復水器、30…低圧給水ポンプ、31…高温燃料加熱装置、32…高温燃料加熱装置出口温度調節弁、33…低温燃料加熱装置、34…低温燃料加熱装置出口温度調節弁、35…中圧蒸気ドラム連絡管低温燃料加熱装置加熱水抽水点、36…中側節炭器出口、37…ケーシング、38,39…三方弁、40…コンバインドサイクル発電プラント、41…ガスタービンプラント、42…蒸気タービンプラント、43…排熱回収ボイラ、44…空気圧縮機、45…ガスタービン燃焼器、46…ガスタービン、47…過熱器、48…蒸気ドラム、49…蒸発器、50…節炭器、51…調節弁、52…発電機、53…蒸気タービン、54…復水器、55…復水ポンプ、56…給水ポンプ、57…燃料加熱装置、58…ケーシング、100…制御装置、L1,L2…抽水ライン、L3,L4…加熱水戻しライン、L5,L6…バイパスライン。   DESCRIPTION OF SYMBOLS 1 ... Combined cycle power plant, 2 ... Gas turbine plant, 3 ... Steam turbine plant, 4 ... Waste heat recovery boiler, 5 ... Air compressor, 6 ... Gas turbine combustor, 7 ... Gas turbine, 8 ... High pressure superheater, DESCRIPTION OF SYMBOLS 9 ... Reheater, 10 ... High pressure steam drum, 11 ... High pressure evaporator, 12 ... High pressure tertiary economizer, 13 ... Medium pressure superheater, 14 ... High pressure secondary economizer, 15 ... Medium pressure steam drum, 16 ... Medium pressure evaporator, 17 ... Low pressure superheater, 18 ... High pressure primary economizer, 19 ... Medium pressure economizer, 20 ... Low pressure evaporator drum, 21 ... Low pressure evaporator, 22 ... Low pressure economizer, 23 ... Control valve , 24 ... High and medium pressure feed water pumps, 25 and 26 ... Control valves, 27 ... Generators, 28 ... Steam turbines, 29 ... Condensers, 30 ... Low pressure feed water pumps, 31 ... High temperature fuel heating devices, 32 ... High temperature fuel heating devices Outlet temperature control valve, 33 ... low temperature fuel heating device 34 ... Low temperature fuel heating device outlet temperature control valve, 35 ... Medium pressure steam drum connecting pipe Low temperature fuel heating device heating water extraction point, 36 ... Middle side economizer outlet, 37 ... Casing, 38, 39 ... Three-way valve, 40 ... Combined cycle power plant, 41 ... gas turbine plant, 42 ... steam turbine plant, 43 ... exhaust heat recovery boiler, 44 ... air compressor, 45 ... gas turbine combustor, 46 ... gas turbine, 47 ... superheater, 48 ... steam Drum, 49 ... evaporator, 50 ... economizer, 51 ... control valve, 52 ... generator, 53 ... steam turbine, 54 ... condenser, 55 ... condensate pump, 56 ... feed pump, 57 ... fuel heating device 58 ... Casing, 100 ... Control device, L1, L2 ... Extraction line, L3, L4 ... Heated water return line, L5, L6 ... Bypass line.

Claims (9)

ガスタービンプラントに蒸気タービンプラントおよび排熱回収ボイラを組み合わせたコンバインドサイクル発電プラントに適用される燃料ガス加熱設備であって、
前記排熱回収ボイラに設置される第1の節炭器の加熱水出口より加熱水を抽水する第1の抽水ラインと、
前記第1の抽水ラインを通じて抽水された加熱水を用いて、前記ガスタービンプラントで使用する燃料ガスを加熱する第1の燃料加熱装置と、
前記排熱回収ボイラに設置される前記第1の節炭器よりも排ガス流路上流に位置する第2の節炭器の加熱水出口より加熱水を抽水する第2の抽水ラインと、
前記第2の抽水ラインを通じて抽水された加熱水を用いて、前記第1の燃料加熱装置により加熱された燃料ガスをさらに加熱する第2の燃料加熱装置と、
前記第2の燃料加熱装置における燃料ガス加熱後の加熱水を前記第1の節炭器の加熱水出口へ戻す第1の加熱水戻しラインと
を具備することを特徴とする燃料ガス加熱設備。
A fuel gas heating facility applied to a combined cycle power plant combining a gas turbine plant with a steam turbine plant and an exhaust heat recovery boiler,
A first extraction line for extracting heated water from a heated water outlet of a first economizer installed in the exhaust heat recovery boiler;
A first fuel heating device that heats fuel gas used in the gas turbine plant using heated water extracted through the first extraction line;
A second extraction line for extracting heated water from a heating water outlet of a second economizer located upstream of the first economizer installed in the exhaust heat recovery boiler;
A second fuel heating device for further heating the fuel gas heated by the first fuel heating device using heated water extracted through the second extraction line;
A fuel gas heating facility comprising: a first heating water return line that returns the heated water after heating the fuel gas in the second fuel heating device to the heated water outlet of the first economizer.
前記第1の加熱水戻しライン上に設けられ、前記第2の燃料加熱装置の加熱水出口における加熱水の温度を前記第1の節炭器の加熱水出口における加熱水の温度と同等になるように温度調節する温度調節弁をさらに具備することを特徴とする請求項1に記載の燃料ガス加熱設備。   Provided on the first heated water return line, the temperature of the heated water at the heated water outlet of the second fuel heating device is equal to the temperature of the heated water at the heated water outlet of the first economizer The fuel gas heating facility according to claim 1, further comprising a temperature control valve that adjusts the temperature as described above. 前記第2の燃料加熱装置を経由せずに前記第2の燃料加熱装置の加熱水入口と加熱水出口とを結ぶ第1のパイパスラインと、
前記第1の加熱水戻しライン上にて前記第1のパイパスラインを合流させる三方弁であって、前記第2の燃料加熱装置を経由する加熱水の流量が一定となるように調節する三方弁と
をさらに具備することを特徴とする請求項1に記載の燃料ガス加熱設備。
A first bypass line connecting a heating water inlet and a heating water outlet of the second fuel heating device without going through the second fuel heating device;
A three-way valve for joining the first bypass line on the first heated water return line, wherein the three-way valve adjusts the flow rate of the heated water passing through the second fuel heating device to be constant. The fuel gas heating facility according to claim 1, further comprising:
前記第2の燃料加熱装置を経由せずに前記第2の燃料加熱装置の加熱水入口と加熱水出口とを結ぶ第1のパイパスラインと、
前記第2の抽水ライン上にて前記第1のパイパスラインを分岐させる三方弁であって、前記第2の燃料加熱装置を経由する加熱水の流量が一定となるように調節する三方弁と
をさらに具備することを特徴とする請求項1に記載の燃料ガス加熱設備。
A first bypass line connecting a heating water inlet and a heating water outlet of the second fuel heating device without going through the second fuel heating device;
A three-way valve for branching the first bypass line on the second extraction line, wherein the three-way valve adjusts the flow rate of the heated water passing through the second fuel heating device to be constant. The fuel gas heating facility according to claim 1, further comprising:
前記第1の燃料加熱装置における燃料ガス加熱後の加熱水を前記排熱回収ボイラへの給水を行う給水ラインへ戻す第2の加熱水戻しラインをさらに具備することを特徴とする請求項1乃至4のいずれか1項に記載の燃料ガス加熱設備。   2. A second heating water return line for returning the heated water after heating the fuel gas in the first fuel heating device to a feed water line for feeding water to the exhaust heat recovery boiler is further provided. 5. The fuel gas heating facility according to any one of 4 above. 前記第2の加熱水戻しライン上に設けられ、前記第1の燃料加熱装置の加熱水出口における加熱水の温度を前記給水ラインにおける給水の温度と同等になるように温度調節する温度調節弁をさらに具備することを特徴とする請求項5に記載の燃料ガス加熱設備。   A temperature control valve provided on the second heating water return line and for adjusting the temperature of the heating water at the heating water outlet of the first fuel heating device to be equal to the temperature of the water supply in the water supply line; The fuel gas heating facility according to claim 5, further comprising: 前記第1の燃料加熱装置を経由せずに前記第1の燃料加熱装置の加熱水入口と加熱水出口とを結ぶ第2のパイパスラインと、
前記第2の加熱水戻しライン上にて前記第2のパイパスラインを合流させる三方弁であって、前記第1の燃料加熱装置を経由する加熱水の流量が一定となるように調節する三方弁と
をさらに具備することを特徴とする請求項5に記載の燃料ガス加熱設備。
A second bypass line connecting a heating water inlet and a heating water outlet of the first fuel heating device without going through the first fuel heating device;
A three-way valve that joins the second bypass line on the second heated water return line and that adjusts the flow rate of the heated water passing through the first fuel heating device to be constant. The fuel gas heating facility according to claim 5, further comprising:
前記第1の燃料加熱装置を経由せずに前記第1の燃料加熱装置の加熱水入口と加熱水出口とを結ぶ第2のパイパスラインと、
前記第1の抽水ライン上にて前記第2のパイパスラインを分岐させる三方弁であって、前記第1の燃料加熱装置を経由する加熱水の流量が一定となるように調節する三方弁と
をさらに具備することを特徴とする請求項5に記載の燃料ガス加熱設備。
A second bypass line connecting a heating water inlet and a heating water outlet of the first fuel heating device without going through the first fuel heating device;
A three-way valve for branching the second bypass line on the first extraction line, wherein the three-way valve adjusts the flow rate of the heated water passing through the first fuel heating device to be constant. The fuel gas heating facility according to claim 5, further comprising:
請求項1乃至8のいずれか1項に記載の燃料ガス加熱設備を有することを特徴とするコンバインドサイクル発電プラント。   A combined cycle power plant comprising the fuel gas heating facility according to any one of claims 1 to 8.
JP2013205396A 2013-09-30 2013-09-30 Fuel gas heating facility and combined cycle power generation plant Pending JP2015068314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205396A JP2015068314A (en) 2013-09-30 2013-09-30 Fuel gas heating facility and combined cycle power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205396A JP2015068314A (en) 2013-09-30 2013-09-30 Fuel gas heating facility and combined cycle power generation plant

Publications (1)

Publication Number Publication Date
JP2015068314A true JP2015068314A (en) 2015-04-13

Family

ID=52835217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205396A Pending JP2015068314A (en) 2013-09-30 2013-09-30 Fuel gas heating facility and combined cycle power generation plant

Country Status (1)

Country Link
JP (1) JP2015068314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450705A1 (en) 2017-08-31 2019-03-06 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combined cycle system equipped with control device and its control method
US10352246B2 (en) 2015-07-24 2019-07-16 Mitsubishi Hitachi Power Systems, Ltd. Water feeding method, water feeding system implementing said method, and steam generating facility provided with water feeding system
CN110206605A (en) * 2018-12-18 2019-09-06 西安华江环保科技股份有限公司 A kind of dry coke quenching heat generating system again
CN114837808A (en) * 2022-04-19 2022-08-02 苏州西热节能环保技术有限公司 Waste heat and flue gas utilization system of gas turbine generator set

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352246B2 (en) 2015-07-24 2019-07-16 Mitsubishi Hitachi Power Systems, Ltd. Water feeding method, water feeding system implementing said method, and steam generating facility provided with water feeding system
EP3450705A1 (en) 2017-08-31 2019-03-06 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combined cycle system equipped with control device and its control method
KR20190024751A (en) 2017-08-31 2019-03-08 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Gas turbine combined cycle system equipped with control device and its control method
US11415054B2 (en) 2017-08-31 2022-08-16 Mitsubishi Heavy Industries, Ltd. Gas turbine combined cycle system equipped with control device and its control method
CN110206605A (en) * 2018-12-18 2019-09-06 西安华江环保科技股份有限公司 A kind of dry coke quenching heat generating system again
CN114837808A (en) * 2022-04-19 2022-08-02 苏州西热节能环保技术有限公司 Waste heat and flue gas utilization system of gas turbine generator set
CN114837808B (en) * 2022-04-19 2023-08-08 苏州西热节能环保技术有限公司 Waste heat flue gas utilization system of gas turbine generator set

Similar Documents

Publication Publication Date Title
CN101403322B (en) Supercritical steam combined cycle and method
JP5916053B2 (en) System with feed water heater that extracts heat from a low pressure steam turbine
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
WO2017187619A1 (en) Combustion device and power generation facility
KR101984438B1 (en) A water supply method, a water supply system that executes this method, and a steam generation facility having a water supply system
US10288279B2 (en) Flue gas heat recovery integration
US9404393B2 (en) Combined cycle power plant
KR102332878B1 (en) Oxy boiler power plant oxygen feed system heat integration
KR20150006370A (en) Power plant with integrated fuel gas preheating
CN103062744A (en) Heat recovery steam generator and methods of coupling same to combined cycle power plant
US20190323384A1 (en) Boilor plant and method for operating the same
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
US9470112B2 (en) System and method for heat recovery and steam generation in combined cycle systems
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
RU2498091C1 (en) Method of operation of thermal power plant
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
JP5591377B2 (en) Steam rankin plant
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
KR20170084997A (en) Method for operating a steam power plant and steam power plant for conducting said method
US20140069078A1 (en) Combined Cycle System with a Water Turbine
JP2006063886A (en) Thermal power plant
JP2016065486A (en) Combined cycle power generation facility
JP6101604B2 (en) Steam turbine plant, combined cycle plant equipped with the same, and method of operating a steam turbine plant
KR20170124570A (en) Reheating the working fluid inside the turbine system for power generation