JP2011082311A5 - - Google Patents

Download PDF

Info

Publication number
JP2011082311A5
JP2011082311A5 JP2009232865A JP2009232865A JP2011082311A5 JP 2011082311 A5 JP2011082311 A5 JP 2011082311A5 JP 2009232865 A JP2009232865 A JP 2009232865A JP 2009232865 A JP2009232865 A JP 2009232865A JP 2011082311 A5 JP2011082311 A5 JP 2011082311A5
Authority
JP
Japan
Prior art keywords
optical system
mirror
magnification
projection optical
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009232865A
Other languages
Japanese (ja)
Other versions
JP5595001B2 (en
JP2011082311A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2009232865A priority Critical patent/JP5595001B2/en
Priority claimed from JP2009232865A external-priority patent/JP5595001B2/en
Priority to TW099128858A priority patent/TWI437267B/en
Priority to CN2010102979545A priority patent/CN102033315B/en
Priority to KR1020100093681A priority patent/KR101476871B1/en
Publication of JP2011082311A publication Critical patent/JP2011082311A/en
Publication of JP2011082311A5 publication Critical patent/JP2011082311A5/ja
Application granted granted Critical
Publication of JP5595001B2 publication Critical patent/JP5595001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ところが、湾曲した平行平板を投影光学系の光路中に配すると倍率を補正することができるが、非点収差が新たに発生することがわかった。例えば、下側平行平板を走査方向の倍率補正に使用する場合、拡大するためには上面がふくらみ、下面が窪んだ湾曲を走査方向に与え直交する方向には平面のままとなるような変形を与えることになる。このとき、走査方向に直交する方向の屈折力は変化しないが走査方向には負の屈折力が生じる。このため、走査方向の線像(以後V線)の結像位置は、そのままである走査直交方向の線像(以後H線)より光学系から遠くに離れた位置つまりは下側に結像するようになる。発明者の計算では、走査方向に10ppm拡大される(像が1.00001倍になる)とき、HV線の非点収差は約5μm(H線が下)になる。さらに、特許文献1に記載されているように上側平行平板を走査方向に直交する方向の倍率補正に使用した場合、像面側で拡大するためには上方に向かって窪んだ湾曲を走査方向と直交する方向に与える。このとき、結像系の側から物体面側を見ると、走査方向の屈折力は変化しないが走査方向と直交する方向には正の屈折力が生じ、走査方向と直交する方向には倍率が縮小されV線がH線より結像系に近い側に結像するようになる。これを順方向に物体面側から像面側への結像に光線を追跡し直すと、横収差である倍率は反転し、走査方向と直交する方向の倍率は拡大となり、縦収差である結像位置は保存されH線はV線に対し光学系から遠い位置、つまりは下側に結像する。まとめると、上側平行平板で走査方向直交する方向の倍率を拡大にするとH線が下になる非点収差が発生し、同様に下側平行平板で走査方向の倍率を拡大にするとH線が下になる非点収差が発生する。
However, it has been found that if a curved parallel plate is arranged in the optical path of the projection optical system, the magnification can be corrected, but astigmatism newly occurs. For example, when the lower parallel plate is used for magnification correction in the scanning direction, deformation is performed so that the upper surface swells and the lower surface is depressed in the scanning direction in order to enlarge, and remains flat in the orthogonal direction. Will give. At this time, the refractive power in the direction orthogonal to the scanning direction does not change, but negative refractive power is generated in the scanning direction. For this reason, the imaging position of the line image in the scanning direction (hereinafter referred to as V-line) is imaged at a position farther away from the optical system than the line image in the scanning orthogonal direction (hereinafter referred to as H-line). It becomes like this. According to the inventor's calculation, the astigmatism of the HV line is about 5 μm (the H line is below) when the image is magnified by 10 ppm in the scanning direction (the image becomes 1.00001 times). Further, when the upper parallel plate is used for magnification correction in the direction orthogonal to the scanning direction as described in Patent Document 1, in order to enlarge on the image plane side, a curve that is depressed upward is defined as the scanning direction. Give in the orthogonal direction. At this time, when the object plane side is viewed from the imaging system side, the refractive power in the scanning direction does not change, but a positive refractive power is generated in the direction orthogonal to the scanning direction, and the magnification is increased in the direction orthogonal to the scanning direction. The image is reduced and the V line is imaged closer to the imaging system than the H line. When the light beam is traced back in the forward direction from the object surface side to the image surface side, the lateral aberration magnification is reversed, the magnification in the direction orthogonal to the scanning direction is enlarged, and the longitudinal aberration is observed. The image position is preserved, and the H line is formed at a position far from the optical system with respect to the V line, that is, on the lower side. In summary, when the magnification in the direction orthogonal to the scanning direction is enlarged on the upper parallel plate, astigmatism that lowers the H line occurs. Similarly, when the magnification in the scanning direction is enlarged on the lower parallel plate, the H line is lowered. Astigmatism occurs.

本発明は、物体面側から順に、第1鏡、第1凹面鏡、凸面鏡、第2凹面鏡及び第2鏡が前記物体面から像面に至る光路に配置され、前記物体面と前記第1鏡との間の光路と前記第2鏡と前記像面との間の光路とが平行である投影光学系であって、前記物体面と前記第1鏡との間の光路に配置され、当該光路に沿う第1方向と直交する第2方向における前記投影光学系の倍率を補正する第1光学系と、前記第2鏡と前記像面との間の光路に配置され、前記第1方向及び前記第2方向と直交する第3方向における前記投影光学系の倍率を補正する第2光学系と、前記物体面と前記第1鏡との間の光路又は前記第2鏡と前記像面との間の光路に配置され、前記第2方向及び前記第3方向において同じ倍率で前記投影光学系の倍率を補正する第3光学系と、制御部と、を備え、前記投影光学系の前記第2方向及び前記第3方向における倍率の補正されるべき量をそれぞれA及びBとし、前記第3光学系によって前記投影光学系の前記第2方向及び前記第3方向における倍率の補正量をCとするとき、前記制御部は、前記補正量Cが前記補正されるべき量Aと前記補正されるべき量Bとの間の量となり、前記第1光学系による前記第2方向における倍率の補正量が(A−C)となり、前記第2光学系による前記第3方向における倍率の補正量が(B−C)となるように、前記第1光学系と前記第2光学系と前記第3光学系とを制御する、ことを特徴とする。 In the present invention, in order from the object plane side, a first mirror , a first concave mirror, a convex mirror, a second concave mirror, and a second mirror are arranged in an optical path from the object plane to the image plane, and the object plane and the first mirror A projection optical system in which an optical path between the second mirror and the image plane is parallel, and is disposed in an optical path between the object plane and the first mirror. A first optical system for correcting the magnification of the projection optical system in a second direction orthogonal to the first direction along the optical path between the second mirror and the image plane, and the first direction and the first direction A second optical system that corrects the magnification of the projection optical system in a third direction orthogonal to two directions, and an optical path between the object plane and the first mirror , or between the second mirror and the image plane. A third optical element disposed in the optical path and correcting the magnification of the projection optical system at the same magnification in the second direction and the third direction; And a control unit, and the amounts of the magnification in the second direction and the third direction of the projection optical system to be corrected are A and B, respectively, and the third optical system allows the projection optical system to When the correction amount of the magnification in the second direction and the third direction is C, the control unit determines that the correction amount C is an amount between the amount A to be corrected and the amount B to be corrected. The magnification correction amount in the second direction by the first optical system is (AC), and the magnification correction amount in the third direction by the second optical system is (BC). The first optical system, the second optical system, and the third optical system are controlled.

Claims (6)

物体面側から順に、第1鏡、第1凹面鏡、凸面鏡、第2凹面鏡及び第2鏡が前記物体面から像面に至る光路に配置され、前記物体面と前記第1鏡との間の光路と前記第2鏡と前記像面との間の光路とが平行である投影光学系であって、
前記物体面と前記第1鏡との間の光路に配置され、当該光路に沿う第1方向と直交する第2方向における前記投影光学系の倍率を補正する第1光学系と、
前記第2鏡と前記像面との間の光路に配置され、前記第1方向及び前記第2方向と直交する第3方向における前記投影光学系の倍率を補正する第2光学系と、
前記物体面と前記第1鏡との間の光路又は前記第2鏡と前記像面との間の光路に配置され、前記第2方向及び前記第3方向において同じ倍率で前記投影光学系の倍率を補正する第3光学系と、
制御部と、を備え、
前記投影光学系の前記第2方向及び前記第3方向における倍率の補正されるべき量をそれぞれA及びBとし、前記第3光学系によって前記投影光学系の前記第2方向及び前記第3方向における倍率の補正量をCとするとき、
前記制御部は、前記補正量Cが前記補正されるべき量Aと前記補正されるべき量Bとの間の量となり、前記第1光学系による前記第2方向における倍率の補正量が(A−C)となり、前記第2光学系による前記第3方向における倍率の補正量が(B−C)となるように、前記第1光学系と前記第2光学系と前記第3光学系とを制御する、
ことを特徴とする投影光学系。
In order from the object plane side, a first mirror , a first concave mirror, a convex mirror, a second concave mirror, and a second mirror are arranged in an optical path from the object plane to the image plane, and an optical path between the object plane and the first mirror And a projection optical system in which an optical path between the second mirror and the image plane is parallel,
A first optical system that is disposed in an optical path between the object plane and the first mirror and corrects the magnification of the projection optical system in a second direction orthogonal to the first direction along the optical path;
A second optical system that is disposed in an optical path between the second mirror and the image plane and corrects the magnification of the projection optical system in the first direction and a third direction orthogonal to the second direction;
Magnification of the projection optical system disposed in the optical path between the object plane and the first mirror or in the optical path between the second mirror and the image plane and at the same magnification in the second direction and the third direction A third optical system for correcting
A control unit,
The amounts to be corrected for the magnification in the second direction and the third direction of the projection optical system are respectively A and B, and the third optical system in the second direction and the third direction of the projection optical system. When the magnification correction amount is C,
In the control unit, the correction amount C is an amount between the amount A to be corrected and the amount B to be corrected, and the correction amount of the magnification in the second direction by the first optical system is (A -C), and the first optical system, the second optical system, and the third optical system are adjusted so that the magnification correction amount in the third direction by the second optical system is (B-C). Control,
A projection optical system characterized by that.
前記物体面及び前記像面の双方においてテレセントリック性を有することを特徴とする請求項1に記載の投影光学系。   The projection optical system according to claim 1, wherein both the object plane and the image plane have telecentricity. 前記第1光学系と前記第2光学系とは、前記第1方向に湾曲可能な平行平板と、複数のシリンドリカルレンズを有し当該複数のシリンドリカルレンズの前記第1方向における間隔を変更可能なシリンドリカルレンズ系との少なくともいずれかを含み、
前記第3光学系は、平凸レンズ及び平凹レンズを有し前記平凸レンズと前記平凹レンズとの前記第1方向における間隔を変更可能な光学系と、前記第1方向に沿って駆動可能な平凹レンズ又は平凸レンズとのいずれかを含む、ことを特徴とする請求項1又は請求項2に記載の投影光学系。
The first optical system and the second optical system include a parallel plate that can be bent in the first direction and a plurality of cylindrical lenses, and a cylindrical that can change the interval in the first direction of the plurality of cylindrical lenses. Including at least one of the lens system,
Wherein the third optical system is a plano-convex lens and said plano-convex lens and the plano-concave lens capable of changing the distance in the first direction and the optical system has a plano-concave lens, a plano-concave lens which can be driven in the first direction or comprising a plano-convex lens, one of the projection optical system according to claim 1 or claim 2, characterized in that.
前記制御部は、前記補正量Cが(A+B)/2となり、前記第1光学系による前記第2方向における倍率の補正量が(A−B)/2となり、前記第2光学系による前記第3方向における倍率の補正量(B−A)/2となるように、前記第1光学系と前記第2光学系と前記第3光学系とを制御する、ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の投影光学系。   In the control unit, the correction amount C is (A + B) / 2, the magnification correction amount in the second direction by the first optical system is (A−B) / 2, and the second optical system performs the second correction. The first optical system, the second optical system, and the third optical system are controlled so that a magnification correction amount (BA) / 2 in three directions is obtained. The projection optical system according to claim 3. 請求項1乃至請求項4のいずれか1項に記載の投影光学系を用いて前記物体面に配置されたレチクルのパターンを前記像面に配置された基板に投影し前記基板を露光する、ことを特徴とする露光装置。   A reticle pattern arranged on the object plane is projected onto the substrate arranged on the image plane using the projection optical system according to claim 1 to expose the substrate. An exposure apparatus characterized by the above. デバイスを製造する方法であって、
請求項5に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を現像する工程と、
を含むデバイス製造方法。
A method of manufacturing a device comprising:
Exposing the substrate using the exposure apparatus according to claim 5;
Developing the exposed substrate;
A device manufacturing method including:
JP2009232865A 2009-10-06 2009-10-06 Projection optical system, exposure apparatus, and device manufacturing method Active JP5595001B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009232865A JP5595001B2 (en) 2009-10-06 2009-10-06 Projection optical system, exposure apparatus, and device manufacturing method
TW099128858A TWI437267B (en) 2009-10-06 2010-08-27 A projection optical system, an exposure apparatus, and a device manufacturing method
CN2010102979545A CN102033315B (en) 2009-10-06 2010-09-27 Projection optical system, exposure apparatus and method of manufacturing a device
KR1020100093681A KR101476871B1 (en) 2009-10-06 2010-09-28 Projection optical system, exposure apparatus and method of manufacturing a device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232865A JP5595001B2 (en) 2009-10-06 2009-10-06 Projection optical system, exposure apparatus, and device manufacturing method

Publications (3)

Publication Number Publication Date
JP2011082311A JP2011082311A (en) 2011-04-21
JP2011082311A5 true JP2011082311A5 (en) 2012-11-08
JP5595001B2 JP5595001B2 (en) 2014-09-24

Family

ID=43886431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232865A Active JP5595001B2 (en) 2009-10-06 2009-10-06 Projection optical system, exposure apparatus, and device manufacturing method

Country Status (4)

Country Link
JP (1) JP5595001B2 (en)
KR (1) KR101476871B1 (en)
CN (1) CN102033315B (en)
TW (1) TWI437267B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205096B3 (en) * 2012-03-29 2013-08-29 Carl Zeiss Smt Gmbh Projection exposure system with at least one manipulator
CN104335117B (en) * 2012-06-04 2016-09-07 应用材料公司 optical projection array exposure system
JP6041541B2 (en) * 2012-06-04 2016-12-07 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP6410406B2 (en) * 2012-11-16 2018-10-24 キヤノン株式会社 Projection optical system, exposure apparatus, and article manufacturing method
JP6386896B2 (en) * 2014-12-02 2018-09-05 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP6896404B2 (en) * 2016-11-30 2021-06-30 キヤノン株式会社 Exposure equipment and manufacturing method of articles
JP7005364B2 (en) * 2018-01-29 2022-01-21 キヤノン株式会社 Projection optical system, exposure equipment, manufacturing method and adjustment method of articles
JP7357488B2 (en) * 2019-09-04 2023-10-06 キヤノン株式会社 Exposure device and article manufacturing method
JP2023004358A (en) 2021-06-25 2023-01-17 キヤノン株式会社 Projection optical system, exposure device, and article production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235620A (en) * 1985-08-09 1987-02-16 Canon Inc Optical magnifying power correcting device
JP3445021B2 (en) * 1995-04-28 2003-09-08 キヤノン株式会社 Optical device
JP3884098B2 (en) * 1996-03-22 2007-02-21 株式会社東芝 Exposure apparatus and exposure method
JP2002329651A (en) * 2001-04-27 2002-11-15 Nikon Corp Aligner, method of manufacturing aligner and method of manufacturing micro-device
JP3465793B2 (en) * 2002-10-24 2003-11-10 株式会社ニコン Projection exposure apparatus and projection exposure method
JP4195674B2 (en) * 2004-03-31 2008-12-10 株式会社オーク製作所 Projection optical system and projection exposure apparatus
JP2006337528A (en) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp Image exposure system
JP5118407B2 (en) * 2007-07-31 2013-01-16 キヤノン株式会社 Optical system, exposure apparatus, and device manufacturing method
JP2009098467A (en) * 2007-10-18 2009-05-07 Adtec Engineeng Co Ltd Exposure apparatus

Similar Documents

Publication Publication Date Title
JP2011082311A5 (en)
JP5595001B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP2021503623A (en) Eye faceted mirrors for projection lithography systems, optical systems, and illumination optics
JP2005519332A (en) Refractive projection objective
JP2011517843A5 (en)
JP2017211480A5 (en)
JP2008539569A5 (en)
JP2016001308A5 (en) Exposure apparatus and device manufacturing method
JP2002287029A (en) Projection optical system and projection aligner using the same
CN105807410B (en) A kind of refraction-reflection projection objective based on high-NA
JP2006245085A5 (en)
ATE457522T1 (en) PROJECTION EXPOSURE APPARATUS
JP2008292801A (en) Exposure apparatus and method
JP2014021313A5 (en)
JP2005243953A5 (en)
JP2010073835A (en) Exposure apparatus, and method for manufacturing device
JP2004012825A (en) Projection optical system and projection aligner using the same
JP2010250124A (en) Both-side telecentric optical system
TW201642047A (en) Exposure device
JP2009038152A5 (en)
JP6022759B2 (en) Catadioptric projection optical system and projection exposure apparatus having the same
JP2007505357A5 (en)
JP5903809B2 (en) Projection optical system
KR20180128522A (en) Substrate processing apparatus, device manufacturing method, and exposure method
KR101838774B1 (en) Projection optical system and projection exposure apparatus