JP2011082078A - Sealing method of fuel cell, sealing structure of fuel cell, and fuel cell - Google Patents

Sealing method of fuel cell, sealing structure of fuel cell, and fuel cell Download PDF

Info

Publication number
JP2011082078A
JP2011082078A JP2009234744A JP2009234744A JP2011082078A JP 2011082078 A JP2011082078 A JP 2011082078A JP 2009234744 A JP2009234744 A JP 2009234744A JP 2009234744 A JP2009234744 A JP 2009234744A JP 2011082078 A JP2011082078 A JP 2011082078A
Authority
JP
Japan
Prior art keywords
fuel cell
end seal
seal member
main body
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234744A
Other languages
Japanese (ja)
Other versions
JP5482076B2 (en
Inventor
Miyako Hitomi
美也子 人見
Tomotaka Hasegawa
知貴 長谷川
Norio Sasaki
規雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009234744A priority Critical patent/JP5482076B2/en
Publication of JP2011082078A publication Critical patent/JP2011082078A/en
Application granted granted Critical
Publication of JP5482076B2 publication Critical patent/JP5482076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing method of a fuel cell, a sealing structure of the fuel cell, and the fuel cell, which can secure sufficient sealability by absorbing an dimensional precision error of each constituent member of a battery unit cell. <P>SOLUTION: An end part sealing member 30 formed by coating an end part sealing member body 31 with a resin film 32 is arranged on each inner surface of adjacent separators 25, 25. The fuel cell includes the sealing structure in which the end part sealing members 30 are bonded through an elastic sheet 33 to seal end parts of the fuel cell. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池に関し、更に詳しくは、燃料電池の端部シール方法及びシール構造に関する。   The present invention relates to a fuel cell, and more particularly, to a fuel cell end sealing method and a sealing structure.

図10は、りん酸形燃料電池の基本単位となる電池単セルの一般的な構成を示す斜視図であり、図11は、同電池単セルの分解断面図であり、図12は、同電池単セルの端部シール部材の圧縮前の状態の断面図であり、図13は、同電池単セルの端部シール部材の圧縮後の状態の断面図である。   FIG. 10 is a perspective view showing a general configuration of a single battery cell that is a basic unit of a phosphoric acid fuel cell, FIG. 11 is an exploded sectional view of the single battery cell, and FIG. It is sectional drawing of the state before compression of the edge part sealing member of a single cell, and FIG. 13 is sectional drawing of the state after compression of the edge part sealing member of the battery single cell.

図10〜13に見られるように、りん酸形燃料電池の電池単セル10は、電解質層11を、燃料電極12と、酸化剤電極13とで挟持し、その外面に燃料ガス流路付多孔質基材14aと酸化剤ガス流路付多孔質基材14bとをそれぞれ配して構成される。そして、このようにして構成される電池単セル10を、ガス不透過性の良導電性材料よりなるセパレータ15で遮蔽し、電池単セル10とセパレータ15を所望の電圧となるように所定数を積層し、両端を冷却板で閉じて、最終的に締め付けられてりん酸形燃料電池が形成される。また、電池単セル10の端部から反応ガス(燃料ガス、酸化剤ガス)が漏洩すると、開回路電圧の低下につながり、ガス利用率の低下、安全性の低下などの不具合につながることから、それぞれの多孔質基材の外周に端部シール部材16を配置し、積層構造体を締め付ける際に、図13に示すように、端部シール部材16を押し潰してシール性を保持している。なお、図中の17は、フレームシートであって、額縁状のプラスティックシートである。端部シール部材16の端部エッジのコーナー部では2枚のシールが重なり段差が発生するので、見かけ上、平坦な1枚のシートにするため、フレームシート17が配置される。   As shown in FIGS. 10 to 13, in the single cell 10 of the phosphoric acid fuel cell, the electrolyte layer 11 is sandwiched between the fuel electrode 12 and the oxidant electrode 13, and the outer surface thereof is provided with a porous fuel gas channel. The base material 14a and the porous base material 14b with an oxidant gas flow path are respectively arranged. Then, the battery unit cell 10 configured in this way is shielded by a separator 15 made of a gas-impermeable, highly conductive material, and a predetermined number is set so that the battery unit cell 10 and the separator 15 have a desired voltage. Laminated, closed at both ends with a cooling plate, and finally tightened to form a phosphoric acid fuel cell. In addition, if the reaction gas (fuel gas, oxidant gas) leaks from the end of the battery unit cell 10, it leads to a decrease in open circuit voltage, leading to problems such as a decrease in gas utilization rate and a decrease in safety. When the end seal member 16 is disposed on the outer periphery of each porous substrate and the laminated structure is tightened, as shown in FIG. 13, the end seal member 16 is crushed to maintain the sealing performance. In the figure, reference numeral 17 denotes a frame sheet, which is a frame-shaped plastic sheet. In the corner portion of the end edge of the end seal member 16, two seals overlap and a step is generated. Therefore, a frame sheet 17 is arranged to make an apparently flat sheet.

電池単セル10の積層構造体を締め付ける際における端部シール部材16の潰れ率(=圧縮率)は、電池単セル10の各構成材料の厚みで決まる。電池単セル10の各構成材料の厚みは規定されているが、加工精度によってバラつきが生じることがある。このため、構成部材の加工精度による厚み寸法のバラつきによって、端部シール部材16の圧縮率が変化する。端部シール部材16の圧縮率が小さいと、電池単セル10のエッジ界面からのガス漏れが懸念される。また、端部シール部材16の圧縮率が大きいと、電池単セル10の端部エッジが挫屈したり、偏った圧力集中などの不具合が懸念される。   The crushing rate (= compression rate) of the end seal member 16 when the laminated structure of the battery unit cell 10 is tightened is determined by the thickness of each constituent material of the battery unit cell 10. Although the thickness of each constituent material of the battery unit cell 10 is prescribed, variation may occur depending on the processing accuracy. For this reason, the compression rate of the end seal member 16 changes due to variations in thickness due to the processing accuracy of the constituent members. If the compression rate of the end seal member 16 is small, there is a concern about gas leakage from the edge interface of the battery unit cell 10. Moreover, when the compression rate of the end seal member 16 is large, there is a concern that the end edge of the battery unit cell 10 is cramped or has a problem of uneven pressure concentration.

例えば、特許文献1には、電解質膜を介在させた空気電極と燃料電極とをガス供給溝を有するセパレータによりガスケットを介装して挟持された電池単セルが積み重ねられている燃料電池において、セパレータに電極を収容する凹部を設けることで、ガスケットの十分な圧縮後に電極が圧縮されるようになって、電極層の圧縮し過ぎによるガス拡散能の低下を防止する技術が開示されている。   For example, Patent Document 1 discloses a fuel cell in which a single battery cell in which an air electrode and a fuel electrode with an electrolyte membrane interposed are sandwiched by a separator having a gas supply groove with a gasket interposed therebetween is stacked. Disclosed is a technique for preventing the gas diffusion capacity from being lowered due to excessive compression of the electrode layer by providing a recess for accommodating the electrode so that the electrode is compressed after sufficient compression of the gasket.

また、特許文献2には、燃料電池の端部シール部材として、膨張黒鉛を用い、膨張黒鉛の嵩密度を調整することで、最適な圧縮歪を調整することが開示されている。   Patent Document 2 discloses that an optimal compression strain is adjusted by using expanded graphite as an end seal member of a fuel cell and adjusting the bulk density of the expanded graphite.

また、特許文献3、4には、端部シール部材とセパレータとの間に接着剤を塗布して端部シール部材とセパレータとを接合することが開示されている。   Patent Documents 3 and 4 disclose that an adhesive is applied between the end seal member and the separator to join the end seal member and the separator.

特開平7−263004号公報JP-A-7-263004 特開2001−23654号公報Japanese Patent Laid-Open No. 2001-23654 特開昭62−223974号公報JP 62-223974 A 特開平4−282565号公報JP-A-4-282565

しかしながら、上記特許文献1の方法では、ガス流路付の多孔質基材に、電極を収容する凹部を形成する必要があったので、加工に手間がかかり、材料コストがかさむ問題があった。更には、端部シール部材の圧縮率を一定にするには、各構成材料の厚さの精度に加え、凹部の厚み方向の寸法を精度よく加工する必要があったので、より高い加工精度が要求される。   However, in the method of Patent Document 1, since it is necessary to form a recess for housing the electrode in the porous base material with a gas flow path, there is a problem that processing takes time and material cost is increased. Furthermore, in order to make the compression rate of the end seal member constant, in addition to the accuracy of the thickness of each constituent material, it is necessary to process the dimension in the thickness direction of the recess with high accuracy. Required.

また、特許文献2では、燃料電池の端部シール部材として弾性のある膨張黒鉛を用い、締付け圧力で膨張黒鉛を押し潰してシールを行っているが、十分なシール性を確保するには燃料電極、酸化剤電極およびガス流路付の基材などの構成部材厚みの寸法精度差を吸収するために最適な圧縮歪が必要になる。ここでは膨張黒鉛の嵩密度を規定しているが、膨張黒鉛を均一な嵩密度で制御し、且つ、シールとなる燃料電極側と酸化剤電極側のエッジ界面を均等な圧縮率ですき間なく長時間保持するのは、極めて困難であった。   In Patent Document 2, elastic expanded graphite is used as an end seal member of a fuel cell, and the expanded graphite is crushed by a clamping pressure to perform sealing. However, in order to ensure sufficient sealing performance, a fuel electrode is used. In order to absorb the difference in dimensional accuracy in the thickness of components such as the oxidant electrode and the base material with the gas flow path, an optimal compressive strain is required. Although the bulk density of expanded graphite is specified here, the expanded graphite is controlled with a uniform bulk density, and the edge interface between the fuel electrode side and the oxidant electrode side, which are the seals, is long with a uniform compression rate. It was extremely difficult to keep the time.

また、特許文献3,4に開示された方法では、端部シール部材とセパレータとの間の気密性は高められるものの、端部シール部材間のシール性は向上できなかった。   Moreover, in the methods disclosed in Patent Documents 3 and 4, the airtightness between the end seal member and the separator can be improved, but the sealability between the end seal members cannot be improved.

したがって、本発明の目的は、電池単セルの各構成部材の寸法精度誤差を吸収して十分なシール性能が確保できる燃料電池のシール方法、燃料電池のシール構造、及び燃料電池を提供することにある。   Accordingly, an object of the present invention is to provide a fuel cell sealing method, a fuel cell seal structure, and a fuel cell that can absorb a dimensional accuracy error of each component of a battery single cell and ensure sufficient sealing performance. is there.

上記目的を達成するにあたって、本発明の第1は、複数の電池単セルを積層して構成される燃料電池の周縁において、隣接するセパレータどうしをシールする方法において、
隣接するセパレータのそれぞれの内面に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材を配置し、この端部シール部材どうしを、弾性シートを介して接合することを特徴とする。
In achieving the above object, a first aspect of the present invention is a method for sealing adjacent separators at the periphery of a fuel cell formed by laminating a plurality of battery single cells.
An end seal member formed by covering an end seal member main body with a resin film is disposed on each inner surface of an adjacent separator, and the end seal members are joined to each other via an elastic sheet. .

また、本発明の第2は、複数の電池単セルを積層して構成される燃料電池の周縁において、隣接するセパレータどうしをシールする構造において、
隣接するセパレータのそれぞれの内面に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材が配置され、この端部シール部材どうしが、弾性シートを介して接合されていることを特徴とする。
The second aspect of the present invention is a structure in which adjacent separators are sealed at the periphery of a fuel cell formed by stacking a plurality of battery single cells.
End seal members formed by coating the end seal member main body with a resin film are arranged on the inner surfaces of the adjacent separators, and the end seal members are joined to each other via an elastic sheet. And

また、本発明の第3は、電解質層と、該電解質層の両外面に配設された電極層と、各電極層の両外面に配設されたガス流路を有する多孔質基材とで構成された電池単セルを、セパレータを介して複数積層した燃料電池において、
隣接するセパレータ間であって、それぞれの多孔質基材の外周に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材が配置され、この端部シール部材どうしが、弾性シートを介して接合されていることを特徴とする。
The third aspect of the present invention is an electrolyte layer, an electrode layer disposed on both outer surfaces of the electrolyte layer, and a porous substrate having gas flow paths disposed on both outer surfaces of each electrode layer. In a fuel cell in which a plurality of configured battery single cells are stacked via a separator,
Between the adjacent separators, an end seal member formed by coating the end seal member body with a resin film is disposed on the outer periphery of each porous base material. It is characterized by being joined via.

また、本発明の第4は、電解質層と、該電解質層の両面に配置された電極層と、各電極層の両外面に配置されたガス流路を有するセパレータとで構成された電池単セルを複数積層した燃料電池において、
隣接するセパレータ間であって、それぞれの電極層の外周に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材が配置され、この端部シール部材どうしが、弾性シートを介して接合されていることを特徴とする。
According to a fourth aspect of the present invention, there is provided a battery single cell comprising an electrolyte layer, electrode layers disposed on both surfaces of the electrolyte layer, and a separator having gas flow paths disposed on both outer surfaces of each electrode layer. In a fuel cell in which a plurality of layers are stacked,
Between the adjacent separators, an end seal member formed by coating the end seal member body with a resin film is disposed on the outer periphery of each electrode layer, and the end seal members are interposed between the elastic sheets. It is characterized by being joined.

本発明によれば、樹脂フィルムはその表面が平滑であるため、セパレータとの密着性が良い。このため、隣接するセパレータのそれぞれの内面に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材を配置することで、端部シール部材の圧縮率が小さくても、端部シール部材が、セパレータに対しほぼ隙間なく密着して張り付くので、良好なシール性が得られる。そして、端部シール部材どうしの間に、弾性シートを配置することで、端部シール部材の圧縮率を大きくしても、締め付け荷重が弾性シートによって吸収されるので、端部の挫屈や偏った応力集中等の不具合を抑制できる。その結果、電池単セルの各構成部材の寸法精度誤差を吸収して十分なシール性能が確保できる。   According to the present invention, since the surface of the resin film is smooth, the adhesiveness with the separator is good. For this reason, even if the compression rate of the end seal member is small, the end seal member is formed by arranging the end seal member formed by coating the end seal member main body with the resin film on the inner surface of each adjacent separator. Since the member adheres closely to the separator with almost no gap, good sealing properties can be obtained. Since the elastic sheet is disposed between the end seal members, even if the compression rate of the end seal member is increased, the tightening load is absorbed by the elastic sheet. It is possible to suppress problems such as stress concentration. As a result, a sufficient sealing performance can be ensured by absorbing the dimensional accuracy error of each constituent member of the battery single cell.

本発明は、上記第1〜第4において、前記樹脂フィルムとして、フッ素樹脂系フィルムを用いることが好ましい。   In the first to fourth aspects of the present invention, it is preferable to use a fluororesin film as the resin film.

本発明は、上記第1〜第4において、前記弾性シートとして、フッ素樹脂系多孔質シートを用いることが好ましい。   In the first to fourth aspects of the present invention, it is preferable to use a fluororesin porous sheet as the elastic sheet.

上記各態様によれば、シール部における耐熱性、耐食性などの耐久性をより向上できるので、長期にわたって良好なシール状態を確保できる。   According to each said aspect, since durability, such as heat resistance in a seal part and corrosion resistance, can be improved more, a favorable sealing state is securable over a long term.

本発明は、上記第1〜第4において、前記セパレータと前記樹脂フィルムとを、フッ素樹脂系接着層を介して接合することが好ましい。この態様によれば、セパレータと樹脂フィルムとの密着性が向上し、セパレータと樹脂フィルムとの間からのガスリークを防止して、シール性能がより向上する。   In the first to fourth aspects of the present invention, it is preferable that the separator and the resin film are bonded via a fluororesin adhesive layer. According to this aspect, the adhesion between the separator and the resin film is improved, gas leakage from between the separator and the resin film is prevented, and the sealing performance is further improved.

本発明は、上記第1〜第4において、端部シール部材本体として膨張黒鉛シートを用いることが好ましい。膨張黒鉛シートは柔軟性があり、ガス不透過性、耐食性に優れるので、シール性能をより向上できる。   In the first to fourth aspects of the present invention, it is preferable to use an expanded graphite sheet as the end seal member body. Since the expanded graphite sheet is flexible and excellent in gas impermeability and corrosion resistance, the sealing performance can be further improved.

本発明は、上記第1〜第4において、前記端部シール部材本体として、角部及び/又は辺部の少なくとも一部が面取り加工されているもの、もしくは、辺部の少なくとも一部が円弧状に形成されているものを用いることが好ましい。この態様によれば、端部シール部材本体を被覆する樹脂フィルムが熱収縮したり、端部シール部材本体が熱膨張しても、該樹脂フィルムに応力集中が発生し難くなるので、樹脂フィルムの損傷を抑制できる。   In the first to fourth aspects of the present invention, as the end seal member main body, at least a part of a corner part and / or a side part is chamfered, or at least a part of the side part has an arc shape. It is preferable to use what is formed in this. According to this aspect, even if the resin film covering the end seal member main body is thermally contracted or the end seal member main body is thermally expanded, stress concentration is less likely to occur in the resin film. Damage can be suppressed.

本発明によれば、電池単セルの各構成部材の寸法精度誤差を吸収して十分なシール性能が確保できる。   According to the present invention, it is possible to secure a sufficient sealing performance by absorbing the dimensional accuracy error of each constituent member of the battery single cell.

本発明の第1の実施形態における、燃料電池の基本単位となる電池単セルの分解断面図である。1 is an exploded cross-sectional view of a single battery cell that is a basic unit of a fuel cell according to a first embodiment of the present invention. 同電池単セルの端部シール部材の圧縮前の状態の断面図である。It is sectional drawing of the state before the compression of the edge part sealing member of the battery single cell. 同電池単セルの端部シール部材の圧縮後の状態の断面図である。It is sectional drawing of the state after the compression of the edge part sealing member of the battery single cell. 端部シール部材本体の概略図である。It is the schematic of an edge part sealing member main body. 本発明の第2の実施形態における、燃料電池の基本単位となる電池単セルの端部シール部材の圧縮後の状態の断面図である。It is sectional drawing of the state after the compression of the edge part sealing member of the battery single cell used as the basic unit of a fuel cell in the 2nd Embodiment of this invention. 本発明の第3の実施形態における、燃料電池の基本単位となる電池単セルの分解断面図である。It is a disassembled sectional view of the battery single cell used as the basic unit of a fuel cell in the 3rd Embodiment of this invention. 同電池単セルの端部シール部材の圧縮前の状態の断面図である。It is sectional drawing of the state before the compression of the edge part sealing member of the battery single cell. 同電池単セルの端部シール部材の圧縮後の状態の断面図である。It is sectional drawing of the state after the compression of the edge part sealing member of the battery single cell. 実施例2の燃料電池を構成する電池単セルの端部シール部材とセパレータとの接合界面の状態を記す断面写真である。6 is a cross-sectional photograph showing a state of a joining interface between an end seal member of a battery single cell constituting a fuel cell of Example 2 and a separator. 従来のりん酸形燃料電池の基本単位となる電池単セルの一般的な構成を示す斜視図である。It is a perspective view which shows the general structure of the battery single cell used as the basic unit of the conventional phosphoric acid fuel cell. 同燃料電池の基本単位となる電池単セルの分解断面図である。It is a disassembled sectional view of the battery single cell used as the basic unit of the fuel cell. 同電池単セルの端部シール部材の圧縮前の状態の断面図である。It is sectional drawing of the state before the compression of the edge part sealing member of the battery single cell. 同電池単セルの端部シール部材の圧縮後の状態の断面図である。It is sectional drawing of the state after the compression of the edge part sealing member of the battery single cell.

本発明の燃料電池の第1の実施形態について、図1〜3を用いて説明する。図1は、燃料電池の基本単位となる電池単セル20の分解断面図であり、図2は、同電池単セルの端部シール部材の圧縮前の状態の断面図であり、図3は、同電池単セルの端部シール部材の圧縮後の状態の断面図である。   A first embodiment of a fuel cell of the present invention will be described with reference to FIGS. FIG. 1 is an exploded cross-sectional view of a single battery cell 20 that is a basic unit of a fuel cell, FIG. 2 is a cross-sectional view of a state before compression of an end seal member of the single battery cell, and FIG. It is sectional drawing of the state after the compression of the edge part sealing member of the battery single cell.

図1〜3に示すように、この電池単セル20は、電解質層21を、燃料電極22と、酸化剤電極23とで挟持し、それぞれの電極の外面に、燃料ガス流路付の多孔質基材24aと酸化剤ガス流路付の多孔質基材24bとを配して構成される。また、それぞれの多孔質基材24a,24bの外周には、端部シール部材本体31を樹脂フィルム32で被覆してなる端部シール部材30が配置されている。また、各端部シール部材30の上面には、弾性シート33が配置されている。また、各弾性シート33の間には、額縁状に切り抜かれたフレームシート35が配置されている。   As shown in FIGS. 1 to 3, this single battery cell 20 has an electrolyte layer 21 sandwiched between a fuel electrode 22 and an oxidant electrode 23, and a porous material with a fuel gas channel on the outer surface of each electrode. A substrate 24a and a porous substrate 24b with an oxidant gas flow path are arranged. Further, an end seal member 30 formed by covering the end seal member main body 31 with a resin film 32 is disposed on the outer periphery of each of the porous base materials 24a and 24b. An elastic sheet 33 is disposed on the upper surface of each end seal member 30. A frame sheet 35 cut out in a frame shape is disposed between the elastic sheets 33.

この電池単セル20は、セパレータ25を介して複数積層され、電池単セル積層体の両端を冷却板で閉じて、最終的に締め付けられて燃料電池が形成される。この電池単セル20の端部は、図3に示すように、電池単セル積層体の締め付け時の締め付け圧によって、端部シール部材30、弾性シート33、フレームシート35が押しつぶされてシールされる。   A plurality of the battery single cells 20 are stacked via the separator 25, and both ends of the battery single cell stacked body are closed with a cooling plate and finally tightened to form a fuel cell. As shown in FIG. 3, the end portion of the battery unit cell 20 is sealed by the end seal member 30, the elastic sheet 33, and the frame sheet 35 being crushed by the tightening pressure when the battery unit cell stack is tightened. .

上記端部シール部材30は、例えば、端部シール部材本体31の周囲に、チューブ状の樹脂フィルム32を装着させ、樹脂チューブの熱収縮温度(例えば、フッ素系樹脂フィルムの場合は約300℃)で加熱することで製造できる。   The end seal member 30 has, for example, a tube-shaped resin film 32 attached around the end seal member main body 31, and a heat shrink temperature of the resin tube (for example, about 300 ° C. in the case of a fluororesin film). It can manufacture by heating with.

端部シール部材本体31は、柔軟性、ガス不透過性、耐食性に優れた材質が好ましく用いられ、膨張黒鉛シートが特に好ましく用いられる。   The end seal member main body 31 is preferably made of a material excellent in flexibility, gas impermeability and corrosion resistance, and particularly preferably an expanded graphite sheet.

また、端部シール部材本体31は、図4(a)〜(e)に示す形状をなすものが好ましく用いられる。図4(a)は、角形状に成形された端部シール部材本体である。図4(b)は、図4(a)に示す端部シール部材本体の角部31aを三角形状に面取り加工した端部シール部材本体である。図4(c)は、図4(a)に示す端部シール部材本体の辺部31bを面取り加工した端部シール部材本体である。図4(d)は、図4(a)に示す端部シール部材本体の角部31a及び辺部31bを面取り加工した端部シール部材本体である。図4(e)は、辺部の四辺を円弧状に成形した端部シール部材本体である。なかでも、図4(b)〜(e)に示す形状をなす端部シール部材本体が好ましい。角部や辺部が面取り加工されていたり、辺部が円弧状に形成されている端部シール部材本体は、樹脂フィルムが熱収縮したり、端部シール部材本体31が熱膨張しても、端部シール部材本体を覆う樹脂フィルムに応力集中が発生し難くなる。このため、端部シール部材30の樹脂フィルム32の損傷を効果的に抑制でき、電極間の短絡の発生を効果的に抑制できる。   Further, the end seal member main body 31 preferably has a shape shown in FIGS. 4 (a) to 4 (e). FIG. 4A shows an end seal member body formed into a square shape. FIG. 4B shows an end seal member body obtained by chamfering a corner 31a of the end seal member body shown in FIG. FIG. 4C shows an end seal member main body obtained by chamfering the side 31b of the end seal member main body shown in FIG. FIG. 4D is an end seal member main body obtained by chamfering the corner portions 31a and the side portions 31b of the end seal member main body shown in FIG. FIG. 4E shows an end seal member main body in which the four sides are formed in an arc shape. Especially, the edge part sealing member main body which makes the shape shown to FIG.4 (b)-(e) is preferable. The end seal member body whose corners and sides are chamfered, the side part is formed in an arc shape, the resin film is thermally contracted, or the end seal member body 31 is thermally expanded, Stress concentration is less likely to occur in the resin film covering the end seal member body. For this reason, damage to the resin film 32 of the end seal member 30 can be effectively suppressed, and occurrence of a short circuit between the electrodes can be effectively suppressed.

角部を面取り加工する場合(図4(b)、(d))は、一辺が0.1〜0.5mmの三角形状に面取り加工することが好ましい。一辺の長さが0.1mm未満であると、応力集中の回避の効果が乏しい。また、0.5mmを超えると、樹脂フィルム32と端部シール部材本体31とを一体化させにくくなる。   When chamfering a corner (FIGS. 4B and 4D), it is preferable to chamfer a triangle having a side of 0.1 to 0.5 mm. If the length of one side is less than 0.1 mm, the effect of avoiding stress concentration is poor. Moreover, when it exceeds 0.5 mm, it becomes difficult to integrate the resin film 32 and the end seal member main body 31.

辺部を面取り加工する場合(図4(c)、(d))は、辺の短手方向に0.1〜0.5mm面取り加工することが好ましい。0.1mm以下では応力集中の回避の効果が乏しい。また、0.5mmを超えると、端部シール部材本体の側部に突起を形成させてしまう可能性があり、熱収縮の際、応力集中を招く恐れがある。   When chamfering the side (FIGS. 4C and 4D), it is preferable to chamfer 0.1 to 0.5 mm in the lateral direction of the side. Below 0.1 mm, the effect of avoiding stress concentration is poor. On the other hand, if the thickness exceeds 0.5 mm, protrusions may be formed on the side portions of the end seal member main body, which may cause stress concentration during thermal contraction.

辺部を円弧状に形成する場合(図4(e))は、オーバル型の円弧状に成形することが好ましい。この場合、円弧の半径は、端部シール部材本体の厚みの1/2相当となる。   When the side portion is formed in an arc shape (FIG. 4E), it is preferable to form the side portion in an oval arc shape. In this case, the radius of the arc is equivalent to ½ of the thickness of the end seal member main body.

端部シール部材本体31の平均かさ密度は、0.5〜1.7g/ccが好ましく、0.8〜1.5g/ccがより好ましい。平均かさ密度が0.5g/cc未満であると、端部シール部材本体のガス透過量が増大する傾向があり、シール性が充分得られない傾向にあり、1.7g/ccを超えると、端部シール部材本体の柔軟性が低下し、締め付け時に圧縮し難くなる傾向にある。   The average bulk density of the end seal member main body 31 is preferably 0.5 to 1.7 g / cc, and more preferably 0.8 to 1.5 g / cc. When the average bulk density is less than 0.5 g / cc, the gas permeation amount of the end seal member body tends to increase, and the sealing property tends to be insufficient. When the average bulk density exceeds 1.7 g / cc, The flexibility of the end seal member main body is lowered, and it tends to be difficult to compress when tightening.

端部シール部材本体31の厚みは、1.0〜2.0mmが好ましく、1.4〜1.8mmがより好ましい。厚みが1.0mm未満であると、電極層と外周の厚みの違いで生じるすき間が小さくなり、弾性シートの圧縮が不足する傾向にあり、厚みが2.0mmを超えると、逆に電極層と外周の厚みの違いで生じる隙間が大きくなり、締付けたときに弾性シートが圧縮しきっても電極層に隙間が残ってしまい、さらに締付けると端部シール部材本体を座屈させてしまうことがある。   1.0-2.0 mm is preferable and, as for the thickness of the edge part sealing member main body 31, 1.4-1.8 mm is more preferable. When the thickness is less than 1.0 mm, the gap generated by the difference in thickness between the electrode layer and the outer periphery is reduced, and the elastic sheet tends to be insufficiently compressed. When the thickness exceeds 2.0 mm, the electrode layer and The gap caused by the difference in the thickness of the outer periphery becomes large, and even when the elastic sheet is completely compressed when tightened, the gap remains in the electrode layer, and when tightened, the end seal member body may be buckled.

端部シール部材30に用いる樹脂フィルム32としては、特に限定はなく、耐熱性と耐食性を兼ね備えた材質からなるものが好ましく用いられる。特に耐熱性、耐食性に優れるという理由から、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂フィルムが特に好ましく用いられる。   The resin film 32 used for the end seal member 30 is not particularly limited, and a film made of a material having both heat resistance and corrosion resistance is preferably used. Polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoroethylene-perfluoroethylene (PTFE), especially because of its excellent heat resistance and corrosion resistance. A fluororesin film such as a fluoroalkyl vinyl ether copolymer (PFA) is particularly preferably used.

樹脂フィルム32の厚みは、20〜100μmが好ましく、40〜80μmがより好ましい。厚みが20μm未満であると、強度不足となる傾向にあり、100μmを超えると、剛性が高くなりすぎて端部シール部材本体の形状に沿わないことがある。また、樹脂フィルム32の表面粗度Raは、0.01〜2μmが好ましく、0.05〜1μmがより好ましい。表面粗度Raが0.01μm未満を実現しようとすると、樹脂フィルム32の厚みが大きくなる傾向にあり、材料コスト的にもかさむ傾向にある。また、2μmを超えると、平滑性がなくなり、低圧縮率となった場合、界面のすき間からガス漏れが生じ易くなる傾向にある。   20-100 micrometers is preferable and, as for the thickness of the resin film 32, 40-80 micrometers is more preferable. If the thickness is less than 20 μm, the strength tends to be insufficient, and if it exceeds 100 μm, the rigidity becomes too high and the shape of the end seal member body may not be met. In addition, the surface roughness Ra of the resin film 32 is preferably 0.01 to 2 μm, and more preferably 0.05 to 1 μm. If the surface roughness Ra is to be less than 0.01 μm, the thickness of the resin film 32 tends to increase, and the material cost tends to increase. On the other hand, when the thickness exceeds 2 μm, the smoothness is lost, and when the compression rate is low, gas leakage tends to occur easily from the gap in the interface.

端部シール部材30の上面に配置される弾性シート33としては、特に限定はなく、フッ素系多孔質シート、発泡ウレタンシート、シリコーンゴム等が挙げられる。特に耐熱性、耐食性に優れるという理由から、フッ素系多孔質シートが特に好ましく用いられる。   The elastic sheet 33 disposed on the upper surface of the end seal member 30 is not particularly limited, and examples thereof include a fluorine-based porous sheet, a foamed urethane sheet, and silicone rubber. A fluorine-based porous sheet is particularly preferably used because it is particularly excellent in heat resistance and corrosion resistance.

弾性シート33の圧縮弾性率は、電池単セル積層体の締め付け圧に応じて異なるので特に限定はしないが、例えば、締め付け圧が0.2〜0.5MPaの場合、弾性シート33の圧縮弾性率は、0.3〜1MPaが好ましく、0.5〜0.8MPaがより好ましい。   The compression elastic modulus of the elastic sheet 33 is not particularly limited because it varies depending on the tightening pressure of the battery cell stack, but for example, when the tightening pressure is 0.2 to 0.5 MPa, the compression elastic modulus of the elastic sheet 33 is Is preferably 0.3 to 1 MPa, more preferably 0.5 to 0.8 MPa.

弾性シート33の厚みは、0.2〜1.0mmが好ましく、0.3〜0.8mmがより好ましい。厚みが0.2mm未満であると、シール性能が不足する傾向にあり、厚みが1.0mmを超えると、材料費が増加して高コストとなる傾向にある。   The thickness of the elastic sheet 33 is preferably 0.2 to 1.0 mm, and more preferably 0.3 to 0.8 mm. When the thickness is less than 0.2 mm, the sealing performance tends to be insufficient, and when the thickness exceeds 1.0 mm, the material cost tends to increase and the cost tends to increase.

次に、本発明の燃料電池のシール方法について説明する。   Next, the fuel cell sealing method of the present invention will be described.

図2に示すように、隣接するセパレータ25,25のそれぞれの内面であって、電池単セル20の外周に、端部シール部材本体31を樹脂フィルム32で被覆してなる端部シール部材30を配置する。そして、それぞれの端部シール部材30,30の上面に弾性シート33を配置し、各弾性シート33の間に、額縁状のフレームシート35を配置する。そして、セパレータ25,25の外側から締め付け荷重をかけ、端部シール部材30、弾性シート33、フレームシート35を圧縮する。これによって、図3に示すように、端部シール部材30、弾性シート33、フレームシート35が押しつぶされて端部エッジ部分がシールされる。   As shown in FIG. 2, an end seal member 30 formed by coating an end seal member body 31 with a resin film 32 on the inner surface of each of adjacent separators 25 and 25 on the outer periphery of the battery unit cell 20. Deploy. Then, the elastic sheet 33 is disposed on the upper surfaces of the end seal members 30, 30, and the frame-shaped frame sheet 35 is disposed between the elastic sheets 33. Then, a tightening load is applied from the outside of the separators 25, 25 to compress the end seal member 30, the elastic sheet 33, and the frame sheet 35. As a result, as shown in FIG. 3, the end seal member 30, the elastic sheet 33, and the frame sheet 35 are crushed to seal the end edge portion.

圧縮率は、特に限定はないが、10〜80%が好ましく、30〜60%がより好ましい。上記圧縮率であれば、高いシール性が得られ、更には、端部の強度低下が生じにくい。なお、この実施形態において、圧縮率は、以下の式(1)で算出した値である。   The compression rate is not particularly limited, but is preferably 10 to 80%, and more preferably 30 to 60%. If it is the said compression rate, high sealing performance will be acquired and also the strength reduction of an edge part will not produce easily. In this embodiment, the compression rate is a value calculated by the following equation (1).

本発明の燃料電池のシール方法によれば、樹脂フィルム32はその表面が平滑であるため、セパレータ25との密着性が良い。このため、隣接するセパレータ25,25のそれぞれの内面に、端部シール部材本体31を樹脂フィルム32で被覆してなる端部シール部材30を配置することで、圧縮率が小さくても、端部シール部材が、セパレータに対しほぼ隙間なく密着して張り付くので、良好なシール性が得られる。そして、端部シール部材の上面に、弾性シート33を配置することで、端部シール部材30の圧縮率を大きくしても、荷重が弾性シート33によって吸収される。このため、電池単セルの端部の挫屈や偏った応力集中等の不具合を効果的に抑制でき、電池単セルの構成材料の寸法にバラつきが生じても、良好なシール性が得られる。   According to the method for sealing a fuel cell of the present invention, the resin film 32 has a smooth surface, and thus has good adhesion to the separator 25. For this reason, the end seal member 30 formed by covering the end seal member body 31 with the resin film 32 is disposed on the inner surface of each of the separators 25 and 25 adjacent to each other. Since the sealing member sticks to and adheres to the separator with almost no gap, good sealing properties can be obtained. Even if the compression rate of the end seal member 30 is increased by disposing the elastic sheet 33 on the upper surface of the end seal member, the load is absorbed by the elastic sheet 33. For this reason, it is possible to effectively suppress problems such as buckling of the end of the battery unit cell and uneven stress concentration, and good sealing performance can be obtained even if the dimensions of the constituent materials of the battery unit cell vary.

本発明の燃料電池の第2の実施形態について、図5を用いて説明する。図5は、燃料電池の基本単位となる電池単セル20の端部シール部材の圧縮後の状態の断面図である。   A second embodiment of the fuel cell of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view showing a state after compression of the end seal member of the battery unit cell 20 which is a basic unit of the fuel cell.

この実施形態では、端部シール部材30とセパレータ25とが、フッ素樹脂系接着層50を介して接合している点が、上記第1の実施形態と相違する。   This embodiment is different from the first embodiment in that the end seal member 30 and the separator 25 are joined via the fluororesin adhesive layer 50.

端部シール部材30とセパレータ25とをフッ素樹脂系接着層50を介して接合するには、電池単セルを組み立てる際に、セパレータ25と、端部シール部材30との接合面に、シート型のフッ素樹脂を配置する、あるいは、塗布型のフッ素樹脂を塗布し、セパレータ25と端部シール部材30とを接合する。   In order to join the end seal member 30 and the separator 25 via the fluororesin-based adhesive layer 50, when assembling the battery unit cell, a sheet-type is formed on the joint surface between the separator 25 and the end seal member 30. A fluororesin is disposed or a coating type fluororesin is applied, and the separator 25 and the end seal member 30 are joined.

フッ素樹脂系接着層50を構成するフッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等が挙げられる。なかでも、軟化温度が低いという理由からFEPが好ましい。   Examples of the fluororesin constituting the fluororesin adhesive layer 50 include polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), and tetrafluoro. And ethylene / perfluoroalkyl vinyl ether copolymer (PFA). Among these, FEP is preferable because the softening temperature is low.

上記フッ素樹脂の軟化温度は、200〜250℃が好ましく、210〜240℃がより好ましい。軟化温度が200℃以下であると、燃料電池の運転温度においては、フッ素樹脂系接着層50が部分的に硬くなってしまい、セパレータ25と端部シール部材30との接着性にムラが生じる。また、軟化温度が250℃を超えるものは素材そのものに制限がかかり現実的ではない。   The softening temperature of the fluororesin is preferably 200 to 250 ° C, and more preferably 210 to 240 ° C. When the softening temperature is 200 ° C. or lower, the fluororesin adhesive layer 50 becomes partially hard at the operating temperature of the fuel cell, resulting in unevenness in the adhesion between the separator 25 and the end seal member 30. Moreover, when the softening temperature exceeds 250 ° C., the material itself is limited, which is not realistic.

セパレータ25と、端部シール部材30とを接合する際の接合条件は、接合温度が燃料電池の運転温度以上が好ましく、200〜240℃がより好ましい。また、接合圧力は、端部シール部材30を座屈させない圧力以下で行うことが好ましく、0.5〜3.0MPaがより好ましい。接合圧力が0.5MPa未満であると、セパレータ25と端部シール部材30との密着性が十分でないことがある。接合圧力が3.0MPaを超えると、端部シール部材30が破壊される恐れがある。   As for the joining conditions when joining the separator 25 and the end seal member 30, the joining temperature is preferably equal to or higher than the operating temperature of the fuel cell, and more preferably 200 to 240 ° C. Moreover, it is preferable to perform joining pressure below the pressure which does not buckle the edge part sealing member 30, and 0.5-3.0 Mpa is more preferable. If the bonding pressure is less than 0.5 MPa, the adhesion between the separator 25 and the end seal member 30 may not be sufficient. If the joining pressure exceeds 3.0 MPa, the end seal member 30 may be destroyed.

これにより、セパレータ25と端部シール部材30とが、フッ素樹脂系接着層50を介して接合される。そして、上記第1の実施形態と同じように、それぞれの端部シール部材30,30の上面に弾性シート33を配置し、各弾性シート33の間に、額縁状のフレームシート35を配置し、セパレータ25,25の外側から締め付け荷重をかけ、端部シール部材30、弾性シート33、フレームシート35を圧縮することにより、図5に示されるように、端部シール部材30、弾性シート33、フレームシート35が押しつぶされて端部エッジ部分がシールされる。   As a result, the separator 25 and the end seal member 30 are joined via the fluororesin adhesive layer 50. And like the said 1st Embodiment, arrange | position the elastic sheet 33 on the upper surface of each edge part sealing member 30 and 30, arrange | position the frame-shaped frame sheet 35 between each elastic sheet 33, By applying a tightening load from the outside of the separators 25, 25 and compressing the end seal member 30, the elastic sheet 33, and the frame sheet 35, as shown in FIG. 5, the end seal member 30, the elastic sheet 33, the frame The sheet 35 is crushed and the end edge portion is sealed.

この実施形態では、セパレータ25と端部シール部材30とが、フッ素樹脂系接着層50を介して接合しているので、セパレータ25と端部シール部材30との密着性が高い。このため、セパレータ25と端部シール部材30との間からのガスリークが抑制され、より優れたシール性能が得られる。   In this embodiment, since the separator 25 and the end seal member 30 are joined via the fluororesin adhesive layer 50, the adhesion between the separator 25 and the end seal member 30 is high. For this reason, the gas leak from between the separator 25 and the edge part sealing member 30 is suppressed, and more excellent sealing performance is obtained.

本発明の燃料電池の第3の実施形態について、図6〜8を用いて説明する。図6は、燃料電池の基本単位となる電池単セル40の分解断面図であり、図7は、同電池単セルの端部シール部材の圧縮前の状態の断面図であり、図8は、同電池単セルの端部シール部材の圧縮後の状態の断面図である。   A third embodiment of the fuel cell of the present invention will be described with reference to FIGS. FIG. 6 is an exploded cross-sectional view of the battery unit cell 40 which is a basic unit of the fuel cell, FIG. 7 is a cross-sectional view of the state before compression of the end seal member of the battery unit cell, and FIG. It is sectional drawing of the state after the compression of the edge part sealing member of the battery single cell.

図8に示すように、この電池単セル40は、電解質層41を、燃料電極42と、酸化剤電極43とで挟持し、それぞれの電極の外面に、酸化剤ガス流路付の多孔質基材からなるセパレータ44aと燃料ガス流路付の多孔質基材からなるセパレータ44bとを配して構成される。また、それぞれの電極42、43の外周には、端部シール部材本体31を樹脂フィルム32で被覆してなる端部シール部材30が配置されている。また、各端部シール部材30の上面には、弾性シート33が配置されている。また、各弾性シート33の間に、額縁状のフレームシート35が配置されている。   As shown in FIG. 8, this battery unit cell 40 includes an electrolyte layer 41 sandwiched between a fuel electrode 42 and an oxidant electrode 43, and a porous substrate with an oxidant gas flow path on the outer surface of each electrode. A separator 44a made of a material and a separator 44b made of a porous base material with a fuel gas flow path are arranged. An end seal member 30 formed by covering the end seal member main body 31 with a resin film 32 is disposed on the outer periphery of each electrode 42, 43. An elastic sheet 33 is disposed on the upper surface of each end seal member 30. A frame-shaped frame sheet 35 is disposed between the elastic sheets 33.

この実施形態では、図7に示すように、隣接するセパレータ44a,44bのそれぞれの内面であって、各電極42,43の外周に、端部シール部材本体31を樹脂フィルム32で被覆してなる端部シール部材30を配置し、それぞれの端部シール部材30,30の上面に弾性シート33を配置し、各弾性シート33の間に、額縁状のフレームシート35を配置したのち、セパレータ44a,44bの外側から締め付け荷重をかけ、端部シール部材30、弾性シート33、フレームシート35を圧縮する。これによって、図8に示すように、端部シール部材30、弾性シート33、フレームシート35が押しつぶされて端部エッジ部分がシールされる。   In this embodiment, as shown in FIG. 7, the end seal member body 31 is covered with a resin film 32 on the inner surfaces of the adjacent separators 44 a and 44 b and on the outer circumferences of the electrodes 42 and 43. After the end seal member 30 is disposed, the elastic sheet 33 is disposed on the upper surface of each end seal member 30, 30, and the frame-shaped frame sheet 35 is disposed between the elastic sheets 33. A fastening load is applied from the outside of 44b, and the end seal member 30, the elastic sheet 33, and the frame sheet 35 are compressed. As a result, as shown in FIG. 8, the end seal member 30, the elastic sheet 33, and the frame sheet 35 are crushed to seal the end edge portion.

圧縮率は、特に限定はないが、10〜80%が好ましく、30〜70%がより好ましい。上記圧縮率であれば、高いシール性が得られ、更には、端部の強度低下が生じにくい。なお、この実施形態において、圧縮率は、以下の式(2)で算出した値である。   The compression rate is not particularly limited, but is preferably 10 to 80%, and more preferably 30 to 70%. If it is the said compression rate, high sealing performance will be acquired and also the strength reduction of an edge part will not produce easily. In this embodiment, the compression rate is a value calculated by the following equation (2).

この実施形態の燃料電池においても、上記第1の実施形態同様、隣接するセパレータ44a,44bのそれぞれの内面に、端部シール部材本体31を樹脂フィルム32で被覆してなる端部シール部材30が配置されているので、圧縮率が小さくても、端部シール部材が、各多孔質基材に対しほぼ隙間なく密着して張り付き、良好なシール性が得られる。そして、端部シール部材の上面に、弾性シート33が配置されているので、端部シール部材30の圧縮率を大きくしても、荷重が弾性シート33によって吸収される。このため、電池単セルの端部の挫屈や偏った応力集中等の不具合を効果的に抑制でき、電池単セルの構成材料の寸法にバラつきが生じても、良好なシール性が得られる。   Also in the fuel cell of this embodiment, as in the first embodiment, the end seal member 30 formed by coating the end seal member main body 31 with the resin film 32 on the inner surfaces of the adjacent separators 44a and 44b. Since they are arranged, even if the compression ratio is small, the end seal member sticks to and adheres to each porous substrate with almost no gap, and a good sealing property is obtained. Since the elastic sheet 33 is disposed on the upper surface of the end seal member, the load is absorbed by the elastic sheet 33 even if the compression rate of the end seal member 30 is increased. For this reason, it is possible to effectively suppress problems such as buckling of the end of the battery unit cell and uneven stress concentration, and good sealing performance can be obtained even if the dimensions of the constituent materials of the battery unit cell vary.

以下、実施例、比較例を用いて本発明の作用効果を説明する。なお、以下の実施例及び比較例で用いたガス流路付き多孔質基材、電解質層、燃料電極、酸化剤電極、端部シール部材(PFAフィルム被覆膨張黒鉛シート)、弾性シート(PTFE多孔質シート)は、表1に示すような標準偏差を持つものを用いた。   Hereafter, the effect of this invention is demonstrated using an Example and a comparative example. In addition, the porous base material with a gas flow path used in the following examples and comparative examples, an electrolyte layer, a fuel electrode, an oxidizer electrode, an end seal member (PFA film-coated expanded graphite sheet), an elastic sheet (PTFE porous material) A sheet having a standard deviation as shown in Table 1 was used.

[試験例1]
(実施例1)
図4(a)に示す角形状の膨張黒鉛シート(商品名「ニカフィルムFL−400」、日本カーボン(株)製、厚さ1.6mm、かさ密度1.2g/cm)を、熱収縮性のあるチューブ状フッ素系フィルム(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、商品名「SMT」、グンゼ(株)製、厚さ=50μm、表面粗さRa=0.05μm)に挿入し、260℃、2時間で熱収縮させて端部シール部材を得た。この端部シール部材は、膨張黒鉛の周囲にPFAチューブがしっかりと密着していた。
次に、電解質層21を、燃料電極22及び酸化剤電極で挟持し、各電極の外側にガス流路付き多孔質基材を配置した。そして、隣接するセパレータの内面であって、それぞれの多孔質基材の外周に、上記端部シール部材を配置した。そして、PTFE多孔質シート(商品名「SM−860」、ゴアテックス(株)製、厚み=0.5mm、かさ密度=0.3265g/cm、圧縮弾性率=0.6MPa)を端部シール部材上に配置し、締め付け圧0.3MPaで締め付け、圧縮率5〜80%で端部をシールし、図3に示す断面形状をなす電池単セルを製作し、燃料電池を得た。
[Test Example 1]
Example 1
A square expanded graphite sheet (trade name “Nika Film FL-400”, manufactured by Nippon Carbon Co., Ltd., thickness 1.6 mm, bulk density 1.2 g / cm 3 ) shown in FIG. Tube-like fluoro film (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), trade name “SMT”, manufactured by Gunze Co., Ltd., thickness = 50 μm, surface roughness Ra = 0.05 μm) And heat shrinked at 260 ° C. for 2 hours to obtain an end seal member. In this end seal member, the PFA tube was firmly adhered around the expanded graphite.
Next, the electrolyte layer 21 was sandwiched between the fuel electrode 22 and the oxidant electrode, and a porous substrate with a gas flow path was disposed outside each electrode. And the said edge part sealing member was arrange | positioned on the inner surface of an adjacent separator and the outer periphery of each porous base material. Then, PTFE porous sheet (trade name “SM-860”, manufactured by Gore-Tex Co., Ltd., thickness = 0.5 mm, bulk density = 0.3265 g / cm 3 , compression elastic modulus = 0.6 MPa) end seal The battery was placed on a member, clamped at a clamping pressure of 0.3 MPa, sealed at the end with a compression rate of 5 to 80%, and a battery single cell having a cross-sectional shape shown in FIG.

(比較例1)
実施例1において、端部シール部材として、膨張黒鉛シート(日本カーボン(株)製、型式:「ニカフィルムFL−400」、厚さ1.6mm、かさ密度1.2g/cm)を用い、端部シール部材上にPTFE多孔質シートを配置しなかった以外は実施例1と同様にして圧縮率5〜80%で端部をシールし、燃料電池を得た。
(Comparative Example 1)
In Example 1, as an end seal member, an expanded graphite sheet (manufactured by Nippon Carbon Co., Ltd., model: “Nika film FL-400”, thickness 1.6 mm, bulk density 1.2 g / cm 3 ) was used. Except that the PTFE porous sheet was not disposed on the end seal member, the end was sealed at a compression rate of 5 to 80% in the same manner as in Example 1 to obtain a fuel cell.

(比較例2)
実施例1において、端部シール部材(PFAフィルム被覆膨張黒鉛シート)上にPTFE多孔質シートを配置しなかった以外は実施例1と同様にして圧縮率5〜80%で端部をシールし、燃料電池を得た。
(Comparative Example 2)
In Example 1, except that the PTFE porous sheet was not disposed on the end seal member (PFA film-coated expanded graphite sheet), the end was sealed at a compression rate of 5 to 80% in the same manner as in Example 1. A fuel cell was obtained.

(比較例3)
実施例1において、端部シール部材として、膨張黒鉛シートを用いた以外は実施例1と同様にして圧縮率5〜80%で端部をシールし、燃料電池を得た。
(Comparative Example 3)
In Example 1, the end part was sealed at a compression rate of 5 to 80% in the same manner as in Example 1 except that an expanded graphite sheet was used as the end seal member to obtain a fuel cell.

実施例1、2及び比較例1〜3の燃料電池のガス漏れ量(単位:ml/min)を測定した。ガス漏れ量は、100mmAq差圧下で、窒素ガスにて行った。結果を表2に示す。また、表3に、実施例1,2及び比較例1〜3の燃料電池の端部シール構造の構成素材を記す。また、図9に実施例2の燃料電池を構成する電池単セルの端部シール部材とセパレータとの接合界面の状態を記す断面写真を示す。   The amount of gas leakage (unit: ml / min) of the fuel cells of Examples 1 and 2 and Comparative Examples 1 to 3 was measured. The amount of gas leakage was performed with nitrogen gas under a differential pressure of 100 mmAq. The results are shown in Table 2. Table 3 shows the constituent materials of the end seal structures of the fuel cells of Examples 1 and 2 and Comparative Examples 1 to 3. FIG. 9 is a cross-sectional photograph showing the state of the joining interface between the end seal member of the battery unit cell constituting the fuel cell of Example 2 and the separator.

上記結果より、実施例1,2の燃料電池は、構成材料の寸法がばらつきにより変化した場合であっても、圧縮率5〜80%という広範囲で高いシール性を保持でき、特に圧縮率が10%以上であれば、ガス漏れ量が50ml/min以下であり、十分なシール性が得られた。なかでも、端部シール部材とセパレータと、フッ素樹脂接着層を介して接合した、実施例2の燃料電池は、特に優れたシール特性を保持できた。
これに対し、PTFE多孔質シート(弾性シート)を使用していない比較例1,2は、圧縮率を上げると、端部の強度低下が起こり、挫屈等が生じた。また、樹脂フィルムで被覆していない膨張黒鉛シートを使用した比較例1,3は、シール性が悪く、特に圧縮率が低い場合でのシール性が悪かった。
From the above results, the fuel cells of Examples 1 and 2 can maintain a high sealing performance in a wide range of a compression rate of 5 to 80% even when the dimensions of the constituent materials change due to variations, and in particular, the compression rate is 10 If it was% or more, the amount of gas leakage was 50 ml / min or less, and sufficient sealing performance was obtained. In particular, the fuel cell of Example 2 joined with the end seal member, the separator, and the fluororesin adhesive layer was able to maintain particularly excellent sealing characteristics.
On the other hand, in Comparative Examples 1 and 2, which did not use a PTFE porous sheet (elastic sheet), when the compression rate was increased, the strength of the end portion was reduced, and buckling or the like occurred. Further, Comparative Examples 1 and 3 using the expanded graphite sheet not covered with the resin film had poor sealing properties, particularly when the compression rate was low.

(実施例2)
実施例1において、端部シール部材とセパレータとの界面に、フッ素樹脂シート(商品名「FEPシート」、淀川ヒューテック(株)製、軟化温度200〜300℃、厚さ25μm)を設置し、300℃、2.0MPaの条件で20分間にて、端部シール部材とセパレータとを接合した以外は、実施例1と同様に行い、図5に示す断面形状をなす電池単セルを製作し、燃料電池を得た。
この電池単セルのセパレータとフッ素樹脂系接着層との接着強度は0.2N/mmであり、端部シール部材とフッ素樹脂系接着層は0.1N/mmであり、十分な接着強度を有していた。なお、接着強度は、引張り試験機(AG−50kNX、島津製作所)を用い、25℃にて180°ピール強度の条件で測定した値である。
(Example 2)
In Example 1, a fluororesin sheet (trade name “FEP sheet”, manufactured by Yodogawa Hutec Co., Ltd., softening temperature 200 to 300 ° C., thickness 25 μm) is installed at the interface between the end seal member and the separator. A battery single cell having the cross-sectional shape shown in FIG. 5 was manufactured in the same manner as in Example 1 except that the end seal member and the separator were joined at 20 ° C. for 20 minutes under the conditions of 2.0 ° C. and fuel. A battery was obtained.
The adhesive strength between the separator of this battery unit cell and the fluororesin-based adhesive layer is 0.2 N / mm, and the end seal member and the fluororesin-based adhesive layer are 0.1 N / mm, which has sufficient adhesive strength. Was. In addition, adhesive strength is the value measured on the conditions of 180 degree peel strength at 25 degreeC using the tensile tester (AG-50kNX, Shimadzu Corporation).

(実施例3)
実施例1において、膨張黒鉛シートとして、角部31aを一辺0.5mmの三角形状に面取り加工をした、図4(b)に示す膨張黒鉛シートを用いた以外は、実施例1と同様に行い、燃料電池を得た。
(Example 3)
In Example 1, the same procedure as in Example 1 was performed except that the expanded graphite sheet shown in FIG. 4B was used in which the corner portion 31a was chamfered into a triangular shape having a side of 0.5 mm as the expanded graphite sheet. A fuel cell was obtained.

(実施例4)
実施例1において、膨張黒鉛シートとして、辺部31bを短手方向に0.5mm面取り加工をした、図4(c)に示す膨張黒鉛シートを用いた以外は、実施例1と同様に行い、燃料電池を得た。
Example 4
In Example 1, as the expanded graphite sheet, the side 31b was chamfered by 0.5 mm in the lateral direction, except that the expanded graphite sheet shown in FIG. A fuel cell was obtained.

(実施例5)
実施例1において、膨張黒鉛シートとして、角部31aを一辺0.5mmの三角形状に面取り加工をし、辺部31bを短手方向に0.5mmの面取り加工をした、図4(d)に示す膨張黒鉛シートを用いた以外は、実施例1と同様に行い、燃料電池を得た。
(Example 5)
In Example 1, as the expanded graphite sheet, the corner portion 31a was chamfered into a triangular shape having a side of 0.5 mm, and the side portion 31b was chamfered to 0.5 mm in the short direction, as shown in FIG. A fuel cell was obtained in the same manner as in Example 1 except that the expanded graphite sheet shown was used.

(実施例6)
実施例1において、膨張黒鉛シートとして、辺部16aが半径寸法R=0.8mmにRを形成した、図4(e)に示す膨張黒鉛シートを用いた以外は、実施例1と同様に行い、燃料電池を得た。
(Example 6)
In Example 1, an expanded graphite sheet was used in the same manner as in Example 1 except that the expanded graphite sheet shown in FIG. 4 (e) in which the side portion 16a formed R with a radius R = 0.8 mm was used. A fuel cell was obtained.

実施例1,3〜6の燃料電池に用いた端部エッチ部材の、膨張黒鉛シートの角部31a、辺部31b、面部31cに接する部分の樹脂フィルムの190℃における破断強度を調べた。結果を表4に記す。
なお、破断強度は、引張り試験機(型式「AG−50KNX」、島津製作所)を用い、25℃、引張り速度100mm/minの条件で測定した。
The breaking strength at 190 ° C. of the resin films at the portions in contact with the corner portions 31 a, the side portions 31 b, and the surface portions 31 c of the expanded graphite sheet of the end etch members used in the fuel cells of Examples 1 and 3 to 6 was examined. The results are shown in Table 4.
The breaking strength was measured using a tensile tester (model “AG-50KNX”, Shimadzu Corporation) under the conditions of 25 ° C. and a tensile speed of 100 mm / min.

上記結果より、角部や辺部が面取り加工されていたり、辺部が円弧状に形成されている黒鉛膨張シートを用いた実施例3〜6は、角部31a、辺部31bにおける破断強度が高かった。また、樹脂フィルムの破損による電極間の短絡の有無を評価したところ、実施例1,3〜6の燃料電池は、いずれも6.5万時間までは、短絡は生じなかった。なかでも、実施例5の燃料電池は、13万時間を超えても短絡は生じなかった。   From the above results, in Examples 3 to 6 using the graphite expanded sheet in which the corners and sides are chamfered or the sides are formed in an arc shape, the breaking strength at the corners 31a and 31b is high. it was high. Moreover, when the presence or absence of the short circuit between electrodes by the failure | damage of a resin film was evaluated, the short circuit did not arise in the fuel cell of Examples 1, 3-6 until 650,000 hours. In particular, the fuel cell of Example 5 did not cause a short circuit even after exceeding 130,000 hours.

10,20,40:電池単セル
11,21,41:電解質層
12,22,42:燃料電極
13,23,43:酸化剤電極
14a,24a:燃料ガス流路付多孔質基材
14b,24b:酸化剤ガス流路付多孔質基材
15,25:セパレータ
16:端部シール部材
17,35:フレームシート
30:端部シール部材
31:端部シール部材本体
32:樹脂フィルム
33:弾性シート
44a,44b:ガス流路付きセパレータ
50:フッ素樹脂系接着層
10, 20, 40: battery single cells 11, 21, 41: electrolyte layers 12, 22, 42: fuel electrodes 13, 23, 43: oxidant electrodes 14a, 24a: porous substrates 14b, 24b with fuel gas flow paths : Porous substrate 15 with oxidant gas flow path, 25: separator 16: end seal member 17, 35: frame sheet 30: end seal member 31: end seal member body 32: resin film 33: elastic sheet 44a 44b: Separator with gas flow path 50: Fluororesin adhesive layer

Claims (22)

複数の電池単セルを積層して構成される燃料電池の周縁において、隣接するセパレータどうしをシールする方法において、
隣接するセパレータのそれぞれの内面に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材を配置し、この端部シール部材どうしを、弾性シートを介して接合することを特徴とする燃料電池のシール方法。
In the method of sealing adjacent separators at the periphery of a fuel cell configured by stacking a plurality of battery single cells,
An end seal member formed by covering an end seal member main body with a resin film is disposed on each inner surface of an adjacent separator, and the end seal members are joined to each other via an elastic sheet. Fuel cell sealing method.
前記樹脂フィルムとして、フッ素樹脂系フィルムを用いる、請求項1記載の燃料電池のシール方法。   The fuel cell sealing method according to claim 1, wherein a fluororesin-based film is used as the resin film. 前記弾性シートとして、フッ素樹脂系多孔質シートを用いる、請求項1又は2記載の燃料電池のシール方法。   The fuel cell sealing method according to claim 1, wherein a fluororesin-based porous sheet is used as the elastic sheet. 前記セパレータと前記樹脂フィルムとを、フッ素樹脂系接着層を介して接合する、請求項1〜3のいずれか1項に記載の燃料電池のシール方法。   The fuel cell sealing method according to any one of claims 1 to 3, wherein the separator and the resin film are joined via a fluororesin adhesive layer. 前記端部シール部材本体として、膨張黒鉛シートを用いる、請求項1〜4のいずれか1項に記載の燃料電池のシール方法。   The method for sealing a fuel cell according to any one of claims 1 to 4, wherein an expanded graphite sheet is used as the end seal member main body. 前記端部シール部材本体として、角部及び/又は辺部の少なくとも一部が面取り加工されているものを用いる、請求項1〜5のいずれか1項に記載の燃料電池のシール方法。   The method for sealing a fuel cell according to any one of claims 1 to 5, wherein the end seal member main body has a corner portion and / or a side portion that is chamfered. 前記端部シール部材本体として、辺部の少なくとも一部が円弧状に形成されているものを用いる、請求項1〜5のいずれか1項に記載の燃料電池のシール方法。   The fuel cell sealing method according to any one of claims 1 to 5, wherein the end seal member main body has at least a part of a side formed in an arc shape. 複数の電池単セルを積層して構成される燃料電池の周縁において、隣接するセパレータどうしをシールする構造において、
隣接するセパレータのそれぞれの内面に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材が配置され、この端部シール部材どうしが、弾性シートを介して接合されていることを特徴とする燃料電池のシール構造。
In the structure of sealing adjacent separators at the periphery of a fuel cell configured by stacking a plurality of battery single cells,
End seal members formed by coating the end seal member main body with a resin film are arranged on the inner surfaces of the adjacent separators, and the end seal members are joined to each other via an elastic sheet. A fuel cell seal structure.
前記樹脂フィルムがフッ素樹脂系フィルムである、請求項8記載の燃料電池のシール構造。   The fuel cell seal structure according to claim 8, wherein the resin film is a fluororesin film. 前記弾性シートがフッ素樹脂系多孔質シートである、請求項8又は9記載の燃料電池のシール構造。   The fuel cell seal structure according to claim 8 or 9, wherein the elastic sheet is a fluororesin-based porous sheet. 前記セパレータと前記樹脂フィルムとが、フッ素樹脂系接着層を介して接合されている、請求項8〜10のいずれか1項に記載の燃料電池のシール構造。   The fuel cell seal structure according to any one of claims 8 to 10, wherein the separator and the resin film are joined together via a fluororesin adhesive layer. 前記端部シール部材本体が、膨張黒鉛シートである、請求項8〜11のいずれか1項に記載の燃料電池のシール構造。   The fuel cell seal structure according to any one of claims 8 to 11, wherein the end seal member main body is an expanded graphite sheet. 前記端部シール部材本体の角部及び/又は辺部の少なくとも一部が面取り加工されている、請求項8〜12のいずれか1項に記載の燃料電池のシール構造。   The fuel cell seal structure according to any one of claims 8 to 12, wherein at least a part of a corner portion and / or a side portion of the end seal member main body is chamfered. 前記端部シール部材本体の辺部の少なくとも一部が円弧状に形成されている、請求項8〜12のいずれか1項に記載の燃料電池のシール構造。   The fuel cell seal structure according to any one of claims 8 to 12, wherein at least a part of a side portion of the end seal member main body is formed in an arc shape. 電解質層と、該電解質層の両外面に配設された電極層と、各電極層の両外面に配設されたガス流路を有する多孔質基材とで構成された電池単セルを、セパレータを介して複数積層した燃料電池において、
隣接するセパレータ間であって、それぞれの多孔質基材の外周に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材が配置され、この端部シール部材どうしが、弾性シートを介して接合されていることを特徴とする燃料電池。
A battery single cell composed of an electrolyte layer, an electrode layer disposed on both outer surfaces of the electrolyte layer, and a porous substrate having a gas flow path disposed on both outer surfaces of each electrode layer, a separator In the fuel cell laminated through
Between the adjacent separators, an end seal member formed by coating the end seal member body with a resin film is disposed on the outer periphery of each porous base material. A fuel cell, wherein the fuel cell is joined via
電解質層と、該電解質層の両面に配置された電極層と、各電極層の両外面に配置されたガス流路を有するセパレータとで構成された電池単セルを複数積層した燃料電池において、
隣接するセパレータ間であって、それぞれの電極層の外周に、端部シール部材本体を樹脂フィルムで被覆してなる端部シール部材が配置され、この端部シール部材どうしが、弾性シートを介して接合されていることを特徴とする燃料電池。
In a fuel cell in which a plurality of battery single cells composed of an electrolyte layer, electrode layers disposed on both surfaces of the electrolyte layer, and separators having gas flow paths disposed on both outer surfaces of each electrode layer are laminated,
Between the adjacent separators, an end seal member formed by coating the end seal member body with a resin film is disposed on the outer periphery of each electrode layer, and the end seal members are interposed between the elastic sheets. A fuel cell characterized by being joined.
前記樹脂フィルムがフッ素樹脂系フィルムである、請求項15又は16記載の燃料電池。   The fuel cell according to claim 15 or 16, wherein the resin film is a fluororesin film. 前記弾性シートがフッ素樹脂系多孔質シートである、請求項15〜17のいずれか1つに記載の燃料電池。   The fuel cell according to any one of claims 15 to 17, wherein the elastic sheet is a fluororesin-based porous sheet. 前記セパレータと前記樹脂フィルムとが、フッ素樹脂系接着層を介して接合されている、請求項15〜18のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 15 to 18, wherein the separator and the resin film are joined together via a fluororesin adhesive layer. 前記端部シール部材本体が、膨張黒鉛シートである、請求項15〜19のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 15 to 19, wherein the end seal member main body is an expanded graphite sheet. 前記端部シール部材本体の角部及び/又は辺部の少なくとも一部が面取り加工されている、請求項15〜20のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 15 to 20, wherein at least a part of a corner portion and / or a side portion of the end seal member main body is chamfered. 前記端部シール部材本体の辺部の少なくとも一部が円弧状に形成されている、請求項15〜20のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 15 to 20, wherein at least a part of a side portion of the end seal member main body is formed in an arc shape.
JP2009234744A 2009-10-09 2009-10-09 Fuel cell sealing method, fuel cell sealing structure, and fuel cell Active JP5482076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234744A JP5482076B2 (en) 2009-10-09 2009-10-09 Fuel cell sealing method, fuel cell sealing structure, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234744A JP5482076B2 (en) 2009-10-09 2009-10-09 Fuel cell sealing method, fuel cell sealing structure, and fuel cell

Publications (2)

Publication Number Publication Date
JP2011082078A true JP2011082078A (en) 2011-04-21
JP5482076B2 JP5482076B2 (en) 2014-04-23

Family

ID=44075919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234744A Active JP5482076B2 (en) 2009-10-09 2009-10-09 Fuel cell sealing method, fuel cell sealing structure, and fuel cell

Country Status (1)

Country Link
JP (1) JP5482076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023243A4 (en) * 2013-07-18 2017-07-26 Toyo Tanso Co., Ltd. Sheet-like stacked body, production method for sheet-like stacked body, and sheet-like composite body
WO2022272123A1 (en) * 2021-06-25 2022-12-29 Advent Technologies, Llc Heat and chemical resistant sealants for fuel cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126562A (en) * 1988-07-06 1990-05-15 Fuji Electric Co Ltd Gas seal structure of fuel cell
JPH03205764A (en) * 1989-12-29 1991-09-09 Toray Ind Inc Gas seal method for side end part of gas transmissive carbon base for fuel battery
JPH044565A (en) * 1990-04-20 1992-01-09 Fuji Electric Co Ltd Gas seal structure of fuel cell
JP3838403B2 (en) * 1999-07-07 2006-10-25 富士電機ホールディングス株式会社 Phosphoric acid fuel cell
JP2007018924A (en) * 2005-07-08 2007-01-25 Fuji Electric Holdings Co Ltd Fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126562A (en) * 1988-07-06 1990-05-15 Fuji Electric Co Ltd Gas seal structure of fuel cell
JPH03205764A (en) * 1989-12-29 1991-09-09 Toray Ind Inc Gas seal method for side end part of gas transmissive carbon base for fuel battery
JPH044565A (en) * 1990-04-20 1992-01-09 Fuji Electric Co Ltd Gas seal structure of fuel cell
JP3838403B2 (en) * 1999-07-07 2006-10-25 富士電機ホールディングス株式会社 Phosphoric acid fuel cell
JP2007018924A (en) * 2005-07-08 2007-01-25 Fuji Electric Holdings Co Ltd Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023243A4 (en) * 2013-07-18 2017-07-26 Toyo Tanso Co., Ltd. Sheet-like stacked body, production method for sheet-like stacked body, and sheet-like composite body
CN108970943A (en) * 2013-07-18 2018-12-11 东洋炭素株式会社 Sheetlike laminate, the manufacturing method of sheetlike laminate and sheet complex
WO2022272123A1 (en) * 2021-06-25 2022-12-29 Advent Technologies, Llc Heat and chemical resistant sealants for fuel cells

Also Published As

Publication number Publication date
JP5482076B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP4484369B2 (en) Fuel cell with seal between individual membrane assembly and plate assembly
US7732083B2 (en) Gas diffusion layer incorporating a gasket
JP5015932B2 (en) EPTFE gasket material with low sealing stress
EP1624515A1 (en) Unitized electrochemical cell sub-assembly and the method of making the same
CA2921469C (en) Method for making a membrane-electrode assembly with peripheral seal, and the membrane-electrode assembly
JP6375523B2 (en) Fuel cell module and fuel cell stack
US6861171B1 (en) Gasket assembly
JP4826085B2 (en) Single cell structure for fuel cell stack including composite gasket
JP2016162649A (en) Fuel battery single cell and manufacturing method for the same
KR20110112360A (en) Seal for solid polymer electrolyte fuel cell
JP2009509300A (en) Gasket subassemblies used in fuel cells
JP2013098155A (en) Electrolyte film and electrode structure with resin frame for fuel cell and fuel cell stack
JP2004311254A (en) Gas sealing structure of fuel cell
JP2017183198A (en) Manufacturing method of fuel cell seal body, and rubber gasket for fuel cell used therein
JP5482076B2 (en) Fuel cell sealing method, fuel cell sealing structure, and fuel cell
WO2005045971A1 (en) Separator and production method for separator
KR102507003B1 (en) Membrane electrode assembly for fuel cell and method for manufacturing the same
JP3620294B2 (en) Sealing material for stacked fuel cell
JP2011253656A (en) Fuel battery
JP2017152281A (en) Manufacturing method for fuel battery cell
JP3105660B2 (en) Solid polymer electrolyte fuel cell stack
JP5273541B2 (en) Polymer fuel cell
JP2004095565A (en) Gasket for laminated fuel cell
JP3838403B2 (en) Phosphoric acid fuel cell
JP2006054058A (en) Separator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250