JP2007018924A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007018924A
JP2007018924A JP2005200474A JP2005200474A JP2007018924A JP 2007018924 A JP2007018924 A JP 2007018924A JP 2005200474 A JP2005200474 A JP 2005200474A JP 2005200474 A JP2005200474 A JP 2005200474A JP 2007018924 A JP2007018924 A JP 2007018924A
Authority
JP
Japan
Prior art keywords
end seal
fuel cell
insulating sheet
fuel
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005200474A
Other languages
Japanese (ja)
Inventor
Masato Hanazawa
真人 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005200474A priority Critical patent/JP2007018924A/en
Publication of JP2007018924A publication Critical patent/JP2007018924A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a fuel electrode and an air electrode from short-circuiting owing to contact between end sealing members prepared on both sides of an insulation sheet. <P>SOLUTION: In a fuel cell, on one side of the insulation sheet 4 which is prepared on and around an electrolyte layer 10, the fuel electrode 11A, a porous carbon board 3A in which fuel gas passages are formed, and a separator 1A are placed, while on the other side of the electrolyte layer 10 and the insulation sheet 4, the air electrode 11B, a porous carbon board 3B in which an air passage is formed, and a separator 1B are placed. Among lateral sides of the porous carbon boards 3A and 3B, on the side where passage openings are not formed, end sealing members 2A and 2B, which are made of expanded graphite, are placed, respectively, and the insulation sheet 4 is projected out of fringes of the end sealing members 2A and 2B. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばりん酸型の燃料電池に関し、特には、単電池の端部シール部材の構成に関する。   The present invention relates to, for example, a phosphoric acid type fuel cell, and more particularly, to a configuration of an end seal member of a single cell.

詳細には、本発明は、電解質層およびその周囲に設けられた絶縁シートの一方の面に、燃料電極、燃料ガス流路が形成された多孔質部材、および、セパレータを配置し、電解質層および絶縁シートの他方の面に空気電極、空気流路が形成された多孔質部材、および、セパレータを配置し、多孔質部材の側面のうち、流路開口部が形成されていない側面に端部シール部材を配置した燃料電池に関し、特には、電解質層および絶縁シートの一方の側に配置された端部シール部材と電解質層および絶縁シートの他方の側に配置された端部シール部材とが接触するのに伴って燃料電極と空気電極とが電気的に短絡してしまうのを抑制することができる燃料電池に関する。   Specifically, the present invention arranges a fuel electrode, a porous member in which a fuel gas flow path is formed, and a separator on one surface of an electrolyte layer and an insulating sheet provided around the electrolyte layer. An air electrode, a porous member having an air flow path formed on the other surface of the insulating sheet, and a separator are disposed, and an end seal is provided on the side surface of the porous member where the flow channel opening is not formed. In particular, the end seal member disposed on one side of the electrolyte layer and the insulating sheet is in contact with the end seal member disposed on the other side of the electrolyte layer and the insulating sheet. In connection with this, it is related with the fuel cell which can suppress that a fuel electrode and an air electrode short-circuit electrically.

図8は従来の燃料電池の単位セルを示した図である。詳細には、図8(A)は従来の燃料電池の単位セルの斜視図、図8(B)は従来の燃料電池の単位セルの正面図である。   FIG. 8 shows a unit cell of a conventional fuel cell. Specifically, FIG. 8A is a perspective view of a unit cell of a conventional fuel cell, and FIG. 8B is a front view of the unit cell of the conventional fuel cell.

図8に示すように、従来の燃料電池の単位セルでは、セルロース繊維からなる紙に熱硬化性樹脂を含浸し、乾燥後積層してプレスし、更に焼成して作成したガス不透過性および電解質に対する耐食性を満たしたセパレータ1A,1Bの間に、ガス流路を画定する多孔質カーボン板3A,3Bおよび燃料電極(図示せず)並びに空気電極(図示せず)が狭持されている。燃料電極(図示せず)および空気電極(図示せず)の周辺には、燃料電極と空気電極とを電気的に絶縁するための絶縁シート4が配置されている。燃料ガス流路を画定する多孔質カーボン板3Aのガス流路に平行な外縁部および空気流路を画定する多孔質カーボン板3Bのガス流路に平行な外縁部には、それぞれのガスが対極に漏洩しないように端部シール部材2A,2Bが配置されている。   As shown in FIG. 8, in a conventional unit cell of a fuel cell, a gas-impermeable and electrolyte produced by impregnating a paper made of cellulose fiber with a thermosetting resin, drying, laminating and pressing, and further firing. The porous carbon plates 3A and 3B, the fuel electrode (not shown), and the air electrode (not shown) that define the gas flow path are sandwiched between the separators 1A and 1B that satisfy the corrosion resistance against the gas. An insulating sheet 4 for electrically insulating the fuel electrode and the air electrode is disposed around the fuel electrode (not shown) and the air electrode (not shown). Each gas is counter electrode on the outer edge parallel to the gas flow path of the porous carbon plate 3A defining the fuel gas flow path and the outer edge parallel to the gas flow path of the porous carbon plate 3B defining the air flow path. End seal members 2A and 2B are arranged so as not to leak.

端部シール部材2A,2Bには、ガス不透過性と共に、電解質に対する耐食性が求められる。また、ガス流路の高さを確保する必要もあることから、2mm程度の厚さも必要である。これらの条件を満たす安価な材料として、特開2001−23654号公報に記載された燃料電池では、膨張黒鉛シートが用いられている。従来においては、膨張黒鉛シートは、大判のシートから抜き加工によって長方形の形状に抜き出され、樹脂フィルム等を用いた熱融着によりセパレータ1A,1Bに貼り付けられている。   The end seal members 2A and 2B are required to have corrosion resistance to the electrolyte as well as gas impermeability. Moreover, since it is necessary to ensure the height of a gas flow path, the thickness of about 2 mm is also required. As an inexpensive material that satisfies these conditions, an expanded graphite sheet is used in the fuel cell described in JP-A-2001-23654. Conventionally, the expanded graphite sheet is extracted from a large sheet into a rectangular shape by punching, and is attached to the separators 1A and 1B by heat fusion using a resin film or the like.

ところが、膨張黒鉛シートが大判のシートから抜き加工によって長方形の形状に抜き出される場合には、膨張黒鉛シートの両面のうち、一方の面にバリができてしまうおそれがある。   However, when the expanded graphite sheet is extracted from a large sheet into a rectangular shape by punching, there is a possibility that burrs may be formed on one surface of both surfaces of the expanded graphite sheet.

一方、(例えば図8では絶縁シート4の上側の)燃料電極と、(例えば図8では絶縁シート4の下側の)空気電極とは絶縁シート4によって電気的に絶縁されており、燃料電極側(例えば図8の上側)の端部シール部材2Aと、空気電極側(例えば図8の下側)の端部シール部材2Bとは接触しないように設計されている。   On the other hand, the fuel electrode (for example, the upper side of the insulating sheet 4 in FIG. 8) and the air electrode (for example, the lower side of the insulating sheet 4 in FIG. 8) are electrically insulated by the insulating sheet 4, and the fuel electrode side The end seal member 2A (for example, the upper side in FIG. 8) is designed not to contact the end seal member 2B on the air electrode side (for example, the lower side in FIG. 8).

ところが、例えばフッ素樹脂のシート等が用いられる絶縁シート4は、燃料電池の運転中にセルの温度が上昇すると、収縮する場合がある。上述したように膨張黒鉛シート製の端部シール部材2A,2Bにバリが存在している場合には、絶縁シート4が収縮した時に、図8中に符号5で示すように、燃料電極側(例えば図8の上側)の端部シール部材2Aのバリと、空気電極側(例えば図8の下側)の端部シール部材2Bのバリとが接触し、電気的に短絡してしまうおそれがある。単セル内で燃料電極と空気電極とが電気的に短絡してしまうと、短絡箇所において発熱が生じたり、短絡電流によって発電性能が低下したりするおそれがある。   However, the insulating sheet 4 using, for example, a fluororesin sheet or the like may contract if the cell temperature rises during operation of the fuel cell. As described above, in the case where burrs are present on the end seal members 2A and 2B made of the expanded graphite sheet, when the insulating sheet 4 contracts, as shown by reference numeral 5 in FIG. For example, the burr of the end seal member 2A on the upper side in FIG. 8 and the burr of the end seal member 2B on the air electrode side (for example, the lower side in FIG. 8) may come into contact with each other, causing an electrical short circuit. . If the fuel electrode and the air electrode are electrically short-circuited in the single cell, there is a risk that heat will be generated at the short-circuited location or the power generation performance may be reduced due to the short-circuit current.

特開2001−23654号公報Japanese Patent Laid-Open No. 2001-23654

前記問題点に鑑み、本発明は、絶縁シートの両側に配置された端部シール部材が互いに接触するのに伴って燃料電極と空気電極とが電気的に短絡してしまうのを抑制することができる燃料電池を提供することを目的とする。   In view of the above problems, the present invention suppresses the electrical short circuit between the fuel electrode and the air electrode as the end seal members disposed on both sides of the insulating sheet come into contact with each other. An object of the present invention is to provide a fuel cell that can be used.

詳細には、本発明は、燃料電池単セルの端部シール部材に膨張黒鉛シートを用いた場合に、端部シール部材のバリによって燃料電極と空気電極とが電気的に短絡してしまうのを防止することができる燃料電池を提供することを目的とする。   Specifically, in the present invention, when an expanded graphite sheet is used for the end seal member of a single fuel cell, the fuel electrode and the air electrode are electrically short-circuited by the burr of the end seal member. An object of the present invention is to provide a fuel cell that can be prevented.

請求項1に記載の発明によれば、電解質層およびその周囲に設けられた絶縁シートの一方の面に、燃料電極、燃料ガス流路が形成された多孔質部材、および、セパレータを配置し、前記電解質層および前記絶縁シートの他方の面に空気電極、空気流路が形成された多孔質部材、および、セパレータを配置し、前記多孔質部材の側面のうち、流路開口部が形成されていない側面に端部シール部材を配置した燃料電池において、前記端部シール部材が膨張黒鉛からなり、前記絶縁シートを前記端部シール部材の外縁より外側に突出させたことを特徴とする燃料電池が提供される。   According to the first aspect of the present invention, the fuel electrode, the porous member in which the fuel gas channel is formed, and the separator are disposed on one surface of the electrolyte layer and the insulating sheet provided around the electrolyte layer, An air electrode, a porous member formed with an air flow path, and a separator are disposed on the other surface of the electrolyte layer and the insulating sheet, and a flow path opening is formed on the side surface of the porous member. A fuel cell having an end seal member disposed on a non-side surface, wherein the end seal member is made of expanded graphite, and the insulating sheet protrudes outward from an outer edge of the end seal member. Provided.

請求項2に記載の発明によれば、電解質層およびその周囲に設けられた絶縁シートの一方の面に、燃料電極、燃料ガス流路が形成された多孔質部材、および、セパレータを配置し、前記電解質層および前記絶縁シートの他方の面に空気電極、空気流路が形成された多孔質部材、および、セパレータを配置し、前記多孔質部材の側面のうち、流路開口部が形成されていない側面に端部シール部材を配置した燃料電池において、前記端部シール部材が膨張黒鉛からなり、燃料電池の角部に位置する前記端部シール部材の角部が面取りされていることを特徴とする燃料電池が提供される。   According to the invention described in claim 2, the fuel electrode, the porous member in which the fuel gas flow path is formed, and the separator are disposed on one surface of the electrolyte layer and the insulating sheet provided around the electrolyte layer, An air electrode, a porous member formed with an air flow path, and a separator are disposed on the other surface of the electrolyte layer and the insulating sheet, and a flow path opening is formed on the side surface of the porous member. In the fuel cell in which the end seal member is arranged on the side surface that is not present, the end seal member is made of expanded graphite, and the corner portion of the end seal member located at the corner portion of the fuel cell is chamfered. A fuel cell is provided.

請求項1に記載の燃料電池では、燃料ガス流路が形成された多孔質部材およびその多孔質部材の外側に配置された端部シール部材と、空気流路が形成された多孔質部材およびその多孔質部材の外側に配置された端部シール部材との間に絶縁シートが配置され、絶縁シートの外縁が、絶縁シートの両側に配置された端部シール部材の外縁より外側に突出せしめられている。つまり、燃料電池の運転中の温度上昇に伴って絶縁シートが収縮した時においても、絶縁シートの両側に配置された端部シール部材の間に絶縁シートが介在せしめられているように、絶縁シートの外縁が、絶縁シートの両側に配置された端部シール部材の外縁より外側に突出せしめられている。   In the fuel cell according to claim 1, the porous member in which the fuel gas flow path is formed, the end seal member disposed outside the porous member, the porous member in which the air flow path is formed, and the An insulating sheet is disposed between the end seal member disposed outside the porous member, and the outer edge of the insulating sheet is projected outward from the outer edge of the end seal member disposed on both sides of the insulating sheet. Yes. That is, even when the insulating sheet contracts as the temperature rises during operation of the fuel cell, the insulating sheet is interposed between the end seal members disposed on both sides of the insulating sheet. The outer edge is protruded outward from the outer edge of the end seal member disposed on both sides of the insulating sheet.

そのため、請求項1に記載の燃料電池によれば、絶縁シートの両側に配置された端部シール部材が互いに接触してしまうのを回避することができる。詳細には、絶縁シートの両側に配置された端部シール部材にバリが存在している場合であっても、絶縁シートの両側に配置された端部シール部材が互いに接触してしまうのを確実に回避することができる。   Therefore, according to the fuel cell of Claim 1, it can avoid that the edge part sealing members arrange | positioned at the both sides of an insulating sheet contact each other. Specifically, it is ensured that the end seal members arranged on both sides of the insulating sheet come into contact with each other even when burrs are present on the end seal members arranged on both sides of the insulating sheet. Can be avoided.

その結果、請求項1に記載の燃料電池によれば、絶縁シートの両側に配置された端部シール部材が互いに接触するのに伴って燃料電極と空気電極とが電気的に短絡してしまうのを抑制することができる。換言すれば、燃料電池単セルの端部シール部材に膨張黒鉛シートを用いた場合に、端部シール部材のバリによって燃料電極と空気電極とが電気的に短絡してしまうのを防止することができる。   As a result, according to the fuel cell of the first aspect, the fuel electrode and the air electrode are electrically short-circuited as the end seal members disposed on both sides of the insulating sheet come into contact with each other. Can be suppressed. In other words, when an expanded graphite sheet is used for the end seal member of a single fuel cell, it is possible to prevent the fuel electrode and the air electrode from being electrically short-circuited by the burr of the end seal member. it can.

請求項2に記載の燃料電池では、燃料ガス流路が形成された多孔質部材およびその多孔質部材の外側に配置された端部シール部材と、空気流路が形成された多孔質部材およびその多孔質部材の外側に配置された端部シール部材との間に絶縁シートが配置され、燃料電池の角部に位置する端部シール部材の角部が面取りされている。換言すれば、バリが存在するおそれのある端部シール部材の角部が面取りされている。   In the fuel cell according to claim 2, the porous member in which the fuel gas flow path is formed, the end seal member disposed outside the porous member, the porous member in which the air flow path is formed, and the An insulating sheet is disposed between the end seal member disposed outside the porous member, and a corner of the end seal member located at a corner of the fuel cell is chamfered. In other words, the corners of the end seal member that may have burrs are chamfered.

詳細には、請求項2に記載の燃料電池では、端部シール部材の抜き加工時に端部シール部材の角部にバリが発生した場合であっても、その後に、端部シール部材の角部が面取りされ、そのバリが除去される。   Specifically, in the fuel cell according to claim 2, even when a burr is generated at the corner of the end seal member during the punching process of the end seal member, the corner of the end seal member is subsequently processed. Is chamfered and its burr is removed.

そのため、請求項2に記載の燃料電池によれば、絶縁シートの両側に配置された端部シール部材が互いに接触してしまうのを回避することができる。詳細には、端部シール部材の抜き加工時に端部シール部材にバリが発生した場合であっても、絶縁シートの両側に配置された端部シール部材が互いに接触してしまうのを確実に回避することができる。   Therefore, according to the fuel cell of Claim 2, it can avoid that the edge part sealing members arrange | positioned at the both sides of an insulating sheet contact each other. Specifically, even when the end seal member is burred when the end seal member is punched, the end seal members disposed on both sides of the insulating sheet are reliably prevented from contacting each other. can do.

その結果、請求項2に記載の燃料電池によれば、絶縁シートの両側に配置された端部シール部材が互いに接触するのに伴って燃料電極と空気電極とが電気的に短絡してしまうのを抑制することができる。換言すれば、燃料電池単セルの端部シール部材に膨張黒鉛シートを用いた場合に、端部シール部材のバリによって燃料電極と空気電極とが電気的に短絡してしまうのを防止することができる。   As a result, according to the fuel cell of claim 2, the fuel electrode and the air electrode are electrically short-circuited as the end seal members arranged on both sides of the insulating sheet come into contact with each other. Can be suppressed. In other words, when an expanded graphite sheet is used for the end seal member of a single fuel cell, it is possible to prevent the fuel electrode and the air electrode from being electrically short-circuited by the burr of the end seal member. it can.

以下、本発明の燃料電池の第1の実施形態について説明する。図1は第1の実施形態の燃料電池の単位セルを示した図である。詳細には、図1(A)は第1の実施形態の燃料電池の単位セルの斜視図、図1(B)は第1の実施形態の燃料電池の単位セルの正面図である。図2は図1(A)に示した単位セルをその前側面に平行な面によって切断した断面を詳細に示した断面図、図3は図1(A)に示した単位セルをその右側面に平行な面によって切断した断面を詳細に示した断面図である。   Hereinafter, a first embodiment of a fuel cell of the present invention will be described. FIG. 1 is a diagram showing a unit cell of the fuel cell according to the first embodiment. Specifically, FIG. 1A is a perspective view of a unit cell of the fuel cell according to the first embodiment, and FIG. 1B is a front view of the unit cell of the fuel cell according to the first embodiment. 2 is a detailed cross-sectional view of the unit cell shown in FIG. 1A cut along a plane parallel to its front side, and FIG. 3 is a right side view of the unit cell shown in FIG. It is sectional drawing which showed the cross section cut | disconnected by the surface parallel to 1 in detail.

図1〜図3に示すように、第1の実施形態の燃料電池の単位セルでは、セルロース繊維からなる紙に熱硬化性樹脂を含浸し、乾燥後積層してプレスし、更に焼成して作成したガス不透過性および電解質に対する耐食性を満たしたセパレータ1A,1Bの間に、燃料ガス流路を画定する多孔質カーボン板3Aおよび燃料電極11A並びに空気流路を画定する多孔質カーボン板3Bおよび空気電極11Bが、狭持されている。燃料電極11Aおよび空気電極11Bの周辺には、燃料電極11Aと空気電極11Bとを電気的に絶縁するための絶縁シート4が配置され、絶縁シート4の内側には、電解質層10が配置されている。燃料ガス流路を画定する多孔質カーボン板3Aの燃料ガス流路に平行な外縁部には、燃料ガスが対極に漏洩しないように端部シール部材2Aが配置されている。また、空気流路を画定する多孔質カーボン板3Bの空気流路に平行な外縁部には、空気が対極に漏洩しないように端部シール部材2Bが配置されている。   As shown in FIGS. 1 to 3, in the unit cell of the fuel cell according to the first embodiment, a paper made of cellulose fiber is impregnated with a thermosetting resin, dried, laminated, pressed, and further fired. The porous carbon plate 3A and the fuel electrode 11A defining the fuel gas flow path and the porous carbon plate 3B and the air defining the air flow path between the separators 1A and 1B satisfying the gas impermeability and the corrosion resistance to the electrolyte. The electrode 11B is sandwiched. An insulating sheet 4 for electrically insulating the fuel electrode 11A and the air electrode 11B is disposed around the fuel electrode 11A and the air electrode 11B, and an electrolyte layer 10 is disposed inside the insulating sheet 4. Yes. An end seal member 2A is arranged at an outer edge portion of the porous carbon plate 3A that defines the fuel gas flow path, which is parallel to the fuel gas flow path, so that the fuel gas does not leak to the counter electrode. Further, an end seal member 2B is arranged at an outer edge portion parallel to the air flow path of the porous carbon plate 3B that defines the air flow path so that air does not leak to the counter electrode.

つまり、第1の実施形態の燃料電池の単位セルでは、燃料ガス流路を画定するために多孔質材料によって形成された多孔質カーボン板3Aおよびその多孔質カーボン板3Aの外側に配置された端部シール部材2Aが、絶縁シート4の一方の側(例えば図1の上側)に配置されている。また、空気流路を画定するために多孔質材料によって形成された多孔質カーボン板3Bおよびその多孔質カーボン板3Bの外側に配置された端部シール部材2Bが、絶縁シート4の他方の側(例えば図1の下側)に配置されている。また、図2において、12Aは燃料電極11Aを構成する電極触媒層を示しており、13Aは燃料電極11Aを構成する電極基材を示している。更に、図3において、12Bは空気電極11Bを構成する電極触媒層を示しており、13Bは空気電極11Bを構成する電極基材を示している。   That is, in the unit cell of the fuel cell according to the first embodiment, the porous carbon plate 3A formed of a porous material for defining the fuel gas flow path and the end disposed outside the porous carbon plate 3A. The part seal member 2 </ b> A is disposed on one side of the insulating sheet 4 (for example, the upper side in FIG. 1). In addition, the porous carbon plate 3B formed of a porous material to define the air flow path and the end seal member 2B disposed outside the porous carbon plate 3B are connected to the other side of the insulating sheet 4 ( For example, it is arranged on the lower side of FIG. In FIG. 2, 12A indicates an electrode catalyst layer constituting the fuel electrode 11A, and 13A indicates an electrode base material constituting the fuel electrode 11A. Furthermore, in FIG. 3, 12B shows the electrode catalyst layer which comprises the air electrode 11B, 13B has shown the electrode base material which comprises the air electrode 11B.

端部シール部材2A,2Bには、ガス不透過性と共に、電解質に対する耐食性が求められる。また、ガス流路の高さを確保する必要もあることから、2mm程度の厚さも必要である。これらの条件を満たす安価な材料として、第1の実施形態の燃料電池では、膨張黒鉛シートが用いられている。詳細には、第1の実施形態の燃料電池では、例えば厚さ2.5mm、かさ密度0.65g/ccの膨張黒鉛シートが端部シール部材2A,2Bとして用いられている。   The end seal members 2A and 2B are required to have corrosion resistance to the electrolyte as well as gas impermeability. Moreover, since it is necessary to ensure the height of a gas flow path, the thickness of about 2 mm is also required. As an inexpensive material that satisfies these conditions, an expanded graphite sheet is used in the fuel cell of the first embodiment. Specifically, in the fuel cell of the first embodiment, for example, an expanded graphite sheet having a thickness of 2.5 mm and a bulk density of 0.65 g / cc is used as the end seal members 2A and 2B.

第1の実施形態の燃料電池では、膨張黒鉛シートが、大判のシートから抜き加工によって長方形の形状に抜き出され、樹脂フィルム等を用いた熱融着によりセパレータ1A,1Bに貼り付けられている。詳細には、例えば厚さ50μmのデュポン社製四フッ化エチレン−六フッ化プロピレン共重合樹脂(FEP)(融点250〜280℃)シートが、セパレータ1A,1Bと端部シール部材2A,2Bとの間に挿入され、約290℃の温度で1.0kg/cmの圧力をかけて圧力保持時間10分の条件で熱融着せしめられ、それにより、セパレータ1A,1Bと端部シール部材2A,2Bとが一体化せしめられている。 In the fuel cell of the first embodiment, the expanded graphite sheet is extracted from a large sheet into a rectangular shape by punching, and is attached to the separators 1A and 1B by heat fusion using a resin film or the like. . Specifically, for example, DuPont-made tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) (melting point: 250 to 280 ° C.) sheet having a thickness of 50 μm includes separators 1A and 1B and end seal members 2A and 2B. Between the separators 1A and 1B and the end seal member 2A, by applying a pressure of 1.0 kg / cm 2 at a temperature of about 290 ° C. for 10 minutes under a pressure holding time. , 2B are integrated.

ところが、端部シール部材2A,2Bとして、膨張黒鉛シートが大判のシートから抜き加工によって長方形の形状に抜き出される場合には、膨張黒鉛シートの両面のうち、一方の面にバリができてしまうおそれがある。   However, as the end seal members 2A and 2B, when the expanded graphite sheet is extracted from a large sheet into a rectangular shape by punching, burrs are formed on one surface of both surfaces of the expanded graphite sheet. There is a fear.

一方、(例えば図1では絶縁シート4の上側の)燃料電極11Aと、(例えば図1では絶縁シート4の下側の)空気電極11Bとは絶縁シート4によって電気的に絶縁されており、燃料電極11Aの側(例えば図1の上側)の端部シール部材2Aと、空気電極11Bの側(例えば図1の下側)の端部シール部材2Bとは接触しないように設計されている。ところが、絶縁シート4は、燃料電池の運転中にセルの温度が上昇すると、収縮する場合がある。   On the other hand, the fuel electrode 11A (for example, the upper side of the insulating sheet 4 in FIG. 1) and the air electrode 11B (for example, the lower side of the insulating sheet 4 in FIG. 1) are electrically insulated by the insulating sheet 4, and the fuel The end seal member 2A on the electrode 11A side (for example, the upper side in FIG. 1) and the end seal member 2B on the air electrode 11B side (for example, the lower side in FIG. 1) are designed not to contact each other. However, the insulating sheet 4 may contract when the temperature of the cell rises during operation of the fuel cell.

そこで、第1の実施形態の燃料電池では、燃料電池の運転中の温度上昇に伴って絶縁シート4が収縮した場合においても、絶縁シート4の上側の端部シール部材2Aのバリと絶縁シート4の下側の端部シール部材2Bのバリとが接触することがないように、図1に示すように、絶縁シート4の外縁が、絶縁シート4の上側の端部シール部材2Aおよび絶縁シート4の下側の端部シール部材2Bの外縁より外側に突出せしめられている。   Therefore, in the fuel cell according to the first embodiment, even when the insulating sheet 4 contracts as the temperature rises during operation of the fuel cell, the burrs of the end seal member 2A on the upper side of the insulating sheet 4 and the insulating sheet 4 As shown in FIG. 1, the outer edge of the insulating sheet 4 is connected to the upper end sealing member 2 </ b> A and the insulating sheet 4 so that the burrs of the lower end sealing member 2 </ b> B do not come into contact with each other. It protrudes outward from the outer edge of the lower end seal member 2B.

つまり、第1の実施形態の燃料電池では、燃料電池の運転中の温度上昇に伴って絶縁シート4が収縮した時においても、絶縁シート4の上側の端部シール部材2Aと絶縁シート4の下側の端部シール部材2Bとの間に絶縁シート4が介在せしめられているように、絶縁シート4の外縁が、絶縁シート4の上側の端部シール部材2Aおよび絶縁シート4の下側の端部シール部材2Bの外縁より外側に突出せしめられている。   That is, in the fuel cell according to the first embodiment, even when the insulating sheet 4 contracts as the temperature rises during operation of the fuel cell, the upper end seal member 2A of the insulating sheet 4 and the insulating sheet 4 So that the insulating sheet 4 is interposed between the end seal member 2B on the side and the end seal member 2A on the upper side of the insulating sheet 4 and the lower end of the insulating sheet 4 It protrudes outward from the outer edge of the part seal member 2B.

詳細には、第1の実施形態の燃料電池では、絶縁シート4として例えばPTFEシートが用いられ、絶縁シート4の外寸が、燃料電極11Aおよび空気電極11Bの外寸より例えば各5mmずつ大きくされている。更に詳細には、絶縁シート4がセル端部から例えば2〜3mmはみ出すように、絶縁シート4の寸法が設定されている。   Specifically, in the fuel cell according to the first embodiment, for example, a PTFE sheet is used as the insulating sheet 4, and the outer dimensions of the insulating sheet 4 are increased by, for example, 5 mm each from the outer dimensions of the fuel electrode 11A and the air electrode 11B. ing. More specifically, the dimensions of the insulating sheet 4 are set so that the insulating sheet 4 protrudes, for example, by 2 to 3 mm from the cell end.

そのため、第1の実施形態の燃料電池によれば、絶縁シート4の両側に配置された端部シール部材2A,2Bが互いに接触してしまうのを回避することができる。詳細には、絶縁シート4の上側の端部シール部材2Aおよび絶縁シート4の下側の端部シール部材2Bにバリが存在している場合であっても、絶縁シート4の両側に配置された端部シール部材2A,2Bが互いに接触してしまうのを確実に回避することができる。   Therefore, according to the fuel cell of 1st Embodiment, it can avoid that the edge part sealing members 2A and 2B arrange | positioned at the both sides of the insulating sheet 4 contact mutually. Specifically, even if burrs exist on the end seal member 2A on the upper side of the insulating sheet 4 and the end seal member 2B on the lower side of the insulating sheet 4, they are arranged on both sides of the insulating sheet 4. It is possible to reliably avoid the end seal members 2A and 2B from contacting each other.

その結果、第1の実施形態の燃料電池によれば、絶縁シート4の両側に配置された端部シール部材2A,2Bが互いに接触するのに伴って燃料電極11Aと空気電極11Bとが電気的に短絡してしまうのを抑制することができる。換言すれば、燃料電池単セルの端部シール部材2A,2Bに膨張黒鉛シートを用いた場合に、端部シール部材2A,2Bのバリによって燃料電極11Aと空気電極11Bとが電気的に短絡してしまうのを防止することができる。   As a result, according to the fuel cell of the first embodiment, the fuel electrode 11A and the air electrode 11B are electrically connected as the end seal members 2A and 2B arranged on both sides of the insulating sheet 4 come into contact with each other. Can be prevented from being short-circuited. In other words, when an expanded graphite sheet is used for the end seal members 2A and 2B of the single fuel cell, the fuel electrode 11A and the air electrode 11B are electrically short-circuited by the burrs of the end seal members 2A and 2B. Can be prevented.

第1の実施形態の燃料電池では、図1に示した単セルを複数積層した後、面圧0.3MPaにおいて締め付けを行った。第1の実施形態の燃料電池では、端部シール部材2A,2Bのバリが多少観察されたが、全て絶縁シート4によって接触を免れていることがわかった。   In the fuel cell according to the first embodiment, a plurality of single cells shown in FIG. 1 were stacked, and then tightened at a surface pressure of 0.3 MPa. In the fuel cell according to the first embodiment, some burrs of the end seal members 2A and 2B were observed, but it was found that all contact was avoided by the insulating sheet 4.

図4は燃料電極11Aと空気電極11Bとの間に0.1Vを2分間印加した際の短絡電流を四端子法で測定した結果を本発明の第1の実施形態の燃料電池と従来の燃料電池とで比較して示した図である。図4に示すように、本発明の第1の実施形態の燃料電池によれば、短絡電流を非常に小さくすることができ、短絡箇所の発熱や短絡電流による発電性能の低下を抑制することができた。   FIG. 4 shows the result of measuring the short-circuit current when a voltage of 0.1 V is applied between the fuel electrode 11A and the air electrode 11B for 2 minutes by the four-terminal method and the fuel cell of the first embodiment of the present invention and the conventional fuel. It is the figure shown in comparison with the battery. As shown in FIG. 4, according to the fuel cell of the first embodiment of the present invention, the short-circuit current can be made extremely small, and the heat generation at the short-circuited portion and the decrease in power generation performance due to the short-circuit current can be suppressed. did it.

以下、本発明の燃料電池の第2の実施形態について説明する。図5は第2の実施形態の燃料電池の単位セルを示した図である。詳細には、図5(A)は第2の実施形態の燃料電池の単位セルの斜視図、図5(B)は第2の実施形態の燃料電池の単位セルの正面図である。図6は図5(A)に示した単位セルをその前側面に平行な面によって切断した断面を詳細に示した断面図、図7は図5(A)に示した単位セルをその右側面に平行な面によって切断した断面を詳細に示した断面図である。   Hereinafter, a second embodiment of the fuel cell of the present invention will be described. FIG. 5 is a diagram showing a unit cell of the fuel cell according to the second embodiment. Specifically, FIG. 5A is a perspective view of a unit cell of the fuel cell according to the second embodiment, and FIG. 5B is a front view of the unit cell of the fuel cell according to the second embodiment. 6 is a cross-sectional view showing in detail a cross section of the unit cell shown in FIG. 5 (A) cut by a plane parallel to the front side surface, and FIG. 7 is a right side view of the unit cell shown in FIG. 5 (A). It is sectional drawing which showed the cross section cut | disconnected by the surface parallel to 1 in detail.

図5〜図7に示すように、第2の実施形態の燃料電池の単位セルでは、セルロース繊維からなる紙に熱硬化性樹脂を含浸し、乾燥後積層してプレスし、更に焼成して作成したガス不透過性および電解質に対する耐食性を満たしたセパレータ1A,1Bの間に、燃料ガス流路を画定する多孔質カーボン板3Aおよび燃料電極11A並びに空気流路を画定する多孔質カーボン板3Bおよび空気電極11Bが、狭持されている。燃料電極11Aおよび空気電極11Bの周辺には、燃料電極11Aと空気電極11Bとを電気的に絶縁するための絶縁シート4が配置され、絶縁シート4の内側には、電解質層10が配置されている。燃料ガス流路を画定する多孔質カーボン板3Aの燃料ガス流路に平行な外縁部には、燃料ガスが対極に漏洩しないように端部シール部材2Aが配置されている。また、空気流路を画定する多孔質カーボン板3Bの空気流路に平行な外縁部には、空気が対極に漏洩しないように端部シール部材2Bが配置されている。   As shown in FIGS. 5 to 7, in the unit cell of the fuel cell according to the second embodiment, a paper made of cellulose fiber is impregnated with a thermosetting resin, dried, laminated, pressed, and further fired. The porous carbon plate 3A and the fuel electrode 11A defining the fuel gas flow path and the porous carbon plate 3B and the air defining the air flow path between the separators 1A and 1B satisfying the gas impermeability and the corrosion resistance to the electrolyte. The electrode 11B is sandwiched. An insulating sheet 4 for electrically insulating the fuel electrode 11A and the air electrode 11B is disposed around the fuel electrode 11A and the air electrode 11B, and an electrolyte layer 10 is disposed inside the insulating sheet 4. Yes. An end seal member 2A is arranged at an outer edge portion of the porous carbon plate 3A that defines the fuel gas flow path, which is parallel to the fuel gas flow path, so that the fuel gas does not leak to the counter electrode. Further, an end seal member 2B is arranged at an outer edge portion parallel to the air flow path of the porous carbon plate 3B that defines the air flow path so that air does not leak to the counter electrode.

つまり、第2の実施形態の燃料電池の単位セルでは、燃料ガス流路を画定するために多孔質材料によって形成された多孔質カーボン板3Aおよびその多孔質カーボン板3Aの外側に配置された端部シール部材2Aが、絶縁シート4の一方の側(例えば図5の上側)に配置されている。また、空気流路を画定するために多孔質材料によって形成された多孔質カーボン板3Bおよびその多孔質カーボン板3Bの外側に配置された端部シール部材2Bが、絶縁シート4の他方の側(例えば図5の下側)に配置されている。   That is, in the unit cell of the fuel cell according to the second embodiment, the porous carbon plate 3A formed of a porous material for defining the fuel gas flow path and the end disposed outside the porous carbon plate 3A. The part seal member 2A is arranged on one side of the insulating sheet 4 (for example, the upper side in FIG. 5). In addition, the porous carbon plate 3B formed of a porous material to define the air flow path and the end seal member 2B disposed outside the porous carbon plate 3B are connected to the other side of the insulating sheet 4 ( For example, it is arranged on the lower side of FIG.

端部シール部材2A,2Bには、ガス不透過性と共に、電解質に対する耐食性が求められる。また、ガス流路の高さを確保する必要もあることから、2mm程度の厚さも必要である。これらの条件を満たす安価な材料として、第2の実施形態の燃料電池では、膨張黒鉛シートが用いられている。詳細には、第2の実施形態の燃料電池では、例えば厚さ2.5mm、かさ密度0.65g/ccの膨張黒鉛シートが端部シール部材2A,2Bとして用いられている。   The end seal members 2A and 2B are required to have corrosion resistance to the electrolyte as well as gas impermeability. Moreover, since it is necessary to ensure the height of a gas flow path, the thickness of about 2 mm is also required. As an inexpensive material that satisfies these conditions, an expanded graphite sheet is used in the fuel cell of the second embodiment. Specifically, in the fuel cell of the second embodiment, for example, an expanded graphite sheet having a thickness of 2.5 mm and a bulk density of 0.65 g / cc is used as the end seal members 2A and 2B.

第2の実施形態の燃料電池の製造工程においては、端部シール部材2A,2Bとしての膨張黒鉛シートが、大判のシートから抜き加工によって長方形の形状に抜き出され、次いで、その角部に約3mm程度の面取り部6が形成される。つまり、第2の実施形態の燃料電池では、抜き加工時にバリが発生するおそれが高い端部シール部材2A,2Bの角部が面取り加工されるようになっている。面取り加工された端部シール部材2A,2Bは、次いで、樹脂フィルム等を用いた熱融着によりセパレータ1A,1Bに貼り付けられる。詳細には、例えば厚さ50μmのデュポン社製四フッ化エチレン−六フッ化プロピレン共重合樹脂(FEP)(融点250〜280℃)シートが、セパレータ1A,1Bと端部シール部材2A,2Bとの間に挿入され、約290℃の温度で1.0kg/cmの圧力をかけて圧力保持時間10分の条件で熱融着せしめられ、それにより、セパレータ1A,1Bと端部シール部材2A,2Bとが一体化せしめられる。 In the manufacturing process of the fuel cell according to the second embodiment, the expanded graphite sheet as the end seal members 2A and 2B is extracted from a large sheet into a rectangular shape by punching, and then, approximately at the corners. A chamfered portion 6 of about 3 mm is formed. That is, in the fuel cell according to the second embodiment, the corner portions of the end seal members 2A and 2B that are highly likely to generate burrs during the punching process are chamfered. The chamfered end seal members 2A and 2B are then attached to the separators 1A and 1B by heat fusion using a resin film or the like. Specifically, for example, DuPont-made tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) (melting point: 250 to 280 ° C.) sheet having a thickness of 50 μm includes separators 1A and 1B and end seal members 2A and 2B. Between the separators 1A and 1B and the end seal member 2A, by applying a pressure of 1.0 kg / cm 2 at a temperature of about 290 ° C. for 10 minutes under a pressure holding time. , 2B are integrated.

すなわち、第2の実施形態の燃料電池では、絶縁シート4の上側の端部シール部材2Aの角部および絶縁シート4の下側の端部シール部材2Bの角部が例えば約3mm程度面取りされている。換言すれば、抜き加工に伴ってバリが発生するおそれがあり、また、燃料電池の運転中の温度上昇に伴う絶縁シート4の収縮量が最も大きくなる位置に対応している端部シール部材2A,2Bの角部が、面取りされている。   That is, in the fuel cell of the second embodiment, the corners of the end seal member 2A on the upper side of the insulating sheet 4 and the corners of the end seal member 2B on the lower side of the insulating sheet 4 are chamfered, for example, by about 3 mm. Yes. In other words, the end seal member 2A corresponding to the position where the shrinkage amount of the insulating sheet 4 accompanying the temperature rise during the operation of the fuel cell may be maximized due to the punching process. , 2B are chamfered.

詳細には、第2の実施形態の燃料電池の製造工程においては、端部シール部材2A,2Bの抜き加工時に端部シール部材2A,2Bの角部にバリが発生した場合であっても、その後に、端部シール部材2A,2Bの角部が面取りされ、そのバリが除去される。   Specifically, in the manufacturing process of the fuel cell according to the second embodiment, even when burrs are generated at the corners of the end seal members 2A and 2B when the end seal members 2A and 2B are punched, Thereafter, the corners of the end seal members 2A and 2B are chamfered, and the burrs are removed.

そのため、第2の実施形態の燃料電池によれば、絶縁シート4の両側に配置された端部シール部材2A,2Bが互いに接触してしまうのを回避することができる。詳細には、端部シール部材2A,2Bの抜き加工時に端部シール部材2A,2Bにバリが発生した場合であっても、絶縁シート4の上側に配置された端部シール部材2Aと絶縁シート4の下側に配置された端部シール部材2Bとが互いに接触してしまうのを確実に回避することができる。   Therefore, according to the fuel cell of the second embodiment, it is possible to avoid the end seal members 2A and 2B disposed on both sides of the insulating sheet 4 from contacting each other. In detail, even when the end seal members 2A and 2B are burred when the end seal members 2A and 2B are punched, the end seal member 2A and the insulating sheet disposed above the insulating sheet 4 It is possible to reliably avoid contact between the end seal member 2 </ b> B arranged on the lower side of 4.

その結果、第2の実施形態の燃料電池によれば、絶縁シート4の両側に配置された端部シール部材2A,2Bが互いに接触するのに伴って燃料電極11Aと空気電極11Bとが電気的に短絡してしまうのを抑制することができる。換言すれば、燃料電池単セルの端部シール部材2A,2Bに膨張黒鉛シートを用いた場合に、端部シール部材2A,2Bのバリによって燃料電極11Aと空気電極11Bとが電気的に短絡してしまうのを防止することができる。   As a result, according to the fuel cell of the second embodiment, the fuel electrode 11A and the air electrode 11B are electrically connected as the end seal members 2A and 2B disposed on both sides of the insulating sheet 4 come into contact with each other. Can be prevented from being short-circuited. In other words, when an expanded graphite sheet is used for the end seal members 2A and 2B of the single fuel cell, the fuel electrode 11A and the air electrode 11B are electrically short-circuited by the burrs of the end seal members 2A and 2B. Can be prevented.

第2の実施形態の燃料電池では、図5に示した単セルを複数積層した後、面圧0.3MPaにおいて締め付けを行った。第2の実施形態の燃料電池では、端部シール部材2A,2Bのバリおよび絶縁シート4の収縮が多少観察されたが、絶縁シート4によって、端部シール部材2A,2Bが互いに接触するのを免れていることがわかった。   In the fuel cell of the second embodiment, a plurality of single cells shown in FIG. 5 were stacked, and then tightened at a surface pressure of 0.3 MPa. In the fuel cell of the second embodiment, the burr of the end seal members 2A and 2B and the contraction of the insulating sheet 4 were somewhat observed, but the end seal members 2A and 2B were brought into contact with each other by the insulating sheet 4. I found out I was spared.

第2の実施形態の燃料電池においても、図4に示したように燃料電極11Aと空気電極11Bとの間に0.1Vを2分間印加した際の短絡電流を四端子法で測定した。その結果、第2の実施形態の燃料電池によれば、第1の実施形態の燃料電池と同様に、短絡電流を非常に小さくすることができ、短絡箇所の発熱や短絡電流による発電性能の低下を抑制することができた。   Also in the fuel cell of the second embodiment, as shown in FIG. 4, the short-circuit current when 0.1 V was applied between the fuel electrode 11A and the air electrode 11B for 2 minutes was measured by the four-terminal method. As a result, according to the fuel cell of the second embodiment, as with the fuel cell of the first embodiment, the short-circuit current can be made extremely small, and the power generation performance is deteriorated due to heat generation at the short-circuited portion or short-circuit current. Could be suppressed.

第1の実施形態の燃料電池の単位セルを示した図である。It is the figure which showed the unit cell of the fuel cell of 1st Embodiment. 図1(A)に示した単位セルをその前側面に平行な面によって切断した断面を詳細に示した断面図である。It is sectional drawing which showed in detail the cross section which cut | disconnected the unit cell shown to FIG. 1 (A) by the surface parallel to the front side surface. 図1(A)に示した単位セルをその右側面に平行な面によって切断した断面を詳細に示した断面図である。It is sectional drawing which showed in detail the cross section which cut | disconnected the unit cell shown to FIG. 1 (A) by the surface parallel to the right side surface. 燃料極と空気極との間に0.1Vを2分間印加した際の短絡電流を四端子法で測定した結果を本発明の第1の実施形態の燃料電池と従来の燃料電池とで比較して示した図である。The result of measuring the short-circuit current when 0.1 V is applied between the fuel electrode and the air electrode for 2 minutes by the four-terminal method is compared between the fuel cell of the first embodiment of the present invention and the conventional fuel cell. FIG. 第2の実施形態の燃料電池の単位セルを示した図である。It is the figure which showed the unit cell of the fuel cell of 2nd Embodiment. 図5(A)に示した単位セルをその前側面に平行な面によって切断した断面を詳細に示した断面図である。It is sectional drawing which showed in detail the cross section which cut | disconnected the unit cell shown to FIG. 5 (A) by the surface parallel to the front side surface. 図5(A)に示した単位セルをその右側面に平行な面によって切断した断面を詳細に示した断面図である。It is sectional drawing which showed in detail the cross section which cut | disconnected the unit cell shown to FIG. 5 (A) by the surface parallel to the right side surface. 従来の燃料電池の単位セルを示した図である。It is the figure which showed the unit cell of the conventional fuel cell.

符号の説明Explanation of symbols

1A,1B セパレータ
2A,2B 端部シール部材
3A,3B 多孔質カーボン板
4 絶縁シート
1A, 1B Separator 2A, 2B End seal member 3A, 3B Porous carbon plate 4 Insulating sheet

Claims (2)

電解質層およびその周囲に設けられた絶縁シートの一方の面に、燃料電極、燃料ガス流路が形成された多孔質部材、および、セパレータを配置し、前記電解質層および前記絶縁シートの他方の面に空気電極、空気流路が形成された多孔質部材、および、セパレータを配置し、前記多孔質部材の側面のうち、流路開口部が形成されていない側面に端部シール部材を配置した燃料電池において、
前記端部シール部材が膨張黒鉛からなり、前記絶縁シートを前記端部シール部材の外縁より外側に突出させたことを特徴とする燃料電池。
A fuel electrode, a porous member in which a fuel gas channel is formed, and a separator are disposed on one surface of an electrolyte layer and an insulating sheet provided around the electrolyte layer, and the other surface of the electrolyte layer and the insulating sheet. A porous member in which an air electrode, an air flow path are formed, and a separator are disposed, and an end seal member is disposed on a side surface of the porous member where a flow path opening is not formed. In batteries,
The fuel cell according to claim 1, wherein the end seal member is made of expanded graphite, and the insulating sheet protrudes outward from an outer edge of the end seal member.
電解質層およびその周囲に設けられた絶縁シートの一方の面に、燃料電極、燃料ガス流路が形成された多孔質部材、および、セパレータを配置し、前記電解質層および前記絶縁シートの他方の面に空気電極、空気流路が形成された多孔質部材、および、セパレータを配置し、前記多孔質部材の側面のうち、流路開口部が形成されていない側面に端部シール部材を配置した燃料電池において、
前記端部シール部材が膨張黒鉛からなり、燃料電池の角部に位置する前記端部シール部材の角部が面取りされていることを特徴とする燃料電池。
A fuel electrode, a porous member in which a fuel gas channel is formed, and a separator are disposed on one surface of an electrolyte layer and an insulating sheet provided around the electrolyte layer, and the other surface of the electrolyte layer and the insulating sheet. A porous member in which an air electrode, an air flow path are formed, and a separator are disposed, and an end seal member is disposed on a side surface of the porous member where a flow path opening is not formed. In batteries,
The fuel cell, wherein the end seal member is made of expanded graphite, and a corner of the end seal member located at a corner of the fuel cell is chamfered.
JP2005200474A 2005-07-08 2005-07-08 Fuel cell Withdrawn JP2007018924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200474A JP2007018924A (en) 2005-07-08 2005-07-08 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200474A JP2007018924A (en) 2005-07-08 2005-07-08 Fuel cell

Publications (1)

Publication Number Publication Date
JP2007018924A true JP2007018924A (en) 2007-01-25

Family

ID=37755904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200474A Withdrawn JP2007018924A (en) 2005-07-08 2005-07-08 Fuel cell

Country Status (1)

Country Link
JP (1) JP2007018924A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259743A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd Fuel cell, its edge seal member, and method of manufacturing edge seal member
JP2009301837A (en) * 2008-06-12 2009-12-24 Fuji Electric Systems Co Ltd Fuel cell, end sealing member and method of manufacturing end sealing member
JP2010205525A (en) * 2009-03-03 2010-09-16 Hitachi Chem Co Ltd Gasket for fuel cell, fuel cell, and fuel cell system
JP2011048936A (en) * 2009-08-25 2011-03-10 Nissan Motor Co Ltd Solid polymer fuel cell
JP2011082078A (en) * 2009-10-09 2011-04-21 Fuji Electric Systems Co Ltd Sealing method of fuel cell, sealing structure of fuel cell, and fuel cell
WO2017016061A1 (en) * 2015-07-28 2017-02-02 武汉众宇动力系统科技有限公司 Cathode plate for air cooling-type proton exchange membrane fuel cell

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784575A (en) * 1980-11-14 1982-05-26 Sanyo Electric Co Ltd Air-cooled fuel cell
JPS57143570U (en) * 1981-03-02 1982-09-09
JPS5956366A (en) * 1982-09-22 1984-03-31 Mitsubishi Electric Corp Fuel cell
JPS5961479U (en) * 1982-10-15 1984-04-21 三洋電機株式会社 stacked fuel cell
JPS61216250A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Fuel cell
JPS628454A (en) * 1985-07-05 1987-01-16 Hitachi Ltd Fuel cell
JPS63112768U (en) * 1987-01-16 1988-07-20
JPH0193063A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Seal structure of molten carbonate fuel cell
JPH044565A (en) * 1990-04-20 1992-01-09 Fuji Electric Co Ltd Gas seal structure of fuel cell
JPH0652873A (en) * 1992-07-31 1994-02-25 Toshiba Corp Fuel cell
JPH0696784A (en) * 1992-09-11 1994-04-08 Toshiba Corp Phosphoric acid type fuel cell
JPH08190920A (en) * 1995-01-11 1996-07-23 Fuji Electric Co Ltd Stacked phosphoric acid fuel cell
JPH08190919A (en) * 1995-01-06 1996-07-23 Fuji Electric Co Ltd Stacked phosphoric acid fuel cell
JPH11329454A (en) * 1998-05-14 1999-11-30 Mitsubishi Electric Corp Porous gas-diffusion electrode for phosphoric-acid fuel cell, its manufacture and manufacturing device
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2001023654A (en) * 1999-07-07 2001-01-26 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2002100372A (en) * 2000-09-22 2002-04-05 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and its manufacturing method
JP2002164058A (en) * 2000-11-24 2002-06-07 Honda Motor Co Ltd Gas diffusion layer of fuel cell
JP2003123801A (en) * 2001-10-16 2003-04-25 Matsushita Electric Ind Co Ltd Polymer electrolyte stacked fuel cell
JP2003142127A (en) * 2001-10-31 2003-05-16 Hitachi Ltd Electrode for solid high polymer type fuel cell, its separator, solid high polymer type fuel cell using them, and power generating system
JP2004281113A (en) * 2003-03-13 2004-10-07 Osaka Gas Co Ltd Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784575A (en) * 1980-11-14 1982-05-26 Sanyo Electric Co Ltd Air-cooled fuel cell
JPS57143570U (en) * 1981-03-02 1982-09-09
JPS5956366A (en) * 1982-09-22 1984-03-31 Mitsubishi Electric Corp Fuel cell
JPS5961479U (en) * 1982-10-15 1984-04-21 三洋電機株式会社 stacked fuel cell
JPS61216250A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Fuel cell
JPS628454A (en) * 1985-07-05 1987-01-16 Hitachi Ltd Fuel cell
JPS63112768U (en) * 1987-01-16 1988-07-20
JPH0193063A (en) * 1987-10-02 1989-04-12 Hitachi Ltd Seal structure of molten carbonate fuel cell
JPH044565A (en) * 1990-04-20 1992-01-09 Fuji Electric Co Ltd Gas seal structure of fuel cell
JPH0652873A (en) * 1992-07-31 1994-02-25 Toshiba Corp Fuel cell
JPH0696784A (en) * 1992-09-11 1994-04-08 Toshiba Corp Phosphoric acid type fuel cell
JPH08190919A (en) * 1995-01-06 1996-07-23 Fuji Electric Co Ltd Stacked phosphoric acid fuel cell
JPH08190920A (en) * 1995-01-11 1996-07-23 Fuji Electric Co Ltd Stacked phosphoric acid fuel cell
JPH11329454A (en) * 1998-05-14 1999-11-30 Mitsubishi Electric Corp Porous gas-diffusion electrode for phosphoric-acid fuel cell, its manufacture and manufacturing device
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2001023654A (en) * 1999-07-07 2001-01-26 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2002100372A (en) * 2000-09-22 2002-04-05 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and its manufacturing method
JP2002164058A (en) * 2000-11-24 2002-06-07 Honda Motor Co Ltd Gas diffusion layer of fuel cell
JP2003123801A (en) * 2001-10-16 2003-04-25 Matsushita Electric Ind Co Ltd Polymer electrolyte stacked fuel cell
JP2003142127A (en) * 2001-10-31 2003-05-16 Hitachi Ltd Electrode for solid high polymer type fuel cell, its separator, solid high polymer type fuel cell using them, and power generating system
JP2004281113A (en) * 2003-03-13 2004-10-07 Osaka Gas Co Ltd Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259743A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd Fuel cell, its edge seal member, and method of manufacturing edge seal member
JP2009301837A (en) * 2008-06-12 2009-12-24 Fuji Electric Systems Co Ltd Fuel cell, end sealing member and method of manufacturing end sealing member
JP2010205525A (en) * 2009-03-03 2010-09-16 Hitachi Chem Co Ltd Gasket for fuel cell, fuel cell, and fuel cell system
JP2011048936A (en) * 2009-08-25 2011-03-10 Nissan Motor Co Ltd Solid polymer fuel cell
JP2011082078A (en) * 2009-10-09 2011-04-21 Fuji Electric Systems Co Ltd Sealing method of fuel cell, sealing structure of fuel cell, and fuel cell
WO2017016061A1 (en) * 2015-07-28 2017-02-02 武汉众宇动力系统科技有限公司 Cathode plate for air cooling-type proton exchange membrane fuel cell

Similar Documents

Publication Publication Date Title
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6128282B2 (en) Storage device manufacturing method and electrode manufacturing method
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
JP6705358B2 (en) Method for manufacturing power storage device
US9548481B2 (en) Battery module
JP5028780B2 (en) Sealed battery and method for manufacturing the same
JP2007018924A (en) Fuel cell
JP6838640B2 (en) Power storage device
KR101317535B1 (en) Secondary battery and battery assembly using the same
JP2015090793A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel batteries
KR101580086B1 (en) Electrode Assembly of Combination Structure
JP2018018666A (en) Power storage device and method for manufacturing power storage device
JP2017212145A (en) Power storage device
JP2018067382A (en) Power storage device
JP2008123962A (en) Fuel cell, and assembly method of fuel cell
JP6210050B2 (en) Fuel cell
JP2018049802A (en) Power storage device
JP2011176137A (en) Electrochemical device
JP2011176141A (en) Electrochemical device
JP2009199815A (en) Fuel cell
JP6569276B2 (en) Power storage device
JP2019121457A (en) Manufacturing method of power storage device, and power storage device
JP5024503B2 (en) Fuel cell seal
JP2017199857A (en) Capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101012

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111020