JP2009259743A - Fuel cell, its edge seal member, and method of manufacturing edge seal member - Google Patents

Fuel cell, its edge seal member, and method of manufacturing edge seal member Download PDF

Info

Publication number
JP2009259743A
JP2009259743A JP2008110253A JP2008110253A JP2009259743A JP 2009259743 A JP2009259743 A JP 2009259743A JP 2008110253 A JP2008110253 A JP 2008110253A JP 2008110253 A JP2008110253 A JP 2008110253A JP 2009259743 A JP2009259743 A JP 2009259743A
Authority
JP
Japan
Prior art keywords
end seal
seal member
resin tube
shrinkable resin
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008110253A
Other languages
Japanese (ja)
Other versions
JP5332289B2 (en
Inventor
Norio Sasaki
規雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008110253A priority Critical patent/JP5332289B2/en
Publication of JP2009259743A publication Critical patent/JP2009259743A/en
Application granted granted Critical
Publication of JP5332289B2 publication Critical patent/JP5332289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive fuel cell satisfying the performance requirement of an edge seal member, and to provide its edge seal member. <P>SOLUTION: Edge seal members 10a, 10b, 10c, 10d are arranged so that each gas does not leak to a counter electrode in extension parts parallel to gas passages of porous carbon plates 40a, 40b, 40c, 40d. The edge seal members 10a, 10b, 10c, 10d are formed by inserting a body 11 such as an expanded graphite sheet into a shrinkable resin tube 12, sealing both ends by heat seal, opening a vent hole 15a in a part, and then shrinking the tube. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は燃料電池、その端部シール部材及び端部シール部材の製造方法に関し、特に電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、燃料極触媒層に燃料ガスのガス流路を有する多孔質材及び空気極触媒層に酸化剤ガスのガス流路を有する多孔質材料を配置した単位セルが積層される燃料電池、その端部シール部材及び端部シール部材の製造方法に関する。   The present invention relates to a fuel cell, an end seal member thereof, and a manufacturing method of the end seal member, and in particular, an electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, and fuel gas is contained in the fuel electrode catalyst layer. Production of a fuel cell in which a unit cell in which a porous material having a gas flow path and a porous material having a gas flow path for an oxidant gas are arranged on an air electrode catalyst layer is laminated, and its end seal member and end seal member Regarding the method.

近年、燃料電池は、燃料の化学エネルギーを直接電気エネルギーに変換できることから発電効率が高く環境にもやさしいとして、多様な用途への普及が期待されている。
図5は、燃料電池の単位セルを2積層した状態を示した概略構成図である。
In recent years, fuel cells are expected to be widely used for various purposes because they can directly convert chemical energy of fuel into electrical energy and thus have high power generation efficiency and are environmentally friendly.
FIG. 5 is a schematic configuration diagram showing a state in which two unit cells of the fuel cell are stacked.

燃料電池は、セパレータ91a,91bの間に、ガス流路を有する多孔質カーボン板93a,93bと、対極を構成する電極部94a,94bが挟持されている。電極94aと電極94bとの間には、図示しない電解質層が形成されている。同様に、セパレータ91b,91cの間に、多孔質カーボン板93c,93dと、対極を構成する電極部94c,94dが挟持されている。多孔質カーボン板93a,93b,93c,93dのガス流路に平行な外延部には、それぞれのガスが対極に漏洩しないように端部シール部材92a,92b,92c,92dが配置されている。   In the fuel cell, porous carbon plates 93a and 93b having gas flow paths and electrode portions 94a and 94b constituting a counter electrode are sandwiched between separators 91a and 91b. An electrolyte layer (not shown) is formed between the electrodes 94a and 94b. Similarly, porous carbon plates 93c and 93d and electrode portions 94c and 94d constituting a counter electrode are sandwiched between separators 91b and 91c. End seal members 92a, 92b, 92c, and 92d are arranged in the extended portions parallel to the gas flow paths of the porous carbon plates 93a, 93b, 93c, and 93d so that the respective gases do not leak to the counter electrode.

端部シール部材92a,92b,92c,92dには、ガス不透過性とともに電解質に対する耐食性が求められている。また、ガス流路の高さを確保する必要もあることから、2mm程度の厚さも必要である。さらに、電解質を多く含んでしまうと端部シール部材92a,92b,92c,92dの端面において上下セル間で電解質が液絡し、上下セル間での電解質の移動などの問題が発生する可能性があるため、端面で電解質が液絡しないことが求められた。これらの条件を満足する端部シール部材92a,92b,92c,92dとして、従来は黒鉛化された緻密な炭素材や、セパレータを端部シール部材の幅に切断してフッ素樹脂フィルムを介して積層したものが使用されていたが高価であった。   The end seal members 92a, 92b, 92c, and 92d are required to have corrosion resistance to the electrolyte as well as gas impermeability. Moreover, since it is necessary to ensure the height of a gas flow path, the thickness of about 2 mm is also required. Furthermore, if a large amount of electrolyte is contained, there is a possibility that a problem such as electrolyte migration between the upper and lower cells may occur due to electrolyte leakage between the upper and lower cells at the end surfaces of the end seal members 92a, 92b, 92c, and 92d. For this reason, it was required that the electrolyte does not have a liquid junction at the end face. As end seal members 92a, 92b, 92c, and 92d that satisfy these conditions, conventionally, a dense carbon material that has been graphitized or a separator is cut into the width of the end seal member and laminated through a fluororesin film. What was used was expensive.

そこで、安価な膨張黒鉛シートにパーフルオロエチレン系樹脂によりはっ水処理を施して端部シール部材とする技術が提案されている(例えば、特許文献1参照)。
また、側端部のガスシール工程を簡略化するため、多孔質カーボン板を樹脂系の収縮チューブで被覆して端部をシールする技術もある(例えば、特許文献2参照)。
特許第3838403号公報 特開平3−205764号公報
Thus, a technique has been proposed in which an inexpensive expanded graphite sheet is subjected to water-repellent treatment with a perfluoroethylene-based resin to form an end seal member (see, for example, Patent Document 1).
In order to simplify the gas sealing process at the side end, there is also a technique of sealing the end by covering a porous carbon plate with a resin-based shrink tube (for example, see Patent Document 2).
Japanese Patent No. 3838403 Japanese Patent Laid-Open No. 3-20564

しかし、上述のような燃料電池の端部シール部材の構成には、以下のような問題点があった。
膨張黒鉛シートをはっ水処理して端部シール部材に用いる技術は安価に端部シール部材を構成することができるが、パーフルオロエチレン系樹脂によるはっ水処理は運転時間とともに劣化するという問題点がある。数千時間程度の運転では電解質に対する不浸透性を保っているが、数万時間の運転時間では不浸透性の低下が見られる。
However, the configuration of the end seal member of the fuel cell as described above has the following problems.
Although the technology of using an expanded graphite sheet for water-repellent treatment as an end seal member can constitute an end seal member at a low cost, the water repellent treatment with a perfluoroethylene resin deteriorates with the operation time. There is a point. Although the impermeability to the electrolyte is maintained in the operation for several thousand hours, a decrease in the impermeability is observed in the operation time of tens of thousands of hours.

また、多孔質カーボン板を樹脂系の収縮チューブで被覆して端部シール部材にする技術では、収縮チューブの両端は開放状態であり、別途工程が必要となるという問題点がある。開放状態の部分をガスシール及び電解質不浸透性とするためには、例えば、開放状態の端面に別途樹脂を含浸させたり、別の樹脂フィルムを端面に融着したりするなどの工程が必要となるため、コスト増の要因となっていた。   Further, in the technique of coating the porous carbon plate with a resin-based shrink tube to form an end seal member, both ends of the shrink tube are in an open state, and there is a problem that a separate process is required. In order to make the open portion gas-permeable and electrolyte impervious, for example, a process of separately impregnating the open end face with resin or fusing another resin film to the end face is required. Therefore, it was a factor of cost increase.

本発明はこのような点に鑑みてなされたものであり、端部シール部材の要求性能を十分に備えた安価な燃料電池、その端部シール部材及び端部シール部材の製造方法を提供することを目的とする。   The present invention has been made in view of these points, and provides an inexpensive fuel cell having sufficient performance required for an end seal member, and an end seal member and a method for manufacturing the end seal member. With the goal.

上記課題を解決するために、電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、燃料極触媒層に燃料ガスのガス流路を有する多孔質材及び空気極触媒層に酸化剤ガスのガス流路を有する多孔質材を配置した単位セルが積層される燃料電池において、多孔質材に形成されるガス流路と平行な端部に、膨張黒鉛シートを含む所定の端部シール材が収縮性樹脂チューブによって被覆され、収縮性樹脂チューブの両端が熱融着によって封止され、収縮された端部シール部材が配置される燃料電池、が提供される。   In order to solve the above problems, an electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, and a porous material having a fuel gas gas passage in the fuel electrode catalyst layer and an air electrode catalyst layer are provided. In a fuel cell in which a unit cell having a porous material having a gas flow path for an oxidant gas is stacked, a predetermined end including an expanded graphite sheet at an end parallel to the gas flow path formed in the porous material A fuel cell is provided in which a part sealing material is covered with a shrinkable resin tube, both ends of the shrinkable resin tube are sealed by thermal fusion, and a contracted end part seal member is disposed.

このような燃料電池によれば、膨張黒鉛シートを含む所定の端部シール材が収縮性樹脂チューブによって被覆され、収縮性樹脂チューブの両端が熱融着によって封止された端部シール部材が、多孔質材に形成される燃料電池のガス流路と平行な端部に配置される。   According to such a fuel cell, the end seal member in which the predetermined end seal material including the expanded graphite sheet is covered with the shrinkable resin tube, and both ends of the shrinkable resin tube are sealed by thermal fusion, It arrange | positions at the edge part parallel to the gas flow path of the fuel cell formed in a porous material.

また、上記課題を解決するために、上記の燃料電池に配置される端部シール部材であって、所定の端部シール材が収縮性樹脂チューブによって被覆され、収縮性樹脂チューブの両端が熱融着によって封止された端部シール部材が提供される。   Further, in order to solve the above problems, the end seal member is disposed in the fuel cell, and a predetermined end seal member is covered with a shrinkable resin tube, and both ends of the shrinkable resin tube are thermally fused. An end seal member is provided that is sealed by attachment.

さらに、上記課題を解決するために、上記端部シール部材の製造方法であって、所定の端部シール材を収縮性樹脂チューブによって被覆する手順と、収縮性樹脂チューブの端部を熱融着によって溶断して封止する手順と、収縮性樹脂チューブを収縮させる手順と、を有する端部シール部材の製造方法が提供される。   Furthermore, in order to solve the above-mentioned problem, a method for manufacturing the above-described end seal member, which is a procedure of covering a predetermined end seal material with a shrinkable resin tube, and heat-bonding the end of the shrinkable resin tube Is provided with a method for fusing and sealing, and a method for shrinking the shrinkable resin tube.

開示の燃料電池、その端部シール部材及び端部シール部材の製造方法によれば、端部シール材は、収縮性樹脂チューブによって被覆され、収縮性樹脂チューブの両端が熱融着されて封止される。これにより、端部シール部材の両端を含めた全面が樹脂で被覆されるため、ガス不透過性と電解質に対する耐食性を備えることができる。また、端部シール部材の両端は、収縮性樹脂チューブの両端を熱融着して被覆されるので、両端のシールのために別の樹脂フィルムを融着するなどの工程を省くことができる。この結果、端部シール部材の要求性能を十分に備えた安価な燃料電池及びその端部シール部材が得られる。   According to the disclosed fuel cell, the end seal member thereof, and the end seal member manufacturing method, the end seal member is covered with the shrinkable resin tube, and both ends of the shrinkable resin tube are heat-sealed and sealed. Is done. Thereby, since the whole surface including both ends of the end seal member is covered with the resin, gas impermeability and corrosion resistance to the electrolyte can be provided. Moreover, since both ends of the end seal member are covered by heat-sealing both ends of the shrinkable resin tube, it is possible to omit a process such as fusing another resin film for sealing at both ends. As a result, an inexpensive fuel cell sufficiently equipped with the required performance of the end seal member and the end seal member can be obtained.

以下、本発明の第1の実施の形態について説明する。図1は、第1の実施の形態の燃料電池の端部シール部材単体を示した図である。
端部シール部材10は、本体11が収縮性樹脂チューブ12によって被覆されている。
Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a diagram showing a single end seal member of the fuel cell according to the first embodiment.
The end seal member 10 has a main body 11 covered with a shrinkable resin tube 12.

本体11は、図では点線によって表されており、膨張黒鉛シートを含む所定の端部シール材で形成される。なお、図では説明のため収縮性樹脂チューブ12との間に隙間があるが、実際には密着される。また、所定の端部シール材は、端部シール材として使用される材を含み、膨張黒鉛シートの他に、例えば、多孔質カーボン板、焼成カーボン板などがある。   The main body 11 is represented by a dotted line in the figure, and is formed of a predetermined end seal material including an expanded graphite sheet. In addition, although there exists a clearance gap between the shrinkable resin tubes 12 in the figure for the sake of explanation, they are actually in close contact. The predetermined end seal material includes a material used as an end seal material, and includes, for example, a porous carbon plate and a calcined carbon plate in addition to the expanded graphite sheet.

収縮性樹脂チューブ12は、フッ素樹脂がチューブ状に形成されており、加熱することにより収縮して内部に挿入された本体11を被覆する。使用するフッ素樹脂には、例えば、四フッ化エチレン樹脂(略称PTFE、融点327℃)、フッ化アルキコキシエチレン樹脂(略称PFA、融点300〜310℃)、フッ化エチレンプロピレン樹脂(略称TFP、融点290〜300℃)などがある。チューブ端14は、端部シール部材10の長手方向両端面の溶断部13で熱融着されることによって封止される。ここでは、チューブ端の14と溶断部13とは同じになる。また、収縮性樹脂チューブ12の任意の箇所にガス抜き用の穴(以下、ガス抜き穴とする)15が開けられる。ガス抜き穴15は、チューブ内のガスの体積変化により収縮性樹脂チューブ12が破損することを防止するためのものであり、必要十分な大きさで任意の個数設けられる。例えば、端部シール部材10の長手方向の両端面にそれぞれ1つずつガス抜き穴15を開け、ガス抜きが均等に行われるようにする。   The shrinkable resin tube 12 is made of a fluororesin in a tube shape, and shrinks when heated to cover the main body 11 inserted therein. Examples of the fluororesin used include tetrafluoroethylene resin (abbreviation PTFE, melting point 327 ° C.), fluorinated alkyloxyethylene resin (abbreviation PFA, melting point 300 to 310 ° C.), and fluoroethylenepropylene resin (abbreviation TFP, Melting point 290-300 ° C.). The tube end 14 is sealed by heat-sealing at the fusing portions 13 on both end surfaces in the longitudinal direction of the end seal member 10. Here, the tube end 14 and the fusing part 13 are the same. Further, a degassing hole (hereinafter referred to as a degassing hole) 15 is opened at an arbitrary position of the shrinkable resin tube 12. The gas vent holes 15 are provided for preventing the shrinkable resin tube 12 from being damaged by the volume change of the gas in the tube, and an arbitrary number of the gas vent holes 15 are provided with a necessary and sufficient size. For example, one gas vent hole 15 is formed on each of both end faces of the end seal member 10 in the longitudinal direction so that the gas is uniformly vented.

このような端部シール部材10の製造方法について説明する。
収縮性樹脂チューブ12に、膨張黒鉛シートなどで形成される本体11を挿入する。次に、シーラー(熱線式熱融着器)などによってチューブ端14を溶断し、両端を封止する。これにより、本体11全面が樹脂で被覆され、密閉される。次に、収縮性樹脂チューブ12の一部に、直径0.5μm程度のガス抜き穴15を開ける。これにより、チューブ収縮時の内部ガス抜きを行うことができる。次に、本体11全面が収縮性樹脂チューブ12で被覆された端部シール部材10を加熱して収縮性樹脂チューブ12を収縮させ、端部シール部材10が製造される。
A method for manufacturing such an end seal member 10 will be described.
A main body 11 formed of an expanded graphite sheet or the like is inserted into the shrinkable resin tube 12. Next, the tube end 14 is melted and cut off with a sealer (hot wire heat fusion device) or the like, and both ends are sealed. As a result, the entire surface of the main body 11 is covered with the resin and sealed. Next, a gas vent hole 15 having a diameter of about 0.5 μm is formed in a part of the shrinkable resin tube 12. Thereby, the internal degassing at the time of tube contraction can be performed. Next, the end seal member 10 whose entire surface of the main body 11 is covered with the shrinkable resin tube 12 is heated to shrink the shrinkable resin tube 12, and the end seal member 10 is manufactured.

このような端部シール部材10の製造方法では、収縮性樹脂チューブ12に本体11を挿入した後、チューブの両端を熱融着によって封止することにより、製造工程を簡略化することができる。そして、製造された端部シール部材10は、両端部のガスシール及び電解不浸透性を確保することができる。また、収縮性樹脂チューブ12の一部にガス抜き穴15を開けることにより、収縮性樹脂チューブ12内のガスの体積変化による破損などを防止することができる。   In such a manufacturing method of the end seal member 10, after inserting the main body 11 into the shrinkable resin tube 12, both ends of the tube are sealed by heat sealing, whereby the manufacturing process can be simplified. And the manufactured end seal member 10 can ensure gas seal and electrolytic impermeability at both ends. Further, by opening the gas vent hole 15 in a part of the shrinkable resin tube 12, damage due to a change in the volume of gas in the shrinkable resin tube 12 can be prevented.

図2は、第1の実施の形態の燃料電池の単位セルを2積層した状態を示した図である。
図の燃料電池は、セパレータ30a及びセパレータ30bの間に形成される単位セルと、セパレータ30b及びセパレータ30cの間に形成される単位セルとが2層に積層された状態を示している。
FIG. 2 is a diagram showing a state in which two unit cells of the fuel cell according to the first embodiment are stacked.
The fuel cell in the figure shows a state in which a unit cell formed between the separator 30a and the separator 30b and a unit cell formed between the separator 30b and the separator 30c are stacked in two layers.

セパレータ30a,30b,30cは、ガス不透過性及び電解質に対する耐食性を満たしている。例えば、セルロース繊維からなる紙に熱硬化性樹脂を含浸し、乾燥後積層してプレスし、さらに焼成して作成される。   The separators 30a, 30b, and 30c satisfy gas impermeability and corrosion resistance to the electrolyte. For example, a paper made of cellulose fiber is impregnated with a thermosetting resin, dried, laminated, pressed, and further fired.

セパレータ30a,30bに挟持される単位セルは、図示しない電解質層の両面に、燃料ガス流路が形成される多孔質カーボン板40aと電極部(燃料電極)50aとを有する燃料極触媒層と、酸化剤ガスまたは空気の流路(以下、空気流路とする)が形成される多孔質カーボン板40bと電極部(空気電極)50bとを有する空気極触媒層とが配置されている。図の例では、燃料ガス流路と空気流路とは、互いに直交するように重ね合わされている。セパレータ30b,30cに挟持される単位セルについても同様に、電解質層の両面に多孔質カーボン板40cと電極部50cとを有する燃料極触媒層と、多孔質カーボン板40dと電極部50dとを有する空気極触媒層とが配置されている。   The unit cell sandwiched between the separators 30a and 30b includes a fuel electrode catalyst layer having a porous carbon plate 40a in which a fuel gas flow path is formed and an electrode part (fuel electrode) 50a on both surfaces of an electrolyte layer (not shown), A porous carbon plate 40b on which an oxidant gas or air channel (hereinafter referred to as an air channel) is formed and an air electrode catalyst layer having an electrode part (air electrode) 50b are disposed. In the example of the figure, the fuel gas channel and the air channel are overlapped so as to be orthogonal to each other. Similarly, the unit cell sandwiched between the separators 30b and 30c has the fuel electrode catalyst layer having the porous carbon plate 40c and the electrode portion 50c on both surfaces of the electrolyte layer, and the porous carbon plate 40d and the electrode portion 50d. An air electrode catalyst layer is disposed.

多孔質カーボン板40a,40b,40c,40dのガス流路に平行な外延部には、それぞれのガスが対極に漏洩しないように端部シール部材10a,10b,10c,10dが配置される。例えば、多孔質カーボン板40aのガス流路方向(図面の燃料電池の奥行き方向)の両端にそれぞれ端部シール部材10aが配置されている。他の端部シール部材10b,10c,10dも同様である。この端部シール部材10a,10b,10c,10dは、図1に示した端部シール部材10と同様に形成される。すなわち、膨張黒鉛シートなどの本体11全面が収縮性樹脂チューブ12で被覆されて形成される。また、収縮性樹脂チューブ12の両端は熱融着により封止され、一部にガス抜き穴が開けられている。このような端部シール部材を、端部シール部材に用いられた収縮性樹脂チューブ12よりも融点の低い樹脂フィルムを挟んでセパレータ30a,30b,30cの端部に設置し、ホットプレスにより熱融着する。これにより、燃料電池の端部シール部材が形成される。例えば、セパレータ30aに熱融着される端部シール部材10aは、端部シール部材10aの長手方向両端の端部シール部材端面16aでチューブの両端が熱融着され、端部シール部材端面16aの多孔質カーボン板40aとは反対方向の位置にガス抜き穴15aが形成されている。   End seal members 10a, 10b, 10c, and 10d are arranged in the extended portions parallel to the gas flow paths of the porous carbon plates 40a, 40b, 40c, and 40d so that the respective gases do not leak to the counter electrode. For example, end seal members 10a are disposed at both ends of the porous carbon plate 40a in the gas flow path direction (the depth direction of the fuel cell in the drawing). The same applies to the other end seal members 10b, 10c, and 10d. The end seal members 10a, 10b, 10c, and 10d are formed in the same manner as the end seal member 10 shown in FIG. That is, the entire surface of the main body 11 such as an expanded graphite sheet is covered with the shrinkable resin tube 12. Further, both ends of the shrinkable resin tube 12 are sealed by heat fusion, and a gas vent hole is formed in a part thereof. Such an end seal member is placed at the end of the separators 30a, 30b, and 30c with a resin film having a melting point lower than that of the shrinkable resin tube 12 used for the end seal member, and heat fusion is performed by hot pressing. To wear. Thereby, the end seal member of the fuel cell is formed. For example, in the end seal member 10a that is heat-sealed to the separator 30a, both ends of the tube are heat-sealed at the end seal member end surfaces 16a at both ends in the longitudinal direction of the end seal member 10a, and the end seal member end surface 16a A vent hole 15a is formed at a position opposite to the porous carbon plate 40a.

このような構成の燃料電池では、ガス抜き穴によって、燃料電池の運転中にも生じるチューブ内部のガスの体積変化によるチューブの破損などが防止される。また、両端部も熱融着され、全面が収縮性樹脂チューブで被覆された端部シール材からなる端部シール部材は、要求性能を満たすガス不透過性及び電解質不浸透性を備える。   In the fuel cell having such a configuration, the gas vent hole prevents the tube from being damaged due to the volume change of the gas inside the tube, which occurs even during operation of the fuel cell. Further, an end seal member made of an end seal material whose both ends are heat-sealed and whose entire surface is covered with a shrinkable resin tube has gas impermeability and electrolyte impermeability that satisfy required performance.

(実施例1) 東洋炭素(株)製膨張黒鉛シート(PF250、厚さ2.5mm、かさ密度0.65g/cc)を18×130mmに切断したものを、グンゼ(株)PFA製熱収縮チューブSMT(厚さ50μm)中に挿入する。熱収縮チューブ端部を白光(株)製ヒートシーラーFV−801により溶断する。そして、溶断部に直径0.5μm程度のガス抜き穴を開ける。その後電気炉中にて180℃、2時間保持して熱収縮チューブを収縮させる。   Example 1 An expanded graphite sheet (PF250, thickness 2.5 mm, bulk density 0.65 g / cc) manufactured by Toyo Tanso Co., Ltd. cut to 18 × 130 mm was used as a heat shrinkable tube made by Gunze PFA. Insert into SMT (thickness 50 μm). The heat-shrinkable tube end is fused with a heat sealer FV-801 manufactured by Hakuko. Then, a gas vent hole having a diameter of about 0.5 μm is formed in the melted portion. Thereafter, the heat-shrinkable tube is shrunk by holding at 180 ° C. for 2 hours in an electric furnace.

続いて、昭和電工(株)製ガラス状カーボン板(SG−3、厚さ0.6mm)を130×130mmに切断してセパレータとする。熱収縮チューブが密着した膨張黒鉛シートを厚さ25μmのFEPフィルムを180×130mmに切断したものを介してセパレータの両端に設置して、320℃で10分間、0.5MPaにて加圧してセパレータ端部シール部材を得る。   Subsequently, a glassy carbon plate (SG-3, thickness 0.6 mm) manufactured by Showa Denko KK is cut into 130 × 130 mm to obtain a separator. An expanded graphite sheet with a heat-shrinkable tube adhered thereto was placed at both ends of the separator through a 25 μm thick FEP film cut to 180 × 130 mm, and pressurized at 0.5 MPa for 10 minutes at 320 ° C. An end seal member is obtained.

上記実施例1により製作された燃料電池は、端部シール部材を透過してのガス洩れ量が10kPaの差圧化で0.1ml/min以下であった。また、電流密度300mA/cm2で2000時間運転後も洩れの増加はなかった。さらに、運転後の分解調査の結果、端部シール部材への電解質の浸入は見られず、腐食や端部シール部材端面での電解質の液絡も発生しなかった。総じて、実施例1により、好的な端部シール部材構成を備えた燃料電池が得られることが確認された。なお、実施例1では、2000時間運転後の洩れの増加がないことが確認されたが、樹脂フィルムで覆われた構造の端部シール部材は40000時間以上の電解質不浸透性が認められており、実施例1についても同様の電解質不浸透性性能が得られると予想される。 In the fuel cell manufactured according to Example 1, the amount of gas leakage through the end seal member was 0.1 ml / min or less when the differential pressure was 10 kPa. In addition, there was no increase in leakage after 2000 hours of operation at a current density of 300 mA / cm 2 . Further, as a result of the disassembling investigation after the operation, the electrolyte did not enter the end seal member, and neither corrosion nor liquid junction of the electrolyte at the end seal member end surface occurred. In general, it was confirmed that the fuel cell having a favorable end seal member configuration can be obtained by Example 1. In Example 1, it was confirmed that there was no increase in leakage after 2000 hours of operation, but the end seal member of the structure covered with the resin film was recognized to be electrolyte impervious for 40000 hours or more. The same electrolyte impervious performance is expected to be obtained for Example 1 as well.

次に、第2の実施の形態について説明する。第1の実施の形態では、ガス抜き穴を開ける位置を任意としたが、第2の実施の形態では、端部シール部材の厚さ方向の中央位置よりも上部に開けるとする。   Next, a second embodiment will be described. In the first embodiment, the position at which the gas vent hole is opened is arbitrary, but in the second embodiment, it is assumed that the upper end is formed above the center position in the thickness direction of the end seal member.

図3は、第2の実施の形態の燃料電池の端部シール部材単体を示した図である。図1に示した端部シール部材と同じものには同じ番号を付し、説明は省略する。
端部シール部材20は、収縮性樹脂チューブ12に本体11を挿入し、チューブ端14を溶断して両端を封止した後、収縮性樹脂チューブ12に開けるガス抜き穴21を、端部シール部材20の厚さ方向の中央位置よりも上部に開ける。ガス抜き穴21の大きさは、第1の実施の形態のガス抜き穴15と同様であり、例えば、直径0.5μm程度の穴を開ける。ガス抜き穴21の位置が異なることを除いて、端部シール部材20の材料、製造工程は第1の実施の形態と同様である。
FIG. 3 is a diagram showing a single end seal member of the fuel cell according to the second embodiment. The same parts as those in the end seal member shown in FIG.
The end seal member 20 is formed by inserting the main body 11 into the shrinkable resin tube 12, fusing the tube end 14 to seal both ends, and then forming a gas vent hole 21 to be opened in the shrinkable resin tube 12. 20 is opened above the center position in the thickness direction. The size of the gas vent hole 21 is the same as that of the gas vent hole 15 of the first embodiment. For example, a hole having a diameter of about 0.5 μm is formed. Except that the position of the gas vent hole 21 is different, the material and manufacturing process of the end seal member 20 are the same as those in the first embodiment.

このように、ガス抜き穴21を形成することにより、収縮性樹脂チューブ12内のガスの体積変化によって収縮性樹脂チューブ12が破損することを防止することができる。
さらに、ガス抜き穴21を端部シール部材20の厚みの中央よりも上部に開けることにより、チューブ内に凝縮水が溜まった際に、収縮性樹脂チューブ12から凝縮水が垂れ落ちることを防止することができる。
Thus, by forming the gas vent hole 21, it is possible to prevent the shrinkable resin tube 12 from being damaged due to the volume change of the gas in the shrinkable resin tube 12.
Further, by opening the vent hole 21 above the center of the thickness of the end seal member 20, the condensed water is prevented from dripping from the shrinkable resin tube 12 when the condensed water is accumulated in the tube. be able to.

樹脂性の収縮チューブには水蒸気透過性があり、運転中にチューブ内に透過した水蒸気が、停止時に凝縮してチューブ内に凝縮水として溜まる場合がある。この状態でガス抜き穴21が端部シール部材20の下部に開いていると、チューブ内の凝縮水がガス抜き穴21から垂れ落ち、構造部材の錆びや電気部品の絶縁性低下の原因となる。よって、ガス抜き穴21を端部シール部材20の上部に開けることにより、凝縮水の垂れ落ちを防止し、構造部材の錆びや電気部品の絶縁性低下を防ぐことが可能となる。   Resin-based shrinkable tubes have water vapor permeability, and water vapor that has permeated into the tube during operation may condense when stopped and accumulate as condensed water in the tube. If the gas vent hole 21 is opened in the lower part of the end seal member 20 in this state, the condensed water in the tube hangs down from the gas vent hole 21 and causes rusting of the structural member and a decrease in insulation of the electrical component. . Therefore, by opening the vent hole 21 in the upper part of the end seal member 20, it is possible to prevent dripping of the condensed water, and to prevent the rust of the structural member and the insulation deterioration of the electrical component.

図4は、第2の実施の形態の燃料電池の単位セルを2積層した状態を示した図である。図2に示した各部と同じものには同じ番号を付し、説明は省略する。
多孔質カーボン板40a,40b,40c,40dのガス流路に平行な外延部に、それぞれのガスが対極に漏洩しないように端部シール部材20a,20b,20c,20dが配置される。図2に示した第1の実施の形態の端部シール部材10a,10b,10c,10dが端部シール部材20a,20b,20c,20dに置き換わったことを除き、他の構成は第1の実施の形態と同様である。
FIG. 4 is a diagram showing a state in which two unit cells of the fuel cell according to the second embodiment are stacked. The same parts as those shown in FIG.
End seal members 20a, 20b, 20c, and 20d are arranged in the extended portions parallel to the gas flow paths of the porous carbon plates 40a, 40b, 40c, and 40d so that the respective gases do not leak to the counter electrode. Except that the end seal members 10a, 10b, 10c, and 10d of the first embodiment shown in FIG. 2 are replaced with the end seal members 20a, 20b, 20c, and 20d, the other configurations are the first embodiment. It is the same as the form.

多孔質カーボン板40a,40b,40c,40dのガス流路に平行な外延部には、それぞれのガスが対極に漏洩しないように端部シール部材20a,20b,20c,20dが配置される。この端部シール部材20a,20b,20c,20dは、図3に示した端部シール部材20と同様に形成される。すなわち、膨張黒鉛シートなどの本体11を被覆する収縮性樹脂チューブ12の厚みの中央よりも上部にガス抜き穴21が開けられている。このような端部シール部材を、端部シール部材に用いられた収縮性樹脂チューブ12よりも融点の低い樹脂フィルムを挟んでセパレータ30a,30b,30cの端部に設置し、ホットプレスにより熱融着する。このとき、ガス抜き穴21が上部となる向きに端部シール部材を配置する。これにより、燃料電池の端部シール部材が形成される。例えば、セパレータ30aに熱融着される端部シール部材20aは、端部シール部材20aの長手方向両端の端部シール部材端面22aでチューブの両端が熱融着され、端部シール部材端面22aの多孔質カーボン板40aとは反対方向であって、端部シール部材20aの厚み方向の中央よりも上部にガス抜き穴21aが形成されている。   End seal members 20a, 20b, 20c, and 20d are arranged in the extended portions parallel to the gas flow paths of the porous carbon plates 40a, 40b, 40c, and 40d so that the respective gases do not leak to the counter electrode. The end seal members 20a, 20b, 20c, and 20d are formed in the same manner as the end seal member 20 shown in FIG. That is, a gas vent hole 21 is formed above the center of the thickness of the shrinkable resin tube 12 that covers the main body 11 such as an expanded graphite sheet. Such an end seal member is placed at the end of the separators 30a, 30b, and 30c with a resin film having a melting point lower than that of the shrinkable resin tube 12 used for the end seal member, and heat fusion is performed by hot pressing. To wear. At this time, the end seal member is arranged in the direction in which the gas vent hole 21 is at the top. Thereby, the end seal member of the fuel cell is formed. For example, the end seal member 20a that is heat-sealed to the separator 30a is heat-sealed at both ends of the tube at the end seal member end surfaces 22a at both ends in the longitudinal direction of the end seal member 20a, and the end seal member end surface 22a A gas vent hole 21a is formed in the opposite direction to the porous carbon plate 40a and above the center in the thickness direction of the end seal member 20a.

このような構成の燃料電池では、ガス抜き穴によって、燃料電池の運転中にも生じるチューブ内部のガスの体積変化によるチューブの破損などが防止される。さらに、ガス抜き穴の位置を端部シール部材の厚みの中央よりも上部とすることによって、収縮性樹脂チューブ12内に凝縮水が溜まった際に、チューブ内から凝縮水が垂れ落ちることを防止することができる。また、両端部も熱融着され、全面が収縮性樹脂チューブ12で被覆された端部シール材からなる端部シール部材は、要求性能を満たすガス不透過性及び電解質不浸透性を備える。   In the fuel cell having such a configuration, the gas vent hole prevents the tube from being damaged due to the volume change of the gas inside the tube, which occurs even during operation of the fuel cell. Further, by setting the position of the vent hole above the center of the thickness of the end seal member, when the condensed water is accumulated in the shrinkable resin tube 12, the condensed water is prevented from dripping from the tube. can do. Further, the end seal member made of the end seal material whose both ends are also heat-sealed and whose entire surface is covered with the shrinkable resin tube 12 has gas impermeability and electrolyte impermeability that satisfy the required performance.

(実施例2) 東洋炭素(株)製膨張黒鉛シート(PF250、厚さ2.5mm、かさ密度0.65g/cc)を18×130mmに切断したものを、グンゼ(株)PFA製熱収縮チューブSMT(厚さ50μm)中に挿入する。熱収縮チューブ端部を白光(株)製ヒートシーラーFV−801により溶断する。そして、溶断部の上部(溶断部の中央よりも上)に直径0.5μm程度のガス抜き穴を開ける。その後電気炉中にて180℃、2時間保持して熱収縮チューブを収縮させる。   (Example 2) An expanded graphite sheet (PF250, thickness 2.5 mm, bulk density 0.65 g / cc) manufactured by Toyo Tanso Co., Ltd. cut to 18 × 130 mm was used as a heat shrinkable tube made by Gunze PFA. Insert into SMT (thickness 50 μm). The heat-shrinkable tube end is fused with a heat sealer FV-801 manufactured by Hakuko. Then, a vent hole having a diameter of about 0.5 μm is formed in the upper part of the melted part (above the center of the melted part). Thereafter, the heat-shrinkable tube is shrunk by holding at 180 ° C. for 2 hours in an electric furnace.

続いて、昭和電工(株)製ガラス状カーボン板(SG−3、厚さ0.6mm)を130×130mmに切断してセパレータとする。熱収縮チューブが密着した膨張黒鉛シートを厚さ25μmのFEPフィルムを180×130mmに切断したものを介してセパレータの両端に設置して、320℃で10分間、0.5MPaにて加圧してセパレータ端部シールを得る。その際、直径0.5μm程度の穴を開けた方が上部となるように端部シールを設置する。   Subsequently, a glassy carbon plate (SG-3, thickness 0.6 mm) manufactured by Showa Denko KK is cut into 130 × 130 mm to obtain a separator. An expanded graphite sheet with a heat-shrinkable tube adhered thereto was placed at both ends of the separator through a 25 μm thick FEP film cut to 180 × 130 mm, and pressurized at 0.5 MPa for 10 minutes at 320 ° C. Get an end seal. At that time, an end seal is installed so that a hole with a diameter of about 0.5 μm is at the top.

上記実施例2により製作された燃料電池は、端部シール部材を透過してのガス洩れ量が10kPaの差圧化で0.1ml/min以下であった。また、電流密度300mA/cm2で2000時間運転後も洩れの増加はなかった。さらに、運転の起動と停止を繰り返しても、熱収縮チューブ内の凝縮水が垂れ落ちることはなかった。運転後の分解調査の結果、端部シール部材への電解質の浸入は見られず、腐食や端部シール部材端面での電解質の液絡も発生しなかった。総じて、実施例2により、好的な端部シール部材構成を備えた燃料電池が得られることが確認された。 In the fuel cell manufactured according to Example 2, the amount of gas leakage through the end seal member was 0.1 ml / min or less when the differential pressure was 10 kPa. In addition, there was no increase in leakage after 2000 hours of operation at a current density of 300 mA / cm 2 . Furthermore, the condensed water in the heat-shrinkable tube did not drip even when the operation was started and stopped repeatedly. As a result of the disassembling investigation after the operation, the electrolyte did not enter the end seal member, and neither corrosion nor liquid junction of the electrolyte at the end seal member end surface occurred. In general, it was confirmed that the fuel cell having a favorable end seal member configuration was obtained in Example 2.

第1の実施の形態の燃料電池の端部シール部材単体を示した図である。It is the figure which showed the edge part sealing member single-piece | unit of the fuel cell of 1st Embodiment. 第1の実施の形態の燃料電池の単位セルを2積層した状態を示した図である。It is the figure which showed the state which laminated | stacked two unit cells of the fuel cell of 1st Embodiment. 第2の実施の形態の燃料電池の端部シール部材単体を示した図である。It is the figure which showed the edge part sealing member simple substance of the fuel cell of 2nd Embodiment. 第2の実施の形態の燃料電池の単位セルを2積層した状態を示した図である。It is the figure which showed the state which laminated | stacked two unit cells of the fuel cell of 2nd Embodiment. 燃料電池の単位セルを2積層した状態を示した概略構成図である。It is the schematic block diagram which showed the state which laminated | stacked two unit cells of the fuel cell.

符号の説明Explanation of symbols

10,10a,10b,10c,10d 端部シール部材
11 本体
12 収縮性樹脂チューブ
13 溶断部
14 チューブ端
15,15a ガス抜き穴
16a 端部シール部材端面
30a,30b,30c セパレータ
40a,40b,40c,40d 多孔質カーボン板
50a,50b,50c,50d 電極部
10, 10a, 10b, 10c, 10d End seal member 11 Main body 12 Shrinkable resin tube 13 Fusing part 14 Tube end 15, 15a Gas vent hole 16a End seal member end face 30a, 30b, 30c Separator 40a, 40b, 40c, 40d porous carbon plate 50a, 50b, 50c, 50d electrode part

Claims (10)

電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、前記燃料極触媒層に燃料ガスのガス流路を有する多孔質材及び前記空気極触媒層に酸化剤ガスのガス流路を有する前記多孔質材を配置した単位セルが積層される燃料電池において、
前記多孔質材に形成される前記ガス流路と平行な端部に、膨張黒鉛シートを含む所定の端部シール材が収縮性樹脂チューブによって被覆され、前記収縮性樹脂チューブの両端が熱融着によって封止され、収縮された端部シール部材を配置したことを特徴とする燃料電池。
An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a porous material having a fuel gas gas flow path in the fuel electrode catalyst layer, and a gas flow of oxidant gas in the air electrode catalyst layer In a fuel cell in which unit cells in which the porous material having a path is arranged are stacked,
A predetermined end seal material including an expanded graphite sheet is covered with a shrinkable resin tube at an end parallel to the gas flow path formed in the porous material, and both ends of the shrinkable resin tube are heat-sealed. A fuel cell, characterized in that an end seal member that is sealed and shrunk by is disposed.
前記所定の端部シール材を封止する前記収縮性樹脂チューブにガス抜き用の穴を開けることを特徴とする請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein a hole for degassing is formed in the shrinkable resin tube that seals the predetermined end seal material. 前記ガス抜き用の穴は、前記端部シール部材の厚さ方向の中央位置よりも上部に形成されることを特徴とする請求項2記載の燃料電池。   3. The fuel cell according to claim 2, wherein the degassing hole is formed above a center position in a thickness direction of the end seal member. 前記端部シール部材は、前記所定の端部シール材を前記収縮性樹脂チューブに挿入して前記収縮性樹脂チューブの端部を熱融着により溶断した後、前記収縮性樹脂チューブを収縮させて形成される、ことを特徴とする請求項1記載の燃料電池。   The end seal member is formed by inserting the predetermined end seal material into the shrinkable resin tube and fusing the end portion of the shrinkable resin tube by thermal fusion, and then shrinking the shrinkable resin tube. The fuel cell according to claim 1, wherein the fuel cell is formed. 電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、前記燃料極触媒層に燃料ガスのガス流路を有する多孔質材及び前記空気極触媒層に酸化剤ガスのガス流路を有する前記多孔質材を配置した単位セルが積層される燃料電池の前記多孔質材に形成される前記ガス流路と平行な端部に配置される端部シール部材において、
膨張黒鉛シートを含む所定の端部シール材が収縮性樹脂チューブによって被覆され、前記収縮性樹脂チューブの両端が熱融着によって封止され、収縮されたことを特徴とする端部シール部材。
An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a porous material having a fuel gas gas flow path in the fuel electrode catalyst layer, and a gas flow of oxidant gas in the air electrode catalyst layer In an end seal member disposed at an end portion parallel to the gas flow path formed in the porous material of the fuel cell in which the unit cell in which the porous material having a path is disposed is laminated,
An end seal member, wherein a predetermined end seal material including an expanded graphite sheet is covered with a shrinkable resin tube, and both ends of the shrinkable resin tube are sealed by heat sealing.
前記所定の端部シール材を封止する前記収縮性樹脂チューブにガス抜き用の穴を開けることを特徴とする請求項5記載の端部シール部材。   6. The end seal member according to claim 5, wherein a hole for degassing is formed in the shrinkable resin tube that seals the predetermined end seal material. 前記ガス抜き用の穴は、前記端部シール部材の厚さ方向の中央位置よりも上部に形成されることを特徴とする請求項6記載の端部シール部材。   The end seal member according to claim 6, wherein the gas vent hole is formed above a center position in a thickness direction of the end seal member. 電解質を保持した保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、前記燃料極触媒層に燃料ガスのガス流路を有する多孔質材及び前記空気極触媒層に酸化剤ガスのガス流路を有する前記多孔質材を配置した単位セルが積層される燃料電池の前記多孔質材に形成される前記ガス流路と平行な端部に配置される端部シール部材の製造方法において、
膨張黒鉛シートを含む所定の端部シール材を収縮性樹脂チューブによって被覆する手順と、
前記収縮性樹脂チューブの端部を熱融着によって溶断して封止する手順と、
前記収縮性樹脂チューブを収縮させる手順と、
を有することを特徴とする端部シール部材の製造方法。
An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a porous material having a fuel gas gas flow path in the fuel electrode catalyst layer, and an oxidant gas in the air electrode catalyst layer. In a method of manufacturing an end seal member disposed at an end parallel to the gas flow path formed in the porous material of a fuel cell in which unit cells having the gas flow path disposed therein are stacked. ,
A procedure for coating a predetermined end seal material including an expanded graphite sheet with a shrinkable resin tube,
A procedure for fusing and sealing the end of the shrinkable resin tube by thermal fusion;
A procedure for shrinking the shrinkable resin tube;
The manufacturing method of the edge part sealing member characterized by having.
さらに、熱融着によって封止された前記収縮性樹脂チューブにガス抜き用の穴を開ける手順を有することを特徴とする請求項8記載の端部シール部材の製造方法。   9. The method of manufacturing an end seal member according to claim 8, further comprising a step of opening a gas venting hole in the shrinkable resin tube sealed by heat sealing. 前記ガス抜き用の穴は、前記端部シール部材の厚さ方向の中央位置よりも上部に形成することを特徴とする請求項9記載の端部シール部材の製造方法。   The method for manufacturing an end seal member according to claim 9, wherein the degassing hole is formed above a center position in a thickness direction of the end seal member.
JP2008110253A 2008-04-21 2008-04-21 FUEL CELL, END SEAL MEMBER, AND END SEAL MEMBER MANUFACTURING METHOD Active JP5332289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110253A JP5332289B2 (en) 2008-04-21 2008-04-21 FUEL CELL, END SEAL MEMBER, AND END SEAL MEMBER MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110253A JP5332289B2 (en) 2008-04-21 2008-04-21 FUEL CELL, END SEAL MEMBER, AND END SEAL MEMBER MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2009259743A true JP2009259743A (en) 2009-11-05
JP5332289B2 JP5332289B2 (en) 2013-11-06

Family

ID=41386894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110253A Active JP5332289B2 (en) 2008-04-21 2008-04-21 FUEL CELL, END SEAL MEMBER, AND END SEAL MEMBER MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5332289B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205764A (en) * 1989-12-29 1991-09-09 Toray Ind Inc Gas seal method for side end part of gas transmissive carbon base for fuel battery
JPH08241728A (en) * 1995-03-06 1996-09-17 Toshiba Corp Phosphoric acid resisting gas manifold for fuel cell
JP2001023654A (en) * 1999-07-07 2001-01-26 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2007018924A (en) * 2005-07-08 2007-01-25 Fuji Electric Holdings Co Ltd Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205764A (en) * 1989-12-29 1991-09-09 Toray Ind Inc Gas seal method for side end part of gas transmissive carbon base for fuel battery
JPH08241728A (en) * 1995-03-06 1996-09-17 Toshiba Corp Phosphoric acid resisting gas manifold for fuel cell
JP2001023654A (en) * 1999-07-07 2001-01-26 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2007018924A (en) * 2005-07-08 2007-01-25 Fuji Electric Holdings Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP5332289B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4754339B2 (en) SEALING MATERIAL FOR FUEL CELL, FUEL CELL, AND FUEL CELL MANUFACTURING METHOD
US20090297904A1 (en) SOFC Stack
CN101330151A (en) Electrode-membrane-frame assembly for fuel cell, and manufacturing method therefor
JP2010087137A (en) Capacitor
KR101205618B1 (en) Manifold gasket accommodating dirrerential movement of fuel cell stack
JP4863657B2 (en) Fuel cell, fuel cell stack, and fuel cell
JP2017511565A (en) Glow plug for fuel cell system and method for forming the same
JP5332289B2 (en) FUEL CELL, END SEAL MEMBER, AND END SEAL MEMBER MANUFACTURING METHOD
KR101305242B1 (en) Secondary Battery of Novel Structure
JP2007018924A (en) Fuel cell
JP2009194131A (en) Capacitor
JP2829184B2 (en) Fuel cell
JP2008535149A (en) Interconnects for high temperature fuel cells
JP3838403B2 (en) Phosphoric acid fuel cell
JP2012164588A (en) Seal structure of fuel cell separator
JP6637734B2 (en) Method of manufacturing fuel cell unit
JP2007250208A (en) Manufacturing method of fuel cell
JP4515304B2 (en) Electric double layer capacitor and degassing valve
JP5504584B2 (en) Fuel cell, end seal member, and method of manufacturing end seal member
CA3031877C (en) Fuel cell with reduced cross leakage of electrolytes
JP5209547B2 (en) Gas seal member and connection method of solid oxide fuel cell
CN112952137A (en) Sealing structure of membrane electrode protective film of fuel cell
JP2009266873A (en) Capacitor
JP4288919B2 (en) Fuel cell system
JPH07153473A (en) Layered fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250