JPH03205764A - Gas seal method for side end part of gas transmissive carbon base for fuel battery - Google Patents

Gas seal method for side end part of gas transmissive carbon base for fuel battery

Info

Publication number
JPH03205764A
JPH03205764A JP1344154A JP34415489A JPH03205764A JP H03205764 A JPH03205764 A JP H03205764A JP 1344154 A JP1344154 A JP 1344154A JP 34415489 A JP34415489 A JP 34415489A JP H03205764 A JPH03205764 A JP H03205764A
Authority
JP
Japan
Prior art keywords
gas
side end
thermoplastic resin
permeable
carbonaceous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1344154A
Other languages
Japanese (ja)
Inventor
Hiroaki Fukui
裕明 福井
Fumiaki Noman
文昭 乃万
Atsushi Kitamura
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1344154A priority Critical patent/JPH03205764A/en
Publication of JPH03205764A publication Critical patent/JPH03205764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable gas seal of side end part of carbon base easily by bringing a seal part covered with thermoplastic resin into contact with a side end part of gas transmissive carbon base, and jointing the seal member to the side end part with heat. CONSTITUTION:On a gas nontransmissive conductive board 6 a gas transmissive carbon base 14 having a narrower width than that of the board 6 and having a plurality of grooves 14a formed thereon is arranged. In this case a film made of thermoplastic resin 115 is interposed therebetween. Seal members 11 each having the same size with that of stepped parts 15, 15 are placed to be abutted on opposed side end faces of a gas transmissive carbon base 12, and thereafter the whole thereof is pressurized under a specified temperature. Then thermo plastic resin is partially melted together with the termoplastic film. By cooling them gradually, the base 14, the board 6 and the seal member 11 are integrated by the resin 11b. It is thus possible to easily gas seal the side ends of porous electrode or gas diffusion board.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電准用ガス透過性炭素質基板の側端部のガ
スシール法に関し、さらに詳しくは、極めて簡単に、炭
素質基板の側端部をガスシールすることができる方法に
関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a gas sealing method for the side edges of a gas-permeable carbonaceous substrate for fuel electrical devices, and more specifically, it relates to a gas sealing method for gas-sealing the side edges of a gas-permeable carbonaceous substrate for fuel electrical devices. It relates to a method by which the ends can be gas-sealed.

(従来の技術) 燃料の化学エネルギーを、直接、電気エネルギーに変換
でき、その発電効率が高いということから燃料電池の開
発研究が進められている。この燃料電池には、リン酸型
燃料電池、電解質としてイオン交換膜を使用する燃料電
池(メンブレン燃料電准)、酸やアルカリを電解質とす
る燃料電泊など各種タイプのものが開発されている。
(Prior Art) Research and development efforts are underway to develop fuel cells because they can directly convert the chemical energy of fuel into electrical energy and have high power generation efficiency. Various types of fuel cells have been developed, including phosphoric acid fuel cells, fuel cells that use an ion exchange membrane as the electrolyte (membrane fuel cells), and fuel cells that use acid or alkali as the electrolyte.

燃料電泊の単セルのl例を部分斜視図として第6図に示
す。この単セルにおいては、まず、基板である燃料極1
と空気極2が電解質マトリクス3を介して重ね合わされ
ている。
An example of a single cell for a fuel cell is shown in FIG. 6 as a partial perspective view. In this single cell, first, the fuel electrode 1 which is the substrate
and an air electrode 2 are stacked on top of each other with an electrolyte matrix 3 in between.

燃料極lおよび空気極2は、いずれもたとえば、炭素質
または黒鉛質のような、ガス透過性でかつ導電性の材料
からなる多孔質板であり、この第6図の構造の単セルに
おいては、ガス拡散板であると同時に電極としての機能
も兼ねている。これらの極は、一般に、多孔質炭素材か
ら製造されている。
Both the fuel electrode 1 and the air electrode 2 are porous plates made of a gas-permeable and conductive material such as carbon or graphite, and in the single cell having the structure shown in FIG. , serves as both a gas diffusion plate and an electrode. These poles are generally made from porous carbon material.

燃料極lおよび空気極2の一方の面には、第7図で示し
たように、複数本の溝1aまたは2aが互いに平行に掘
削されていて、他方の面、すなわち電解質マトリクス3
と接触する方の面には、白金または白金系の触媒からな
る触媒層4,5がそれぞれ形成されている。そして、こ
れら燃料極1と空気極2はいずれもいわゆるリブ付き電
極になっていて、それぞれの溝1a,2aが互いに直交
するようにして重ね合わされている(直交流方式)また
、燃料極lおよび空気極2の前記一方の面には、ガス不
透過性でかつ導電性の材料からなるガス不透過性導電板
(セパレータ)6,6が、燃料極1および空気極2のそ
れぞれと導通を保つ状態で接合されている。
As shown in FIG. 7, a plurality of grooves 1a or 2a are drilled in one surface of the fuel electrode 1 and the air electrode 2 in parallel with each other, and the other surface, that is, the electrolyte matrix 3
Catalyst layers 4 and 5 made of platinum or a platinum-based catalyst are respectively formed on the surface that comes into contact with. The fuel electrode 1 and the air electrode 2 are both so-called ribbed electrodes, and are stacked so that their respective grooves 1a and 2a are perpendicular to each other (cross-flow method). On the one surface of the air electrode 2, gas-impermeable conductive plates (separators) 6, 6 made of a gas-impermeable and conductive material maintain conduction with the fuel electrode 1 and the air electrode 2, respectively. It is connected in a state.

このような単セルは上下方向に複数個積層され、得られ
た積層体の側面には、ガスケットを介して燃料ガスおよ
び酸化性ガスを供給するためのマニホールドが対向して
配置されることにより、燃料電池が構成される。
A plurality of such single cells are stacked in the vertical direction, and manifolds for supplying fuel gas and oxidizing gas through gaskets are placed facing each other on the side surfaces of the resulting stacked body. A fuel cell is configured.

この電池においては、燃料極lの溝1aに、たとえば水
素ガスのような燃料ガスが流され、また空気極2の溝2
aには、通常、空気のような酸化性ガスが流される。燃
料ガスは燃料極l内を拡散して触媒層4でイオン化され
、また酸化性ガスの酸化性威分(たとえば酸素)は空気
極2内を拡散して触媒層5でイオン化される。その結果
、電解質マトリクス3を介してイオンの移動が起り、各
極から電気エネルギーが取りだされる。
In this cell, fuel gas such as hydrogen gas is flowed into the groove 1a of the fuel electrode 1, and the groove 2 of the air electrode 2 is
An oxidizing gas such as air is normally flowed through a. The fuel gas diffuses within the fuel electrode 1 and is ionized at the catalyst layer 4, and the oxidizing component of the oxidizing gas (eg, oxygen) diffuses within the air electrode 2 and is ionized at the catalyst layer 5. As a result, ion movement occurs through the electrolyte matrix 3, and electrical energy is extracted from each pole.

ところで、溝1aおよび溝2aに供給されたそれぞれの
ガスは、触媒層4,5が存在する板厚方向に拡散するだ
けではなく、それぞれの極1,  2の板面方向にも拡
散することができるため、第7図の矢印pで示したよう
に、溝1a(または2a)に沿った側端部1b(または
2b)から外部に漏洩する虞れがある。また逆に、側端
部1b(または2b)から他のガスが流入して燃料ガス
と酸化性ガスの直接反応が起こることもあり得る。した
がって、各単セルの側端部にはガスシールを施して、上
記した不都合の発生を防止することが必要になる。
By the way, the gases supplied to the grooves 1a and 2a not only diffuse in the direction of the plate thickness where the catalyst layers 4 and 5 are present, but also in the direction of the plate surfaces of the respective poles 1 and 2. Therefore, as shown by the arrow p in FIG. 7, there is a risk of leakage to the outside from the side end portion 1b (or 2b) along the groove 1a (or 2a). Conversely, another gas may flow in from the side end portion 1b (or 2b) and a direct reaction between the fuel gas and the oxidizing gas may occur. Therefore, it is necessary to provide a gas seal to the side end of each unit cell to prevent the above-mentioned problems from occurring.

この場合、ガスシール部においては、燃料極l(または
空気極2)とガス不透過性導電板6,6との間の電気的
接触を保持するために、また単セルで発生した熱を有効
に放散せしめるために、燃料極l (または空気極2)
の板面とガスシール部の面とは同一平面となるように形
成されることが必要になる。
In this case, the gas seal part is used to maintain electrical contact between the fuel electrode 1 (or air electrode 2) and the gas-impermeable conductive plates 6, 6, and to utilize the heat generated in the single cell. In order to dissipate to the fuel electrode 1 (or air electrode 2)
It is necessary that the plate surface and the surface of the gas seal part be formed on the same plane.

また、単セルの側端部1b(または2b)はマニホール
ドと接触することになるので、この側端部1b(または
2b)が導電性になっていると、積層されている他の単
セルとの間が導通状態になって発電効率が下がったり発
電が不可能となるため、単セルの側端部を形成するガス
シール部は電気絶縁性になっていなければならない。
In addition, since the side end 1b (or 2b) of a single cell will come into contact with the manifold, if this side end 1b (or 2b) is conductive, it will not connect to other stacked single cells. The gas seals that form the side ends of the single cell must be electrically insulating, since the gas seals that form the side ends of the single cell must be electrically insulative because the gas seals that form the side ends of the single cell must be electrically insulative because the gas seals that form the side ends of the single cell become electrically insulating.

第6図で示した構造の単セルの場合、ガスシール部は、
電解質マトリクス3の側縁に沿って配設されたガス不透
過性シール材7と、このガス不透過性シール材7をはさ
んで、燃料極lおよび空気極2の側端部1b,2bに沿
って配設されたシール部材8,8とから構成されている
。シール部材8,8は、通常、その表面がたとえばポリ
テトラフルオロエチレンのような樹脂で被覆されていて
、図のように、燃料極lおよび空気極2の側端面,ガス
不透過性導電板6,6の端部の面とそれぞれ接着されて
いる。
In the case of a single cell with the structure shown in Figure 6, the gas seal part is
A gas-impermeable sealing material 7 is disposed along the side edge of the electrolyte matrix 3, and a gas-impermeable sealing material 7 is sandwiched between the gas-impermeable sealing material 7 and the side edges 1b and 2b of the fuel electrode 1 and the air electrode 2. It is composed of seal members 8, 8 disposed along the line. The surfaces of the sealing members 8, 8 are usually coated with a resin such as polytetrafluoroethylene, and as shown in the figure, the sealing members 8, 8 are coated with the side end surfaces of the fuel electrode 1 and the air electrode 2, and the gas-impermeable conductive plate 6. , and 6, respectively.

第8図は別の構造の単セルを例示する部分斜視図である
。この単セルの場合は、燃料極lおよび空気極2がいず
れも導電性の多孔質板であり、両者のそれぞれの触媒層
4,5側が電解質マトリクス3を介して重ね合わされて
いる。
FIG. 8 is a partial perspective view illustrating a unit cell having another structure. In the case of this single cell, both the fuel electrode 1 and the air electrode 2 are conductive porous plates, and their respective catalyst layers 4 and 5 sides are overlapped with an electrolyte matrix 3 in between.

燃料極lおよび空気極2の他方の面には、導電性でかつ
多孔質の材料からなり、一方の面に複数本の平行な溝9
a,10aが形成されているガス拡散板9,IOが互い
の溝を対向せしめた状態で配置されている。これらガス
拡散板も、一般に、多孔質炭素材から製造されている。
The other surfaces of the fuel electrode 1 and the air electrode 2 are made of a conductive and porous material, and have a plurality of parallel grooves 9 on one surface.
Gas diffusion plates 9 and IO in which grooves a and 10a are formed are arranged with their grooves facing each other. These gas diffusion plates are also generally manufactured from porous carbon materials.

そして、各ガス拡散板9,lOの他方の面には、ガス不
透過性導電板(セパレータ)6,6が、各ガス拡散板9
,10と導通を保った状態で接合されている。燃料ガス
は溝9aを流れ、酸化性ガスは溝10aを流れることに
より発電が進行する。
A gas impermeable conductive plate (separator) 6, 6 is provided on the other surface of each gas diffusion plate 9, 1O.
, 10 while maintaining continuity. Power generation progresses as the fuel gas flows through the grooves 9a and the oxidizing gas flows through the grooves 10a.

この構造の単セルの場合も、各構成要素の側端部には、
第6図の単セルと同じように、ガス不透過性シール材7
,シール部材8,8が配置されて、溝内を流れる各ガス
の漏洩が防止されている。
In the case of a single cell with this structure, the side edges of each component also have
As with the single cell in Figure 6, the gas-impermeable sealing material 7
, seal members 8, 8 are arranged to prevent leakage of each gas flowing in the groove.

第9図は更に別の単セル構造を示す部分斜視図で、この
場合には、電解質マトリクスがイオン交換膜3゜になっ
ていることを除いては、第8図で示した単セルと同じ構
造になっている。
Figure 9 is a partial perspective view showing yet another single cell structure, which is the same as the single cell shown in Figure 8, except that the electrolyte matrix is a 3° ion exchange membrane. It has a structure.

ところで、燃料極lおよび空気極2の側端部にシール部
材8,8を配置(第6図)し、または、ガス拡散板9.
10の側端部にシール部材8,8を配置(第8図および
第9図)してガスシールする方法としては、次のような
方法がある。
By the way, seal members 8, 8 are arranged at the side ends of the fuel electrode 1 and the air electrode 2 (FIG. 6), or a gas diffusion plate 9.
As a method for gas sealing by arranging the seal members 8, 8 (FIGS. 8 and 9) at the side end portions of 10, there are the following methods.

たとえば、特開昭63−155563号公報や特開昭6
 3−4 8 7 6 7号公報には、多孔質体である
電極の側端部をフッ素樹脂フィルムでコの字状に包んで
シールする方法が開示されている。また、特開昭61−
114476号公報には、多孔質電極の側端部に溝部を
形成し、ここにシール部材を挿入し、さらにその側端部
全体をフッ素樹脂フィルムでコの字状に包んでシールす
る方法が開示されている。
For example, JP-A-63-155563 and JP-A-6
3-48767 discloses a method of wrapping and sealing the side end portions of a porous electrode in a U-shape with a fluororesin film. Also, JP-A-61-
Publication No. 114476 discloses a method in which a groove is formed in the side end of a porous electrode, a sealing member is inserted into the groove, and the entire side end is further wrapped in a U-shape with a fluororesin film for sealing. has been done.

しかしながら、上記したいずれの方法も、多孔質電極の
側端部に細長いシール用フィルムを接着する方法である
ため、その作業中に、シール用フィルムのねじれや切断
が起こりやすい。また、シ−ルされた部分で段差ができ
ないようにするためには、シール用フィルムの厚みを極
力薄くすることが必要となり、そのため、シール用フィ
ルムの取扱い作業は一層困難である。
However, in any of the above-mentioned methods, since a long and narrow sealing film is adhered to the side end portion of a porous electrode, the sealing film is likely to be twisted or cut during the operation. Furthermore, in order to prevent the formation of a step in the sealed portion, it is necessary to make the thickness of the sealing film as thin as possible, which makes handling the sealing film even more difficult.

このようなことから、上記した方法で電極側端部にシー
ル用フィルムを均一に接着してガスシールするという作
業は、極めて多大の労力を要する難作業であった。
For this reason, the work of uniformly adhering a sealing film to the electrode side end portion and gas-sealing it by the method described above was a difficult work that required an extremely large amount of labor.

(発明が解決しようとする課題) 本発明は、上記した問題を解決し、炭素質材料からなり
、多孔質の電極またはガス拡散板の側端部を、極めて簡
単に、ガスシールする方法の提供を目的とする。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems and provides a method for extremely easily gas-sealing the side edges of a porous electrode or gas diffusion plate made of a carbonaceous material. With the goal.

(課題を解決するための手段) 上記した目的を達成するために、本発明においては、ガ
ス不透過性導電板とそのガス不透過性導電板よりも幅が
狭いガス透過性炭素質基板とを熱可塑性樹脂を介して重
ね合わせ、それらガス不透過性導電板とガス透過性炭素
質基板とで形成される段差部に、熱可塑性樹脂によって
被覆されたシール部材を前記ガス透過性炭素質基板の側
端面に当接するように載置し、次いで全体を加熱、加圧
し、前記熱可塑性樹脂によって、前記ガス不透過性導電
板と、前記ガス透過性炭素質基板と、前記シール部材と
を接合することを特徴とする、燃料電池用ガス透過性炭
素質基板の側端部のガスシール方法が提供され、また、
熱可塑性樹脂によって接合した、ガス不透過性導電板と
そのガス不透過性導電板よりも幅が狭いガス透過性炭素
質基板の、それらガス不透過性導電板とガス透過性炭素
質基板とで形成される段差部に、熱可塑性樹脂によって
被覆されたシール部材を前記ガス透過性炭素質基板の側
端面に当接するように載置し、次いで全体を加熱、加圧
し、前記熱可塑性樹脂によって、前記シール部材を前記
ガス不透過性導電板と前記ガス透過性炭素質板とに接合
することを特徴とする、燃料電池用ガス透過性炭素質基
板の側端部のガスシール方法が提供される。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a gas-impermeable conductive plate and a gas-permeable carbonaceous substrate having a width narrower than that of the gas-impermeable conductive plate. The gas-impermeable conductive plate and the gas-permeable carbonaceous substrate are overlapped with each other via a thermoplastic resin, and a sealing member coated with the thermoplastic resin is placed on the stepped portion formed by the gas-impermeable conductive plate and the gas-permeable carbonaceous substrate. The gas impermeable conductive plate, the gas permeable carbonaceous substrate, and the sealing member are bonded by the thermoplastic resin by placing the plate in contact with the side end surface, and then heating and pressurizing the entire body. Provided is a method for gas sealing a side end of a gas-permeable carbonaceous substrate for a fuel cell, characterized in that:
A gas-impermeable conductive plate and a gas-permeable carbonaceous substrate having a width narrower than the gas-impermeable conductive plate are bonded together using a thermoplastic resin. A sealing member coated with a thermoplastic resin is placed on the step portion to be formed so as to come into contact with the side end surface of the gas-permeable carbonaceous substrate, and then the whole is heated and pressurized, and the thermoplastic resin is used to Provided is a method for gas sealing a side end of a gas-permeable carbonaceous substrate for a fuel cell, the method comprising joining the sealing member to the gas-impermeable conductive plate and the gas-permeable carbonaceous plate. .

本発明は、燃料極,空気極およびガス拡散板が多孔質炭
素材で構成されている場合の単セルにおけるガスシール
方法である。この発明においては、これら燃料極,空気
極およびガス拡散板を一括してガス透過性炭素質基板と
いう。
The present invention is a gas sealing method in a single cell when the fuel electrode, air electrode, and gas diffusion plate are made of porous carbon material. In this invention, these fuel electrodes, air electrodes, and gas diffusion plates are collectively referred to as a gas-permeable carbonaceous substrate.

このガス透過性炭素質基板は、たとえば、単糸径が4〜
15μm,繊維長が2〜20mmであるような炭素短繊
維を2次元平面内にランダムに分散せしめ、各炭素短繊
維を炭素で結着したもので、連通気孔を有し、板厚方向
や板面方向に燃料ガスや酸化性ガスを透過させることが
できるものである。
This gas-permeable carbonaceous substrate has, for example, a single fiber diameter of 4 to 4.
Short carbon fibers with a diameter of 15 μm and a fiber length of 2 to 20 mm are randomly dispersed in a two-dimensional plane, and each short carbon fiber is bonded with carbon. It allows fuel gas and oxidizing gas to permeate in the surface direction.

このタイプのガス透過性炭素質基板は、たとえば、特公
昭53−18603号公報や特公昭53−43920号
公報に記載されているような方法で製造することができ
る。
This type of gas-permeable carbonaceous substrate can be manufactured, for example, by the method described in Japanese Patent Publication No. 53-18603 and Japanese Patent Publication No. 53-43920.

また、他のタイプのガス透過性炭素質基板としては、た
とえば、単糸径が4〜15μm,繊維長が0. 1 =
 l mmであるような炭素短繊維とフェノール樹脂の
ような炭化可能物質とを混合し、得られた混合物を板状
に成形し、ついで焼成して製造したものであってもよい
。このタイプの基板では、炭素短繊維が3次元的にラン
ダムに配向している。
Other types of gas-permeable carbonaceous substrates include, for example, a single fiber diameter of 4 to 15 μm and a fiber length of 0.5 μm. 1 =
It may be manufactured by mixing short carbon fibers having a diameter of 1 mm with a carbonizable substance such as a phenolic resin, forming the resulting mixture into a plate shape, and then firing the mixture. In this type of substrate, short carbon fibers are randomly oriented three-dimensionally.

このタイプの基板は、たとえば、特公昭61−5091
2号公報や特公昭6 2−2 9 2 0 7号公報に
記載されているような方法で製造することができる。
This type of board is, for example, Japanese Patent Publication No. 61-5091
It can be produced by the method described in Japanese Patent Publication No. 2-29-207.

また、用途に応じては、前者のタイプの基板と後者のタ
イプの基板を組合わせたものであってもよい。
Further, depending on the application, a combination of the former type of substrate and the latter type of substrate may be used.

これらのガス透過性素質基板の平均気孔径や気孔率は、
用いた炭素短繊維の単糸径や含有量,マトリクス炭素の
量などによって変化するが、ガスの透過性と導電性の両
面から考えると、平均気孔径は20〜150μm,気孔
率は40〜80%であることが好ましい。平均気孔径2
0〜60μm,気孔率50〜80%であることがとくに
好ましい。
The average pore diameter and porosity of these gas-permeable substrates are
Although it varies depending on the single fiber diameter and content of the carbon short fibers used, the amount of matrix carbon, etc., considering both gas permeability and conductivity, the average pore diameter is 20 to 150 μm, and the porosity is 40 to 80. % is preferable. Average pore diameter 2
It is particularly preferable to have a porosity of 0 to 60 μm and a porosity of 50 to 80%.

上記したガス透過性炭素質基板の側端部に配置されてそ
の部分をシールする部材は、第2図から第5図で例示し
たように、部材本体11aとそれを被覆している熱可塑
性樹脂1lbとからなっている。
As illustrated in FIGS. 2 to 5, the member disposed at the side end portion of the gas-permeable carbonaceous substrate described above to seal that portion includes a member main body 11a and a thermoplastic resin covering the member main body 11a. It consists of 1 lb.

部材本体11aとしては、上記したガス透過性炭素質基
板と同等の圧縮特性を有する炭素質材料であることが好
ましく、とくに上記したガス透過性炭素質板と同じ材料
であることが好ましい。
The member main body 11a is preferably made of a carbonaceous material having compression properties equivalent to those of the above-mentioned gas-permeable carbonaceous substrate, and is particularly preferably made of the same material as the above-described gas-permeable carbonaceous plate.

第2図は、部材本体11aを熱可塑性樹脂のチューブに
挿入して、熱可塑性樹脂1lbで被覆したシール部材1
1を示し、第3図は、部材本体11aを熱可塑性樹脂の
フィルムで包み、その重なり部分を熱融着することによ
って部材本体11aを熱可塑性樹脂1lbで被覆したシ
ール部材を示す。
Figure 2 shows a sealing member 1 in which the member main body 11a is inserted into a thermoplastic resin tube and covered with 1 lb of thermoplastic resin.
1 and FIG. 3 shows a sealing member in which the member body 11a is covered with a thermoplastic resin 1lb by wrapping the member body 11a with a thermoplastic resin film and heat-sealing the overlapping portion.

これらの場合、チューブとしては、たとえば熱収縮チュ
ーブを用いると、加熱するだけで極めて簡単に熱可塑性
樹脂1lbを形成することができて有用である。
In these cases, it is useful to use, for example, a heat shrink tube as the tube, since 1 lb of thermoplastic resin can be formed extremely easily just by heating.

第4図は、第2図または第3図に示したシール部材1l
の長手方向両端部をさらに熱可塑性樹脂のフィルムでコ
の字状に包んでその両端部をも熱可塑性樹脂11bで被
覆してなるシール部材12を示す斜視図である。また、
第5図は、第2図または第3図における部材本体11a
に熱可塑性樹脂を、たとえば塗布または含浸せしめるこ
とにより、部材本体の全面を熱可塑性樹脂1lbで被覆
した場合のシール部材13を示す斜視図である。
FIG. 4 shows the sealing member 1l shown in FIG. 2 or 3.
FIG. 2 is a perspective view showing a sealing member 12 in which both ends in the longitudinal direction are further wrapped in a U-shape with a thermoplastic resin film, and both ends are also covered with a thermoplastic resin 11b. Also,
FIG. 5 shows the member main body 11a in FIG. 2 or 3.
FIG. 3 is a perspective view showing the sealing member 13 in a case where the entire surface of the member body is coated with 1 lb of thermoplastic resin by, for example, coating or impregnating the thermoplastic resin.

この熱可塑性樹脂は、ガス透過性炭素質基板の板面方向
へのガス漏洩を防止するバリャーとして作用するが、同
時にシール部材をガス透過性炭素質基板の側端部とガス
不透過性導電板に固定する際の加熱時に、一部が溶融し
てシール部材を前記基板および導電板に接着せしめる。
This thermoplastic resin acts as a barrier to prevent gas leakage in the direction of the plate surface of the gas-permeable carbonaceous substrate, but at the same time, the sealing member is connected to the side edges of the gas-permeable carbonaceous substrate and the gas-impermeable conductive plate. During heating during fixation, a portion of the sealing member melts and adheres the sealing member to the substrate and the conductive plate.

燃料電池が、高渥度で動作しかつ腐食性電解質を用いる
リン酸型燃料電池である場合には、用いる熱可塑性樹脂
としては、たとえば、耐食性に優れた、フッ素系樹脂や
、ポリエーテルスルホン樹脂であることが好ましい。
If the fuel cell is a phosphoric acid fuel cell that operates at high altitudes and uses a corrosive electrolyte, the thermoplastic resin used may be, for example, a fluororesin or polyether sulfone resin that has excellent corrosion resistance. It is preferable that

フッ素系樹脂としては、たとえば、ポリテトラフルオロ
エチレン(PTFE),テトラフルオロエチレンとへキ
サフルオロプロピレンの共重合体(PFEP),テトラ
フルオ口エチレンとへキサフルオロプロピレンの共重合
体(PETFE),テトラフルオ口エチレンとパーフル
オロアルキルビニルエーテルとの共重合体(PFA).
テトラフルオロエチレンとヘキサフルオロプロピレンと
パーフルオロアルキルビニルエーテルとの共重合体(E
 P E)などをあげることができる。
Examples of the fluororesin include polytetrafluoroethylene (PTFE), a copolymer of tetrafluoroethylene and hexafluoropropylene (PFEP), a copolymer of tetrafluoroethylene and hexafluoropropylene (PETFE), and a copolymer of tetrafluoroethylene and hexafluoropropylene (PETFE). Copolymer of ethylene and perfluoroalkyl vinyl ether (PFA).
Copolymer of tetrafluoroethylene, hexafluoropropylene and perfluoroalkyl vinyl ether (E
PE), etc. can be mentioned.

また、燃料電池が、比較的低温で動作しかつ電解質とし
て酸やアルカリを用いる燃料電池,またはメンブレン燃
料電池である場合には、用いる熱可塑性樹脂としては、
前記したフッ素系樹脂やポリエーテルスルホン樹脂の外
に、たとえば、ポリ塩化ビニル,ポリ塩化ビニリデン,
ポリスチレン,ポリエチレン,ポリプロピレン,ポリア
ミド,ポリカーボネート,ポリフエニレンオキシド,ポ
リスルホン,ポリエステル,ポリアミドイミド,ポリフ
ェニレンスルフィド,ポリエーテルスルホン,ポリエー
テルエーテルケトンなどをあげることができる。
In addition, when the fuel cell is a fuel cell that operates at a relatively low temperature and uses acid or alkali as an electrolyte, or a membrane fuel cell, the thermoplastic resin used is
In addition to the above-mentioned fluororesins and polyethersulfone resins, for example, polyvinyl chloride, polyvinylidene chloride,
Examples include polystyrene, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene oxide, polysulfone, polyester, polyamideimide, polyphenylene sulfide, polyether sulfone, and polyether ether ketone.

つぎに、ガス不透過性導電板は、ガス不透過性炭素質材
や金属材のように、ガスは透過せず、かつ、導電性を有
する材料の板である。
Next, the gas-impermeable conductive plate is a plate made of a material that does not allow gas to pass therethrough and has conductivity, such as a gas-impermeable carbonaceous material or a metal material.

炭素質材としては、たとえば、高密度炭素の板,ガラス
状炭素の板,炭素粉末や炭素繊維を分散せしめたプラス
チック板,または、黒鉛粉末を強酸で処理して得られた
バーミキュラ黒鉛粉末を圧縮成形した黒鉛板などを用い
ることができる。また、金属材としては、電解銅板やス
テンレス鋼が用いられる。これらに導電性樹脂を被覆し
てなるものであってもよい。これらの厚みは、用途に応
じて適宜に選定すればよい。
Examples of carbonaceous materials include high-density carbon plates, glassy carbon plates, plastic plates in which carbon powder or carbon fibers are dispersed, or compressed vermicular graphite powder obtained by treating graphite powder with strong acid. A molded graphite plate or the like can be used. Further, as the metal material, an electrolytic copper plate or stainless steel is used. These may be coated with a conductive resin. These thicknesses may be appropriately selected depending on the application.

本発明方法においては、たとえば第1図で示したように
、まず、必要な寸法形状のガス不透過性導電板6を用意
する。ついで、横幅がガス不透過性導電板6の横幅より
も狭く、表面に複数本の溝14aが掘削されているガス
透過性炭素質基板14を載せる。このとき、基板l4と
導電板6の間に、組立てる単セルのタイプに応じて、前
記したような熱可塑性樹脂からなるフィルムを介在せし
める。
In the method of the present invention, for example, as shown in FIG. 1, first, a gas-impermeable conductive plate 6 having a required size and shape is prepared. Next, a gas-permeable carbonaceous substrate 14 having a width narrower than that of the gas-impermeable conductive plate 6 and having a plurality of grooves 14a cut on its surface is mounted. At this time, a film made of thermoplastic resin as described above is interposed between the substrate l4 and the conductive plate 6, depending on the type of unit cell to be assembled.

かくして、ガス透過性炭素質基板14の側端部とガス不
透過性導電板6のとの間には、2個の段差部15が形戊
される。
Thus, two step portions 15 are formed between the side end portions of the gas-permeable carbonaceous substrate 14 and the gas-impermeable conductive plate 6.

この段差部15.15のそれぞれに、長さ,高さおよび
幅が段差部とほぼ同じ寸法である、たとえば第2図に示
したシール部材l1をそれがガス透過性炭素質基板12
の側端面に当接するように載置したのち、全体を所定の
温度下で加圧する。
For each of the stepped portions 15.15, a sealing member l1 shown in FIG.
The whole body is placed under pressure at a predetermined temperature.

シール部材11の熱可塑性樹脂1lbの一部は溶融し、
ガス透過性炭素質基板l4とガス不透過性導電板6の間
に介在する熱可塑性フィルムも溶融する。溶融した熱可
塑性樹脂はガス透過性炭素質基板l4の極く一部の連通
気孔内に滲透する。
A portion of 1 lb of thermoplastic resin of the sealing member 11 is melted,
The thermoplastic film interposed between the gas-permeable carbonaceous substrate 14 and the gas-impermeable conductive plate 6 is also melted. The molten thermoplastic resin seeps into a very small portion of the communicating holes of the gas-permeable carbonaceous substrate l4.

そのまま、徐冷することにより、ガス透過性炭素質基板
l4と、ガス不透過性導電板6と、シール部材l1とが
熱可塑性樹脂によって一体に接合される。
By continuing to cool slowly, the gas-permeable carbonaceous substrate l4, the gas-impermeable conductive plate 6, and the sealing member l1 are integrally joined by the thermoplastic resin.

したがって、ガス透過性炭素質基板14の側端部におい
ては、仮面方向で、ガスシールされる。
Therefore, the side edges of the gas-permeable carbonaceous substrate 14 are sealed with gas in the direction of the mask.

なお、段差部l5にシール部材1lを配置するに際して
は、熱可塑性樹脂の接着剤で接着してもよい。
In addition, when arranging the sealing member 1l on the stepped portion l5, it may be adhered with a thermoplastic resin adhesive.

また、基板l4と導電板6とは、熱可塑性樹脂であらか
じめ接着してもよい。
Further, the substrate l4 and the conductive plate 6 may be bonded in advance with thermoplastic resin.

(実施例) 東レ(株)製のポリアクリロニトリル系炭素繊維“トレ
カ”T300(平均単糸径:7μm)を12閣の長さに
切断し、これを常法によって抄造し炭素繊維マットとし
た。ついで、上記炭素繊維マットに、フェノール樹脂の
10重量%メタノール溶液を含浸して、炭素繊維80重
量部に対してフェノール樹脂を125重量部付着させ、
90’Cで3分間乾燥したのち、5kg/cnfの圧力
を加えて170℃で約15分間熱圧プレスしてフェノー
ル樹脂を硬化し、さらに、窒素雰囲気中にて2 5 0
 0 ’Cで焼成してフェノール樹脂を炭化し、縦26
0mm,横300mm,厚み1.8+nmの多孔質炭素
板を得た。
(Example) Polyacrylonitrile carbon fiber "Torayca" T300 (average single yarn diameter: 7 μm) manufactured by Toray Industries, Inc. was cut into 12 lengths, and this was paper-formed by a conventional method to obtain a carbon fiber mat. Next, the carbon fiber mat was impregnated with a 10% by weight methanol solution of phenolic resin to adhere 125 parts by weight of phenolic resin to 80 parts by weight of carbon fibers,
After drying at 90'C for 3 minutes, the phenolic resin was cured by hot pressing at 170°C for about 15 minutes under a pressure of 5 kg/cnf, and then heated at 250 °C in a nitrogen atmosphere.
The phenolic resin is carbonized by firing at 0'C, and the vertical 26
A porous carbon plate having a size of 0 mm, a width of 300 mm, and a thickness of 1.8+ nm was obtained.

この多孔質炭素板における平均気孔径,気孔率は、それ
ぞれ、40μm,71%であった。
The average pore diameter and porosity of this porous carbon plate were 40 μm and 71%, respectively.

この多孔質炭素板の片面に、幅1.5mm,深さlmm
のガス流通用の溝を等間隔に25本掘削した。
On one side of this porous carbon plate, a width of 1.5 mm and a depth of 1 mm
25 grooves for gas distribution were excavated at equal intervals.

また、上記と同様にして得た多孔質炭素板から、長さ3
00mm,幅20m,厚み1. 3 mmの細長い板状
体を切り出し、この板状体を、PTFE製の熱収縮チュ
ーブ(フィルム厚:0.3mm)に挿入したのち、ドラ
イヤーで熱風加熱して板状体の表面にPTFEを密着せ
しめてシール部材とした。
In addition, from a porous carbon plate obtained in the same manner as above, a length of 3
00mm, width 20m, thickness 1. Cut out a 3 mm long thin plate, insert this plate into a PTFE heat shrink tube (film thickness: 0.3 mm), and then heat the plate with hot air using a hair dryer to adhere the PTFE to the surface of the plate. At least it was used as a sealing member.

ついで、縦300mm,横300mm,厚み0. 8 
m+++のガラス状炭素板(GCR−101,(株)神
戸製鋼所製)の上に、厚み25μmのPFAフィルムを
載せ、さらにその上に、溝が掘削されていない方の面が
PFAフィルムと接するようにして上記多孔質炭素板を
載せた。その結果、この多孔質炭素板の両側端部とガラ
ス状炭素板との間には、長さ300mm,幅20mm,
厚み1. 8 mmの段差部が形或される。
Next, the length is 300 mm, the width is 300 mm, and the thickness is 0. 8
A PFA film with a thickness of 25 μm was placed on a glass-like carbon plate (GCR-101, manufactured by Kobe Steel, Ltd.) of m+++, and the side on which the groove was not drilled was in contact with the PFA film. The above porous carbon plate was placed in this manner. As a result, there are 300 mm in length, 20 mm in width,
Thickness 1. A step of 8 mm is formed.

ついで、2個所の上記段差部に、上記したシール部材を
上記多孔質炭素質板の側端面に当接するように載置し、
この状態で、温度350℃、圧力5 kg / crl
で加熱・加圧して、PFAフィルムとシール部材のPT
FE被覆の一部を溶融せしめ、そのまま常置まで徐冷し
た。
Next, the sealing member described above is placed on the two stepped portions so as to contact the side end surface of the porous carbonaceous plate,
In this state, temperature 350℃, pressure 5kg/crl
PT of PFA film and sealing member by heating and pressurizing.
A portion of the FE coating was melted and then slowly cooled to a permanent state.

シール部材は、上記段差部において、多孔質炭素板の側
端部とガラス状炭素板とに接着していた。
The sealing member was adhered to the side end portion of the porous carbon plate and the glassy carbon plate at the stepped portion.

(発明の効果) 以上の説明で明らかなように、本発明方法によれば、熱
可塑性樹脂で被覆されているシール部材を、ガス透過性
炭素質基板の側端部に当接し、加熱してそのシール部材
を前記側端部に接合するだけでよいので、ガスシール方
法としては、従来に比べ、極めて簡略となる。
(Effects of the Invention) As is clear from the above explanation, according to the method of the present invention, a sealing member coated with a thermoplastic resin is brought into contact with the side edge of a gas-permeable carbonaceous substrate and heated. Since it is only necessary to join the sealing member to the side end portion, the gas sealing method is extremely simple compared to the conventional method.

また、ガス透過性炭素質基板とガス不透過性導電板の間
に熱可塑性樹脂フィルムを介在させると、ガス透過性炭
素質基板、ガス不透過性導電板およびシール部材を1回
の加熱処理で同時に接合することができるので、単セル
の製造工程は一層簡略となり、製造コストの低下を実現
することができる。
In addition, if a thermoplastic resin film is interposed between the gas-permeable carbonaceous substrate and the gas-impermeable conductive plate, the gas-permeable carbonaceous substrate, the gas-impermeable conductive plate, and the sealing member can be bonded simultaneously in one heat treatment. Therefore, the manufacturing process of the single cell can be further simplified and the manufacturing cost can be reduced.

さらに、シール部材の部材本体として、ガス透過性炭素
質基板と同じ材料を用いれば、両者の圧縮特性はほぼ同
じであるので、単セルの積層体を締めつけて燃料電池を
組立てたときに、シール部材とガス透過性炭素質基板の
板面は同一平面となり、締め付けむらもなくなって、電
気的・熱的伝4. 導性は均一となり、電泊性能が向上する。
Furthermore, if the main body of the sealing member is made of the same material as the gas-permeable carbonaceous substrate, the compression characteristics of the two will be almost the same, so when the fuel cell is assembled by tightening the stack of single cells, the sealing The plate surfaces of the member and the gas-permeable carbonaceous substrate are on the same plane, eliminating uneven tightening and improving electrical and thermal conduction.4. The conductivity becomes uniform and the insulation performance improves.

また、シール部材の表面は熱可塑性樹脂で被覆されてい
て電気絶縁性になっているため、マニホールドを配置し
たときの各単セル間の電気的短絡も防止されている。
Further, since the surface of the sealing member is coated with thermoplastic resin and has electrical insulation properties, electrical short circuit between each unit cell when the manifold is arranged is also prevented.

さらに、ガス透過性炭素質基板の側端部が耐薬品性の熱
可塑性樹脂で遮蔽されることになるため、たとえばリン
酸型燃料電池においては、側端部のリン酸による腐食や
経時的劣化に伴うガス漏洩や、電解質(リン酸)の漏洩
による飛散などの事態が抑制され、電池寿命が長くなる
Furthermore, since the side edges of the gas-permeable carbonaceous substrate are shielded with a chemical-resistant thermoplastic resin, for example, in a phosphoric acid fuel cell, the side edges may be corroded by phosphoric acid and deteriorate over time. Situations such as gas leakage and scattering due to leakage of electrolyte (phosphoric acid) are suppressed, and battery life is extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシール部材をガス透過性炭素質基板の側端部に
配置する状態を示す斜視図、第2図から第5図は、いず
れも本発明で用いるシール部材の斜視図、第6図は単セ
ル例の部分斜視図、第7図は燃料極(または空気極)の
斜視図、第8図は他の単セル例の部分斜視図、第9図は
さらに別の単セル例の部分斜視図である。 l・・・燃料極、la,9a・・・燃料ガス用の溝、1
b・・・側端部、2・・・空気極、2a,10a・・・
酸化性ガス用の溝、2b・・・側端部、3・・・電解質
マトリクス、3′・・・イオン交換膜、4,5・・・触
媒層、6・・・ガス不透過性導電板(セパレータ)、7
・・・ガス不透過性シール材、8・・・シール部材、9
.10・・・ガス拡散板、1 1,  1 2.  1
 3−・・シール部材、lla−・・部材本体、llb
・・・熱可塑性樹脂、l4・・・ガス透過性炭素質基板
(燃料極,空気極またはガス拡散板)、14a・・・溝
、l5・・・段差部。
FIG. 1 is a perspective view showing a state in which a sealing member is arranged at the side end of a gas-permeable carbonaceous substrate, FIGS. 2 to 5 are perspective views of the sealing member used in the present invention, and FIG. 6 is a partial perspective view of a single cell example, FIG. 7 is a perspective view of a fuel electrode (or air electrode), FIG. 8 is a partial perspective view of another single cell example, and FIG. 9 is a partial perspective view of yet another single cell example. FIG. l...Fuel electrode, la, 9a...Groove for fuel gas, 1
b...Side end portion, 2...Air electrode, 2a, 10a...
Groove for oxidizing gas, 2b... Side end portion, 3... Electrolyte matrix, 3'... Ion exchange membrane, 4, 5... Catalyst layer, 6... Gas impermeable conductive plate (Separator), 7
...Gas-impermeable sealing material, 8...Sealing member, 9
.. 10... Gas diffusion plate, 1 1, 1 2. 1
3--Seal member, lla--Member body, llb
...Thermoplastic resin, l4... Gas permeable carbonaceous substrate (fuel electrode, air electrode or gas diffusion plate), 14a... Groove, l5... Step portion.

Claims (2)

【特許請求の範囲】[Claims] (1)ガス不透過性導電板とそのガス不透過性導電板よ
りも幅が狭いガス透過性炭素質基板とを熱可塑性樹脂を
介して重ね合わせ、それらガス不透過性導電板とガス透
過性炭素質基板とで形成される段差部に、熱可塑性樹脂
によって被覆されたシール部材を前記ガス透過性炭素質
基板の側端面に当接するように載置し、次いで全体を加
熱、加圧し、前記熱可塑性樹脂によって、前記ガス不透
過性導電板と、前記ガス透過性炭素質基板と、前記シー
ル部材とを接合することを特徴とする、燃料電池用ガス
透過性炭素質基板の側端部のガスシール方法。
(1) A gas-impermeable conductive plate and a gas-permeable carbonaceous substrate whose width is narrower than that of the gas-impermeable conductive plate are stacked together via a thermoplastic resin, and the gas-impermeable conductive plate and the gas-permeable A sealing member coated with a thermoplastic resin is placed on the stepped portion formed by the carbonaceous substrate so as to be in contact with the side end surface of the gas-permeable carbonaceous substrate, and then the whole is heated and pressurized. The gas-impermeable conductive plate, the gas-permeable carbonaceous substrate, and the sealing member are bonded to each other by a thermoplastic resin, and the side end portion of the gas-permeable carbonaceous substrate for a fuel cell is characterized in that: Gas seal method.
(2)熱可塑性樹脂によって接合した、ガス不透過性導
電板とそのガス不透過性導電板よりも幅が狭いガス透過
性炭素質基板の、それらガス不透過性導電板とガス透過
性炭素質基板とで形成される段差部に、熱可塑性樹脂に
よって被覆されたシール部材を前記ガス透過性炭素質基
板の側端面に当接するように載置し、次いで全体を加熱
、加圧し、前記熱可塑性樹脂によって、前記シール部材
を前記ガス不透過性導電板と前記ガス透過性炭素質板と
に接合することを特徴とする、燃料電池用ガス透過性炭
素質基板の側端部のガスシール方法。
(2) A gas-impermeable conductive plate and a gas-permeable carbonaceous substrate whose width is narrower than that of the gas-impermeable conductive plate and the gas-permeable carbonaceous substrate bonded by thermoplastic resin. A sealing member coated with a thermoplastic resin is placed on the stepped portion formed with the substrate so as to be in contact with the side end surface of the gas-permeable carbonaceous substrate, and then the whole is heated and pressurized to remove the thermoplastic resin. A method for gas sealing a side end of a gas-permeable carbonaceous substrate for a fuel cell, characterized in that the sealing member is joined to the gas-impermeable conductive plate and the gas-permeable carbonaceous plate with a resin.
JP1344154A 1989-12-29 1989-12-29 Gas seal method for side end part of gas transmissive carbon base for fuel battery Pending JPH03205764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1344154A JPH03205764A (en) 1989-12-29 1989-12-29 Gas seal method for side end part of gas transmissive carbon base for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344154A JPH03205764A (en) 1989-12-29 1989-12-29 Gas seal method for side end part of gas transmissive carbon base for fuel battery

Publications (1)

Publication Number Publication Date
JPH03205764A true JPH03205764A (en) 1991-09-09

Family

ID=18367055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344154A Pending JPH03205764A (en) 1989-12-29 1989-12-29 Gas seal method for side end part of gas transmissive carbon base for fuel battery

Country Status (1)

Country Link
JP (1) JPH03205764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259743A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd Fuel cell, its edge seal member, and method of manufacturing edge seal member
JP2011082078A (en) * 2009-10-09 2011-04-21 Fuji Electric Systems Co Ltd Sealing method of fuel cell, sealing structure of fuel cell, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259743A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd Fuel cell, its edge seal member, and method of manufacturing edge seal member
JP2011082078A (en) * 2009-10-09 2011-04-21 Fuji Electric Systems Co Ltd Sealing method of fuel cell, sealing structure of fuel cell, and fuel cell

Similar Documents

Publication Publication Date Title
EP0174762B1 (en) Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell
US4505992A (en) Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
US4175165A (en) Fuel cell system utilizing ion exchange membranes and bipolar plates
US5858569A (en) Low cost fuel cell stack design
US6689504B1 (en) Fuel cell stack with separator of a laminate structure
KR100662681B1 (en) Improved membrane electrode assembly for pem fuel cell
US5707755A (en) PEM/SPE fuel cell
US4732637A (en) Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
JP2005518073A (en) PEM fuel cell separator plate
US4245009A (en) Porous coolant tube holder for fuel cell stack
US7014947B2 (en) Integral membrane support and frame structure
JP2006100267A (en) Solid polymer electrolyte membrane electrode junction body and solid polymer fuel cell
US20030118888A1 (en) Polymer coated metallic bipolar separator plate and method of assembly
JPH03205764A (en) Gas seal method for side end part of gas transmissive carbon base for fuel battery
JPS6348766A (en) Composite electrode substrate having different rib height and its manufacture
JP3838403B2 (en) Phosphoric acid fuel cell
JPS59132572A (en) Fuel cell
JPH02226663A (en) Gas seal method for base material end for fuel cell
JPH0684526A (en) Separator with rib for fuel cell and its manufacture
JPH06260177A (en) Separator for fuel cell with solid highpolymer electrolyte and manufacture thereof
JPH0286066A (en) Conducting composite substrate
JPH076773A (en) Compound electrode base board having different rib height and manufacture thereof
JPS61173465A (en) Fuel cell
JPS61216254A (en) Fuel cell
JP2017107755A (en) Seal member for fuel cell and fuel cell