JP2009301837A - Fuel cell, end sealing member and method of manufacturing end sealing member - Google Patents

Fuel cell, end sealing member and method of manufacturing end sealing member Download PDF

Info

Publication number
JP2009301837A
JP2009301837A JP2008154282A JP2008154282A JP2009301837A JP 2009301837 A JP2009301837 A JP 2009301837A JP 2008154282 A JP2008154282 A JP 2008154282A JP 2008154282 A JP2008154282 A JP 2008154282A JP 2009301837 A JP2009301837 A JP 2009301837A
Authority
JP
Japan
Prior art keywords
end seal
porous substrate
seal member
flow path
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008154282A
Other languages
Japanese (ja)
Other versions
JP5504584B2 (en
Inventor
Norio Sasaki
規雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008154282A priority Critical patent/JP5504584B2/en
Publication of JP2009301837A publication Critical patent/JP2009301837A/en
Application granted granted Critical
Publication of JP5504584B2 publication Critical patent/JP5504584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To deter generation of gas leak with time, by preventing the fall of sealing pressure due to creeping. <P>SOLUTION: At outer edges parallel with gas flow channels of porous base materials 120a, 120b, 120c, 120d, end sealing members 140a, 140b, 140c, 140d are arranged so as gas of each channel not to leak to a counter electrode. The end sealing members 140a, 140b, 140c, 140d have end sealing members such as swollen graphite sheets formed with water-repellent treatment given, on surfaces other than those at sides of the porous base materials 120a, 120b, 120c, 120d. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は燃料電池、その端部シール部材および端部シール部材の製造方法に関し、特に電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、燃料極触媒層に燃料ガスのガス流路を有する第1の多孔質基材を配置し、空気極触媒層に酸化剤ガスのガス流路を有する第2の多孔質基材を配置した単位セルと、ガス不透過性のセパレータとが積層される燃料電池、その端部シール部材および端部シール部材の製造方法に関する。   The present invention relates to a fuel cell, an end seal member thereof, and a manufacturing method of the end seal member, and in particular, an electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, and fuel gas is contained in the fuel electrode catalyst layer. A unit cell in which a first porous substrate having a gas flow path is disposed, and a second porous substrate having a gas flow path for an oxidant gas is disposed in the air electrode catalyst layer, and a gas impermeable separator And a method of manufacturing the end seal member and the end seal member.

近年、燃料電池は、燃料の化学エネルギーを直接電気エネルギーに変換できることから発電効率が高く環境にもやさしいとして、多様な用途への普及が期待されている。
図5は、燃料電池の単位セルを2積層した状態を示した概略構成図である。燃料電池200は、セパレータ210a,210bの間に、ガス流路を有するリブ付きの多孔質基材220a,220bと、対極を構成する電極部230a,230bが挟持されている。電極部230a,230bの間には、図示しない電解質層が形成されている。同様に、セパレータ210b,210cの間に、多孔質基材220c,220dと、対極を構成する電極部230c,230dが挟持されている。多孔質基材220a,220b,220c,220dのガス流路に平行な外延部には、それぞれのガスが対極に漏洩しないように端部シール部材240a,240b,240c,240dが配置されている。ここで、端部シール部材240a,240b,240c,240dという場合、それぞれ多孔質基材220a,220b,220c,220dを挟んで配置される1対の端部シール部材を示す。
In recent years, fuel cells are expected to be widely used for various purposes because they can directly convert chemical energy of fuel into electrical energy and thus have high power generation efficiency and are environmentally friendly.
FIG. 5 is a schematic configuration diagram showing a state in which two unit cells of the fuel cell are stacked. In the fuel cell 200, ribbed porous base materials 220a and 220b having gas flow paths and electrode portions 230a and 230b constituting a counter electrode are sandwiched between separators 210a and 210b. An electrolyte layer (not shown) is formed between the electrode portions 230a and 230b. Similarly, porous base materials 220c and 220d and electrode portions 230c and 230d constituting a counter electrode are sandwiched between separators 210b and 210c. End seal members 240a, 240b, 240c, and 240d are arranged in the extended portions parallel to the gas flow paths of the porous base materials 220a, 220b, 220c, and 220d so that the respective gases do not leak to the counter electrode. Here, the end seal members 240a, 240b, 240c, and 240d indicate a pair of end seal members disposed with the porous base materials 220a, 220b, 220c, and 220d interposed therebetween, respectively.

端部シール部材240a,240b,240c,240dの部材には、ガス不透過性とともに電解質に対する耐食性が求められている。また、ガス流路の高さを確保する必要もあることから、2mm程度の厚さが要求される。更に、電解質を多く含んでしまうと端部シール部材240a,240b,240c,240dの端面において上下セル間で電解質が液絡し、上下セル間での電解質の移動などの問題が発生する可能性があるため、端面で電解質が液絡しないことが求められた。これらの条件を満足する端部シール部材240a,240b,240c,240dの部材として、従来は黒鉛化された緻密な炭素材や、セパレータの部材を端部シール部材の幅に切断してフッ素樹脂フィルムを介して積層したものが使用されている。   The end seal members 240a, 240b, 240c, and 240d are required to have gas impermeability and corrosion resistance to the electrolyte. Moreover, since it is necessary to ensure the height of the gas flow path, a thickness of about 2 mm is required. Furthermore, if a large amount of electrolyte is contained, there is a possibility that a problem such as electrolyte migration between the upper and lower cells may occur due to electrolyte leakage between the upper and lower cells at the end surfaces of the end seal members 240a, 240b, 240c, and 240d. For this reason, it was required that the electrolyte does not have a liquid junction at the end face. As the end seal members 240a, 240b, 240c, and 240d that satisfy these conditions, a conventional graphitized dense carbon material or a separator member is cut into the width of the end seal member to obtain a fluororesin film. The thing laminated | stacked through is used.

また、ガス通路を形成する多孔質基材220a,220bや電極部230a,230bと端部シール部材240a,240bとは、それぞれの材料の製作時の寸法誤差により段差が生じる。例えば、多孔質基材220aおよび電極部230aの高さの合計が、端部シール部材240aの高さよりも大きい場合は、端部シール部材240aに掛かる圧力が弱くなり、シール性が悪くなりガス漏洩の原因となる。また、端部シール部材240aの高さが、多孔質基材220aおよび電極部230aの高さの合計よりも大きい場合は、電極部230a,230bの接触抵抗が大きくなる。   Further, the porous base materials 220a and 220b, the electrode portions 230a and 230b, and the end seal members 240a and 240b that form the gas passages are stepped due to a dimensional error in manufacturing each material. For example, when the total height of the porous base material 220a and the electrode portion 230a is larger than the height of the end seal member 240a, the pressure applied to the end seal member 240a is weakened, the sealing performance is deteriorated, and gas leakage occurs. Cause. Further, when the height of the end seal member 240a is larger than the total height of the porous base material 220a and the electrode portion 230a, the contact resistance of the electrode portions 230a and 230b increases.

この問題に対して、端部シール部材240a,240bの上面や下面にクッション部材を挿入して多孔質基材220a,220bや電極部230a,230bと端部シール部材240a,240bとの寸法誤差を吸収する方法が知られている。   With respect to this problem, a cushion member is inserted into the upper and lower surfaces of the end seal members 240a and 240b to reduce the dimensional error between the porous base materials 220a and 220b and the electrode portions 230a and 230b and the end seal members 240a and 240b. Absorbing methods are known.

また、上記の問題に対して、端部シール部材に膨張黒鉛シートを用い、その圧縮歪率を最適化して上記の寸法誤差を吸収し、所望のシール性能を得る方法も知られている(例えば、特許文献1参照)。
特開2001−023654号広報
Further, with respect to the above problem, there is also known a method for obtaining a desired sealing performance by using an expanded graphite sheet as an end seal member, optimizing its compressive strain rate and absorbing the above dimensional error (for example, , See Patent Document 1).
JP 2001-023654 A

しかし、上記のクッション部材を用いる方法および特許文献1に記載の方法では、長時間使用しているとクッション部材や端部シール部材の経時的な形状変化(クリープ)により、クッション部材や端部シール部材に掛かる圧力(シール圧)が低下する可能性がある。そして、シール圧が低下すると、ガス漏洩の原因となってしまうという課題がある。   However, in the method using the cushion member and the method described in Patent Document 1, when the cushion member or the end seal member is used for a long time, the cushion member or the end seal is caused by a change in shape (creep) with time. There is a possibility that the pressure (seal pressure) applied to the member is lowered. And when a seal pressure falls, there exists a subject of becoming a cause of gas leakage.

本発明はこのような点に鑑みてなされたものであり、経時的なガス漏洩の発生を抑止する燃料電池、その端部シール部材および端部シール部材の製造方法を提供することを目的とする。   The present invention has been made in view of these points, and an object thereof is to provide a fuel cell that suppresses the occurrence of gas leakage over time, an end seal member thereof, and a method of manufacturing the end seal member. .

電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、燃料極触媒層に燃料ガスのガス流路を有する第1の多孔質基材を配置し、空気極触媒層に酸化剤ガスのガス流路を有する第2の多孔質基材を配置した単位セルと、ガス不透過性のセパレータとが積層される燃料電池が提供される。この燃料電池は、第1の端部シール部材および第2の端部シール部材を有する。第1の端部シール部材は、第1の多孔質基材に形成される燃料ガスのガス流路と平行な相対する二辺の第1の多孔質基材の端部に、膨潤性を有する所定の第1の端部シール材を配置する時、第1の端部シール材の第1の多孔質基材側となる面を除く表面に、はっ水処理を施して形成される。第2の端部シール部材は、第2の多孔質基材に形成される酸化剤ガスのガス流路と平行な相対する二辺の第2の多孔質基材の端部に、膨潤性を有する所定の第2の端部シール材を配置する時、第2の端部シール材の第2の多孔質基材側となる面を除く表面に、はっ水処理を施して形成される。   An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a first porous substrate having a fuel gas gas flow path is disposed in the fuel electrode catalyst layer, and oxidation is performed on the air electrode catalyst layer. A fuel cell is provided in which a unit cell in which a second porous substrate having a gas flow path for agent gas is disposed and a gas-impermeable separator are laminated. The fuel cell has a first end seal member and a second end seal member. The first end seal member is swellable at the ends of the first porous substrate on two opposite sides parallel to the gas flow path of the fuel gas formed on the first porous substrate. When the predetermined first end seal material is disposed, the surface of the first end seal material excluding the surface on the first porous substrate side is subjected to water repellent treatment. The second end seal member is provided with swellability at the end portions of the second porous substrate on the two opposite sides parallel to the gas flow path of the oxidant gas formed on the second porous substrate. When the predetermined second end seal material is disposed, the surface of the second end seal material excluding the surface on the second porous substrate side is subjected to water repellent treatment.

このような燃料電池によれば、第1の端部シール部材が、膨潤性を有する所定の第1の端部シール材の配置時に第1の多孔質基材側となる面を除く表面にはっ水処理を施して形成される。そして、第1の端部シール部材が第1の多孔質基材に形成されるガス流路と平行な相対する二辺の第1の多孔質基材の端部に配置される。また、第2の端部シール部材が、膨潤性を有する所定の第2の端部シール材の配置時に第2の多孔質基材側となる面を除く表面にはっ水処理を施して形成される。そして、第2の端部シール部材が第2の多孔質基材に形成されるガス流路と平行な相対する二辺の第2の多孔質基材の端部に配置される。   According to such a fuel cell, the first end seal member has a surface excluding the surface that becomes the first porous substrate side when the predetermined first end seal member having swelling property is disposed. It is formed by a water repellent treatment. Then, the first end seal member is disposed at the ends of the first porous substrate on the two opposite sides parallel to the gas flow path formed in the first porous substrate. Further, the second end seal member is formed by performing water repellent treatment on the surface excluding the surface which becomes the second porous substrate side when the predetermined second end seal member having swelling property is disposed. Is done. And the 2nd edge part seal member is arrange | positioned at the edge part of the 2nd porous base material of two opposing sides parallel to the gas flow path formed in the 2nd porous base material.

また、上記課題を解決するために、上記の燃料電池に配置される端部シール部材であって、膨潤性を有する所定の端部シール材が、配置時に多孔質基材側となる面を除く表面に、はっ水処理を施されて形成される端部シール部材が提供される。   Further, in order to solve the above-described problem, an end seal member disposed in the fuel cell, except for a surface on which the predetermined end seal member having swelling property becomes the porous substrate side when disposed An end seal member formed by subjecting the surface to a water repellency treatment is provided.

更に、上記課題を解決するために、上記の端部シール部材の製造方法であって、膨潤性を有する所定の端部シール材の配置時に多孔質基材側となる面を除く表面に、はっ水処理を施す手順、を有する端部シール部材の製造方法が提供される。   Furthermore, in order to solve the above-mentioned problem, in the manufacturing method of the above-mentioned end seal member, the surface excluding the surface which becomes the porous substrate side when the predetermined end seal material having swelling property is disposed, A method for manufacturing an end seal member is provided.

上記の燃料電池、その端部シール部材および端部シール部材の製造方法によれば、膨潤性を有する端部シール材の、燃料電池への配置時に多孔質基材側となる面を除く表面に、はっ水処理が施される。このようにすると、端部シール材が、電解質層、または燃料極触媒層、または多孔質基材に保持される電解質を含んで膨潤する。これにより、クリープによるシール圧の低下を抑え、経時的なガス漏洩の発生を抑止することができる。   According to the fuel cell, the end seal member thereof, and the manufacturing method of the end seal member, the end seal material having swelling property is removed from the surface excluding the surface that becomes the porous substrate side when the fuel cell is disposed. Water repellent treatment is applied. If it does in this way, an edge part sealing material will swell including the electrolyte hold | maintained at an electrolyte layer, a fuel electrode catalyst layer, or a porous base material. Thereby, the fall of the seal pressure by creep can be suppressed and generation | occurrence | production of the gas leakage with time can be suppressed.

以下、本実施の形態を図面を参照して詳細に説明する。
図1は、本実施の形態の燃料電池の端部シール部材単体を示した図であって、(A)は斜視図、(B)は長手方向に対する片側端の側面図である。端部シール部材140は、端部シール材141がフッ素樹脂膜142によって被覆することによる、はっ水処理が施されている。端部シール部材140は、直方体の形状である。また、端部シール部材140は、燃料電池内に配置される向きに対して内側面143、外側面144、上面145および下面146を有する。
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
1A and 1B are views showing a single end seal member of a fuel cell according to the present embodiment. FIG. 1A is a perspective view, and FIG. 1B is a side view of one end with respect to the longitudinal direction. The end seal member 140 is subjected to water repellent treatment by the end seal member 141 being covered with the fluororesin film 142. The end seal member 140 has a rectangular parallelepiped shape. The end seal member 140 has an inner surface 143, an outer surface 144, an upper surface 145, and a lower surface 146 with respect to the direction in which the end seal member 140 is disposed in the fuel cell.

端部シール材141は、図1では点線によって表されており、膨張黒鉛シートを含む膨潤性を有する所定の端部シール材で形成される。なお、図1では、説明のため端部シール材141とフッ素樹脂膜142との間に隙間があるが、実際には密着される。また、端部シール材141として、膨張黒鉛シートの他に、例えば、多孔質カーボン板、焼成カーボン板等を用いることもできる。   The end seal material 141 is represented by a dotted line in FIG. 1 and is formed of a predetermined end seal material having swelling properties including an expanded graphite sheet. In FIG. 1, there is a gap between the end seal material 141 and the fluororesin film 142 for the sake of explanation, but in actuality it is in close contact. In addition to the expanded graphite sheet, for example, a porous carbon plate, a fired carbon plate, or the like can be used as the end seal material 141.

フッ素樹脂膜142は、フッ素樹脂が長手方向の1つの面(内側面143)を除いて端部シール材141を被覆する。フッ素樹脂には、例えば、四フッ化エチレン−六フッ化プロピレン共重合樹脂(FEP:Fluorinated Ethylene Propylene copolymer、融点250〜280℃)、四フッ化エチレン樹脂(PTFE:Poly Tetra Fluoro Ethylene、融点327℃)、フッ化アルキコキシエチレン樹脂(PFA:Poly tetra Fluoro ethylene-perfluoro Alkyl vinyl ether copolymer、融点300〜310℃)およびフッ化エチレンプロピレン樹脂(TFP:Tetra Fluoro Propanol、融点290〜300℃)等を用いることができる。   The fluororesin film 142 covers the end seal material 141 except for one surface (inner surface 143) in the longitudinal direction. Examples of the fluororesin include, for example, tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP: Fluorinated Ethylene Propylene copolymer, melting point: 250 to 280 ° C), tetrafluoroethylene resin (PTFE: Poly Tetra Fluoro Ethylene, melting point: 327 ° C). ), Fluorinated alkyloxyethylene resin (PFA: Polytetrafluoroethylene-perfluoroalkenyl vinyl ether copolymer, melting point: 300 to 310 ° C.) and fluorinated ethylene propylene resin (TFP: Tetra Fluoro Propanol, melting point: 290 to 300 ° C.), etc. Can be used.

内側面143は、端部シール部材140のフッ素樹脂膜142によって被覆されない面である。内側面143は、端部シール材141の表面が露出している。端部シール部材140は、燃料電池内に内側面143が多孔質基材側(内側)を向くよう配置される(図2で詳しく説明する)。   The inner side surface 143 is a surface that is not covered with the fluororesin film 142 of the end seal member 140. The inner side surface 143 exposes the surface of the end seal material 141. The end seal member 140 is disposed in the fuel cell so that the inner side surface 143 faces the porous substrate side (inner side) (described in detail in FIG. 2).

外側面144は、内側面143と平行かつ対向する面である。外側面144は、フッ素樹脂膜142によって被覆される。
上面145は、内側面143および外側面144と垂直な面である。上面145は、フッ素樹脂膜142によって被覆される。
The outer side surface 144 is a surface that is parallel to and faces the inner side surface 143. The outer side surface 144 is covered with the fluororesin film 142.
The upper surface 145 is a surface perpendicular to the inner side surface 143 and the outer side surface 144. The upper surface 145 is covered with the fluororesin film 142.

下面146は、上面145と平行かつ対向する面である。下面146は、フッ素樹脂膜142によって被覆される。
なお、端部シール材141の長手方向の両端面もフッ素樹脂膜142によって被覆される。
The lower surface 146 is a surface parallel to and opposed to the upper surface 145. The lower surface 146 is covered with the fluororesin film 142.
Note that both end surfaces of the end sealant 141 in the longitudinal direction are also covered with the fluororesin film 142.

このように、端部シール部材140の内側面143をフッ素樹脂膜142によって被覆せず、端部シール材141が電解質等の液体を含むようにする。
これにより、端部シール材141が適宜膨潤して、クリープによるシール圧の低下を防止することができ、経時的なガスリークの発生を抑止することができる。
In this manner, the inner side surface 143 of the end seal member 140 is not covered with the fluororesin film 142, and the end seal member 141 includes a liquid such as an electrolyte.
As a result, the end seal material 141 swells as appropriate, so that a decrease in the seal pressure due to creep can be prevented, and the occurrence of gas leak over time can be suppressed.

また、外側面144、上面145、下面146および長手方向の両端面をフッ素樹脂膜142によって被覆することで、はっ水効果を得ることができる。これにより、端部シール材141が電解質を含んでも、外側面144、上面145、下面146および長手方向の両端面等から電解質が漏れることを防止することができる。電解質の漏れの防止は、燃料電池のセル間での液絡防止の効果もある。   Further, by covering the outer surface 144, the upper surface 145, the lower surface 146 and both end surfaces in the longitudinal direction with the fluororesin film 142, a water repellency effect can be obtained. Thereby, even if the end seal material 141 includes an electrolyte, the electrolyte can be prevented from leaking from the outer surface 144, the upper surface 145, the lower surface 146, both end surfaces in the longitudinal direction, and the like. Prevention of electrolyte leakage also has the effect of preventing liquid junctions between fuel cell cells.

なお、端部シール材141は、電解質を含むことができれば、内側面143の全面が露出されている必要は無く、例えば、内側面143の一部がフッ素樹脂膜142で被覆されていてもよい。   Note that the end seal material 141 does not need to expose the entire inner surface 143 as long as it can contain an electrolyte. For example, a part of the inner surface 143 may be covered with the fluororesin film 142. .

以下、本実施の形態を図面を参照して詳細に説明する。
図2は、本実施の形態の燃料電池の単位セルを2積層した状態を示した図である。燃料電池100は、セパレータ110aおよびセパレータ110bの間に形成される単位セルと、セパレータ110bおよびセパレータ110cの間に形成される単位セルとが2層に積層された状態を示している。
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
FIG. 2 is a diagram showing a state in which two unit cells of the fuel cell according to the present embodiment are stacked. The fuel cell 100 shows a state in which a unit cell formed between the separator 110a and the separator 110b and a unit cell formed between the separator 110b and the separator 110c are stacked in two layers.

セパレータ110a,110b,110cは、ガス不透過性および電解質に対する耐食性を満たしている。セパレータ110a,110b,110cは、例えば、セルロース繊維からなる紙に熱硬化性樹脂を含浸し、乾燥後積層してプレスし、更に焼成して作成される。   The separators 110a, 110b, and 110c satisfy gas impermeability and corrosion resistance to the electrolyte. The separators 110a, 110b, and 110c are formed by, for example, impregnating a paper made of cellulose fiber with a thermosetting resin, drying, laminating and pressing, and further firing.

セパレータ110a,110bに挟持される単位セルは、図示しない電解質層を挟んで配置された触媒層を有する電極部130a(燃料電極)と電極部130b(空気電極)を有する。更に、上記単位セルは、電解質層、電極部130aおよび電極部130bを挟んで配置された、酸化剤ガスまたは空気の流路(以下、空気流路とする)を形成するリブ付きの多孔質基材120a,120bを有する。多孔質基材120aおよび電極部130aを含む層を燃料極触媒層と称する。また、多孔質基材120bおよび電極部130bを含む層を空気極触媒層と称する。多孔質基材120a,120bの材料としては、例えば、多孔質カーボンを用いることができる。燃料電池100の例では、燃料ガス流路と空気流路とは、互いに直交するように重ね合わされている。   The unit cell sandwiched between the separators 110a and 110b has an electrode portion 130a (fuel electrode) and an electrode portion 130b (air electrode) having a catalyst layer disposed with an electrolyte layer (not shown) interposed therebetween. Further, the unit cell includes a ribbed porous substrate that forms an oxidant gas or air flow path (hereinafter referred to as an air flow path) that is disposed with the electrolyte layer, the electrode part 130a, and the electrode part 130b interposed therebetween. It has material 120a, 120b. A layer including the porous substrate 120a and the electrode part 130a is referred to as a fuel electrode catalyst layer. The layer including the porous substrate 120b and the electrode part 130b is referred to as an air electrode catalyst layer. As a material of the porous base materials 120a and 120b, for example, porous carbon can be used. In the example of the fuel cell 100, the fuel gas channel and the air channel are overlapped so as to be orthogonal to each other.

また、セパレータ110b,110cに挟持される単位セルについても同様に、電解質層を挟んだ両面に多孔質基材120cおよび電極部130cと、多孔質基材120dおよび電極部130dが配置されている。   Similarly, with respect to the unit cells sandwiched between the separators 110b and 110c, the porous base material 120c and the electrode part 130c, and the porous base material 120d and the electrode part 130d are arranged on both sides of the electrolyte layer.

なお、電解質層には、例えば、電解質としてリン酸が保持される。更に、電解質層で電界質として使用するリン酸が不足しないよう、多孔質基材120a,120b,120c,120dおよび電極部130a,130b,130c,130dにもリン酸水溶液を含浸し、保持する。これにより、電解質層に電界質であるリン酸を供給し続けることができる。   In the electrolyte layer, for example, phosphoric acid is held as an electrolyte. Further, the porous base materials 120a, 120b, 120c, and 120d and the electrode portions 130a, 130b, 130c, and 130d are also impregnated and held with the phosphoric acid solution so that the phosphoric acid used as the electrolyte in the electrolyte layer is not insufficient. Thereby, it is possible to continue supplying phosphoric acid as an electrolyte to the electrolyte layer.

多孔質基材120a,120b,120c,120dのガス流路に平行な外縁部には、それぞれのガスが対極に漏洩しないように端部シール部材140a,140b,140c,140dが配置される。   End seal members 140a, 140b, 140c, and 140d are disposed on the outer edge portions of the porous base materials 120a, 120b, 120c, and 120d that are parallel to the gas flow paths so that the respective gases do not leak to the counter electrode.

端部シール部材140a,140b,140c,140dは、図1に示した端部シール部材140と同様に形成されている。すなわち、端部シール部材140a,140b,140c,140dは、膨張黒鉛シート等の端部シール材の多孔質基材側の面を除く表面が、フッ素樹脂により被覆されて形成される。ここで、端部シール部材140a,140b,140c,140dという場合、それぞれ多孔質基材120a,120b,120c,120dを挟んで配置される1対の端部シール部材を示す。   The end seal members 140a, 140b, 140c, and 140d are formed in the same manner as the end seal member 140 shown in FIG. That is, the end seal members 140a, 140b, 140c, and 140d are formed by coating the surface of the end seal material such as an expanded graphite sheet, excluding the surface on the porous substrate side, with the fluororesin. Here, the end seal members 140a, 140b, 140c, and 140d indicate a pair of end seal members disposed with the porous base materials 120a, 120b, 120c, and 120d interposed therebetween, respectively.

また、端部シール部材140aの下面には、多孔質基材120aおよび電極部130aと端部シール部材140aの製作誤差を吸収するクッション部材150aが挿入される。ここで、クッション部材150a,150bという場合、それぞれ多孔質基材120a,120cを挟んで配置される1対のクッション部材を示す。   Further, a cushion member 150a that absorbs manufacturing errors of the porous base material 120a, the electrode portion 130a, and the end seal member 140a is inserted into the lower surface of the end seal member 140a. Here, the cushion members 150a and 150b indicate a pair of cushion members disposed with the porous base materials 120a and 120c interposed therebetween, respectively.

クッション部材150aは、多孔質基材120bおよび電極部130bと端部シール部材140bの製作誤差も吸収する。また、クッション部材150bも同様に、多孔質基材120cおよび電極部130cと端部シール部材140cの製作誤差や多孔質基材120dおよび電極部130dと端部シール部材140dの製作誤差を吸収する。クッション部材150a,150bとしては、端部シール材141と同様の材料を用いることができる。クッション部材150a,150bの材料として、例えば、発泡PTFEが用いられる。   The cushion member 150a also absorbs manufacturing errors of the porous base material 120b, the electrode portion 130b, and the end seal member 140b. Similarly, the cushion member 150b absorbs manufacturing errors of the porous base material 120c and the electrode part 130c and the end seal member 140c and manufacturing errors of the porous base material 120d and the electrode part 130d and the end seal member 140d. As the cushion members 150a and 150b, the same material as the end seal material 141 can be used. As a material of the cushion members 150a and 150b, for example, foamed PTFE is used.

このような構成の燃料電池100では、セパレータ110a,110b,110cによって、端部シール部材140a,140b,140c,140dやクッション部材150a,150bが、ガス漏洩が発生しない適切なシール圧で保持される。しかし、燃料電池100を長時間使用していると端部シール部材140a,140b,140c,140dやクッション部材150a,150bのクリープによって、シール圧が低下し、ガス漏洩の原因となる。   In the fuel cell 100 having such a configuration, the end seal members 140a, 140b, 140c, and 140d and the cushion members 150a and 150b are held by the separators 110a, 110b, and 110c at an appropriate seal pressure that does not cause gas leakage. . However, when the fuel cell 100 is used for a long time, the seal pressure decreases due to the creep of the end seal members 140a, 140b, 140c, 140d and the cushion members 150a, 150b, causing gas leakage.

図3は、燃料電池の一部拡大図であって、(A)は使用開始時、(B)は長時間使用後の状態を示している。図3は、図2における記号Xで示した箇所を燃料電池100の奥行き方向から見た拡大図である。図2で示した構成に加えて、電解質層160aを更に図示している。燃料電池100は、使用開始時では、(A)に示すように端部シール部材140a,140bやクッション部材150aが、セパレータ110a,110bによりガス漏洩が発生しない適切なシール圧で保持されている。しかし、(B)に示すように長時間の使用後には、端部シール部材140a,140bやクッション部材150aのクリープによる形状変化(シール圧方向の厚さ減少)が生じ、シール圧が低下する。   3A and 3B are partially enlarged views of the fuel cell, in which FIG. 3A shows a state after use, and FIG. 3B shows a state after long-time use. FIG. 3 is an enlarged view of the portion indicated by the symbol X in FIG. 2 as viewed from the depth direction of the fuel cell 100. In addition to the configuration shown in FIG. 2, an electrolyte layer 160a is further illustrated. At the start of use of the fuel cell 100, the end seal members 140a and 140b and the cushion member 150a are held at an appropriate seal pressure that does not cause gas leakage by the separators 110a and 110b, as shown in FIG. However, as shown in (B), after a long period of use, the end seal members 140a and 140b and the cushion member 150a undergo shape changes due to creep (thickness reduction in the seal pressure direction), and the seal pressure decreases.

なお、図3は、クリープによる厚さ減少分が分かり易いよう模式的に示している。
これに対し、燃料電池100では、端部シール部材140a,140b,140c,140dのそれぞれ多孔質基材120a,120b,120c,120d側(内側)の面は、フッ素樹脂膜によって被覆しないこととしている。すなわち、端部シール部材140a,140b,140c,140dに用いられる端部シール材は、多孔質基材120a,120b,120c,120d等に保持された電解質を含んで膨潤可能としている。
FIG. 3 schematically shows the thickness reduction due to creep so that it can be easily understood.
In contrast, in the fuel cell 100, the surfaces of the end seal members 140a, 140b, 140c, 140d on the porous base materials 120a, 120b, 120c, 120d side (inner side) are not covered with the fluororesin film. . That is, the end seal material used for the end seal members 140a, 140b, 140c, and 140d includes the electrolyte held on the porous base materials 120a, 120b, 120c, and 120d, and can swell.

図4は、燃料電池の一部拡大図であって、(A)は端部シール部材への電解質の含浸、(B)は膨潤後の端部シール部材を示している。燃料電池100は、(A)に示すように端部シール部材140a,140bやクッション部材150aのシール圧方向の厚さ減少の分だけ電解質を含んで膨潤する。そして、(B)に示すように厚さ減少によるシール圧の低下を補てんして、ガス漏洩が発生しない適切なシール圧を保持する。   4A and 4B are partially enlarged views of the fuel cell, where FIG. 4A shows the end seal member impregnated with electrolyte, and FIG. 4B shows the end seal member after swelling. The fuel cell 100 swells with electrolyte as much as the thickness of the end seal members 140a and 140b and the cushion member 150a in the seal pressure direction decreases as shown in FIG. Then, as shown in (B), the decrease in the seal pressure due to the decrease in thickness is compensated to maintain an appropriate seal pressure that does not cause gas leakage.

このように、燃料電池100の端部シール部材140a,140b,140c,140dは、端部シール部材140a,140b,140c,140dやクッション部材150a,150bのクリープによる厚さ減少の分だけ膨潤してシール圧の低下を防止する。これにより、燃料電池100の経時的なガス漏洩の発生を抑止することができる。   Thus, the end seal members 140a, 140b, 140c, and 140d of the fuel cell 100 swell by the thickness reduction due to creep of the end seal members 140a, 140b, 140c, and 140d and the cushion members 150a and 150b. Prevents a decrease in sealing pressure. Thereby, generation | occurrence | production of the gas leakage of the fuel cell 100 with time can be suppressed.

また、端部シール部材140a,140b,140c,140dの多孔質基材側の面以外の面はフッ素樹脂膜によって被覆されており、はっ水効果を有している。このため、端部シール材141が電解質を含んでも、端部シール部材140a,140b,140c,140dの多孔質基材側の面以外の外側面に電解質が漏れることを防止することができる。電解質の漏れの防止は、燃料電池100のセル間での液絡防止の効果もある。このようにして、端部シール部材140a,140b,140c,140dは、燃料電池100での使用に際して所望されるガス不透過性および電解質不漏洩性を備える。   Further, the end seal members 140a, 140b, 140c, and 140d other than the surface on the porous base material side are covered with a fluororesin film and have a water repellency effect. For this reason, even if the end seal material 141 contains an electrolyte, it is possible to prevent the electrolyte from leaking to the outer side surface of the end seal members 140a, 140b, 140c, 140d other than the surface on the porous substrate side. The prevention of electrolyte leakage also has an effect of preventing liquid junction between cells of the fuel cell 100. In this manner, the end seal members 140 a, 140 b, 140 c, and 140 d have gas impermeability and electrolyte non-leakage that are desired for use in the fuel cell 100.

次に、このような端部シール部材140の製造方法の具体例について説明する。
(製造方法例1)
まず、昭和電工(株)製ガラス状カーボン板(SG−3、厚さ0.6mm)を130×130mmに切断してセパレータとする。そして、東洋炭素(株)製膨張黒鉛シート(PF250、厚さ2.5mm、かさ密度0.65g/cm3)を18×130mmに切断し、端部シール材とする。更に、セパレータと端部シール材との間に端部シール材と同寸法に切断した厚さ50μmのデュポン社製FEP(融点250〜280℃)シートを挿入し、温度約290℃で1.0kg/cm2の圧力を掛けて圧力保持時間10分の条件で熱融着し、セパレータと端部シール材とを一体化する。そして、端部シール材の多孔質基材側となる面を除く外側面の表面にFEPシートを温度約290℃で1.0kg/cm2の圧力を掛けて圧力保持時間10分の条件で熱融着して、端部シール部材を形成する。
Next, a specific example of a method for manufacturing such an end seal member 140 will be described.
(Production Method Example 1)
First, a glassy carbon plate (SG-3, thickness 0.6 mm) manufactured by Showa Denko KK is cut into 130 × 130 mm to obtain a separator. Then, an expanded graphite sheet (PF250, thickness 2.5 mm, bulk density 0.65 g / cm 3 ) manufactured by Toyo Tanso Co., Ltd. is cut into 18 × 130 mm to obtain an end seal material. Further, a 50 μm thick DuPont FEP (melting point: 250 to 280 ° C.) sheet cut to the same size as the end seal material is inserted between the separator and the end seal material, and 1.0 kg at a temperature of about 290 ° C. The separator and the end seal material are integrated by heat sealing under a pressure holding time of 10 minutes by applying a pressure of / cm 2 . Then, the FEP sheet is heated at a temperature of about 290 ° C. and a pressure of 1.0 kg / cm 2 on the surface of the outer surface excluding the surface on the porous substrate side of the end seal material, and the pressure is maintained for 10 minutes. The end seal member is formed by fusing.

(製造方法例2)
まず、製造方法例1と同様に、東洋炭素(株)製膨張黒鉛シート(PF250、厚さ2.5mm、かさ密度0.65g/cm3)を18×130mmに切断し、端部シール材とする。そして、端部シール材を予め三井フロロケミカル製FEPディスパージョンである「テフロン(登録商標)120J」中にディップし、290℃の電気炉中で1時間焼成して、はっ水処理を施す。その際、端部シール材の多孔質基材側となる面には、はっ水処理を施さないようにする。このために、例えば、端部シール材の多孔質基材側となる面がテフロン液に接触しないよう、端部シール材がテフロン液に浸かる液面高さを調整する治具を用意する。そして、この治具に端部シール材を設置してテフロン液にディップすることで、容易に多孔質基材側となる面に、はっ水処理が施されないよう端部シール部材を形成することができる。
(Production Method Example 2)
First, as in Production Method Example 1, an expanded graphite sheet (PF250, thickness 2.5 mm, bulk density 0.65 g / cm 3 ) manufactured by Toyo Tanso Co., Ltd. was cut into 18 × 130 mm, To do. Then, the end seal material is dipped in advance in “Teflon (registered trademark) 120J”, which is an FEP dispersion manufactured by Mitsui Fluorochemical, and fired in an electric furnace at 290 ° C. for 1 hour to perform water repellent treatment. At that time, the water-repellent treatment is not performed on the surface of the end seal material on the porous substrate side. For this purpose, for example, a jig is prepared for adjusting the liquid surface height at which the end sealing material is immersed in the Teflon liquid so that the surface of the end sealing material on the porous substrate side does not come into contact with the Teflon liquid. Then, an end seal member is formed on the surface of the porous substrate so that the water repellent treatment is not easily performed by installing an end seal material on this jig and dipping it in a Teflon solution. Can do.

その後、セパレータ上に端部シール部材を配置し、約290℃で1.0kg/cm2の圧力を掛けて圧力保持時間10分の条件で熱融着し、セパレータと端部シール部材とを一体化する。 After that, an end seal member is placed on the separator, and a pressure of 1.0 kg / cm 2 is applied at about 290 ° C. and heat fusion is performed for 10 minutes under a pressure holding time, so that the separator and the end seal member are integrated. Turn into.

なお、製造方法例1,2で使用するフッ素樹脂には、FEPの他にも、例えば、PTFE、PFAおよびTFP等を用いることができる。これらは、例えば、厚さ50μmのシート状やディスパージョンの状態で使用する。   In addition to FEP, for example, PTFE, PFA, TFP, and the like can be used as the fluororesin used in Production Method Examples 1 and 2. These are used, for example, in the form of a sheet having a thickness of 50 μm or a dispersion.

上記の方法を用いて製作した端部シール部材を利用して製作された燃料電池は、端部シール部材を透過してのガス漏れ量が300mmAqの差圧化で0.1ml/min以下であった。また、電流密度300mA/cm2で2000時間運転後も漏れの増加は無く、端部シール部材やクッション部材のクリープによるガス漏れ量の増加は見られなかった。更に、運転後の分解調査の結果、端部シール部材の腐食や端部シール部材表面における電解質の液絡も発生しなかった。すなわち、好的な端部シール部材を備えた燃料電池が得られることが確認された。 The fuel cell manufactured using the end seal member manufactured using the above method has a gas leak amount of 0.1 ml / min or less by differential pressure of 300 mmAq through the end seal member. It was. Further, there was no increase in leakage even after 2000 hours of operation at a current density of 300 mA / cm 2 , and no increase in gas leakage due to creep of the end seal member or cushion member was observed. Further, as a result of the disassembly investigation after the operation, neither the end seal member corrosion nor the electrolyte liquid junction on the end seal member surface occurred. That is, it was confirmed that a fuel cell provided with a favorable end seal member was obtained.

なお、本実施の形態では、燃料電池にクッション部材を使用する構成を例示して説明した。しかし、クッション部材は、端部シール部材による適切なシール効果を得るために必要に応じて挿入されるものである。このため、端部シール部材のみよって適切なシール効果を得られる場合には、クッション部材を使用する必要は無い。クッション部材を使用しない場合でも、本実施の形態の端部シール部材を適用可能である。   In the present embodiment, the configuration in which the cushion member is used for the fuel cell has been described as an example. However, the cushion member is inserted as necessary in order to obtain an appropriate sealing effect by the end seal member. For this reason, when an appropriate sealing effect can be obtained only by the end seal member, it is not necessary to use a cushion member. Even when the cushion member is not used, the end seal member of the present embodiment can be applied.

また、本実施の形態では、端部シール部材を直方体の形状として例示したが、燃料電池の設計に応じて他の柱体に形成されてもよい。
更に、従来では、所望のシール性能を有する端部シール部材を得るために、例えば、端部シール材として使用する膨張黒鉛シートのかさ密度等の性質も最適となるよう管理する必要があった。これに対して、本発明の端部シール部材では、このような管理が不要となるため、かさ密度等の性質毎に多種の端部シール材を用意する必要が無くなる。このため、部品の管理工数や在庫数を抑えることができるという効果もある。
Moreover, in this Embodiment, although the edge part sealing member was illustrated as a rectangular parallelepiped shape, you may form in another pillar according to the design of a fuel cell.
Further, conventionally, in order to obtain an end seal member having a desired sealing performance, for example, it has been necessary to manage the properties such as the bulk density of the expanded graphite sheet used as the end seal material so as to be optimized. On the other hand, since the end seal member of the present invention does not require such management, it is not necessary to prepare various end seal materials for each property such as bulk density. For this reason, there is also an effect that it is possible to reduce the man-hours and inventory of parts.

本実施の形態の燃料電池の端部シール部材単体を示した図であって、(A)は斜視図、(B)は長手方向に対する片側端の側面図である。It is the figure which showed the edge part sealing member single-piece | unit of the fuel cell of this Embodiment, Comprising: (A) is a perspective view, (B) is a side view of the one-side end with respect to a longitudinal direction. 本実施の形態の燃料電池の単位セルを2積層した状態を示した図である。It is the figure which showed the state which laminated | stacked two unit cells of the fuel cell of this Embodiment. 燃料電池の一部拡大図であって、(A)は使用開始時、(B)は長時間使用後の状態を示している。It is a partially enlarged view of the fuel cell, (A) shows the state after the start of use, and (B) shows the state after long-time use. 燃料電池の一部拡大図であって、(A)は端部シール部材への電解質の含浸、(B)は膨潤後の端部シール部材を示している。It is a partial enlarged view of a fuel cell, (A) impregnates the end seal member with electrolyte, and (B) shows the end seal member after swelling. 燃料電池の単位セルを2積層した状態を示した概略構成図である。It is the schematic block diagram which showed the state which laminated | stacked two unit cells of the fuel cell.

符号の説明Explanation of symbols

100 燃料電池
110a,110b,110c セパレータ
120a,120b,120c,120d 多孔質基材
130a,130b,130c,130d 電極部
140,140a,140b,140c,140d 端部シール部材
141 端部シール材
142 フッ素樹脂膜
143 内側面
144 外側面
145 上面
146 下面
150a,150b クッション部材
160a 電解質層
DESCRIPTION OF SYMBOLS 100 Fuel cell 110a, 110b, 110c Separator 120a, 120b, 120c, 120d Porous base material 130a, 130b, 130c, 130d Electrode part 140, 140a, 140b, 140c, 140d End part sealing member 141 End part sealing material 142 Fluoro resin Membrane 143 Inner side surface 144 Outer side surface 145 Upper surface 146 Lower surface 150a, 150b Cushion member 160a Electrolyte layer

Claims (12)

電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、前記燃料極触媒層に燃料ガスのガス流路を有する第1の多孔質基材を配置し、前記空気極触媒層に酸化剤ガスのガス流路を有する第2の多孔質基材を配置した単位セルと、ガス不透過性のセパレータとが積層される燃料電池において、
前記第1の多孔質基材に形成される前記燃料ガスのガス流路と平行な相対する二辺の前記第1の多孔質基材の端部に、膨潤性を有する所定の第1の端部シール材を配置する時、前記第1の端部シール材の前記第1の多孔質基材側となる面を除く表面に、はっ水処理を施して形成される第1の端部シール部材と、
前記第2の多孔質基材に形成される前記酸化剤ガスのガス流路と平行な相対する二辺の前記第2の多孔質基材の端部に、膨潤性を有する所定の第2の端部シール材を配置する時、前記第2の端部シール材の前記第2の多孔質基材側となる面を除く表面に、はっ水処理を施して形成される第2の端部シール部材と、
を有することを特徴とする燃料電池。
An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a first porous substrate having a gas flow path for fuel gas is disposed in the fuel electrode catalyst layer, and the air electrode catalyst layer In a fuel cell in which a unit cell in which a second porous substrate having a gas flow path for an oxidant gas is disposed and a gas impermeable separator are laminated,
A predetermined first end having swellability at two end portions of the first porous substrate parallel to the gas flow path of the fuel gas formed on the first porous substrate. A first end seal formed by performing a water repellent treatment on the surface of the first end seal member except the surface on the first porous substrate side when the part seal member is disposed. Members,
A predetermined second having swellability is formed at the ends of the second porous substrate on two opposite sides parallel to the gas flow path of the oxidant gas formed on the second porous substrate. A second end portion formed by subjecting the surface of the second end seal material to a surface excluding the surface on the second porous substrate side to be water-repellent when the end seal material is disposed. A sealing member;
A fuel cell comprising:
前記第1の端部シール材および前記第2の端部シール材が、膨張黒鉛シートであることを特徴とする請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein the first end seal material and the second end seal material are expanded graphite sheets. 前記はっ水処理は、前記第1の端部シール材および前記第2の端部シール材の表面をフッ素樹脂材により被覆して施されることを特徴とする請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein the water-repellent treatment is performed by covering surfaces of the first end seal material and the second end seal material with a fluororesin material. 3. 前記第1の端部シール部材または前記第2の端部シール部材の上面または下面に配置されたクッション部材を更に有することを特徴とする請求項1記載の燃料電池。   The fuel cell according to claim 1, further comprising a cushion member disposed on an upper surface or a lower surface of the first end seal member or the second end seal member. 電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、前記燃料極触媒層に燃料ガスのガス流路を有する第1の多孔質基材を配置し、前記空気極触媒層に酸化剤ガスのガス流路を有する第2の多孔質基材を配置した単位セルと、ガス不透過性のセパレータとが積層される燃料電池の前記第1の多孔質基材に形成される前記燃料ガスのガス流路と平行な相対する二辺の前記第1の多孔質基材の端部と、前記第2の多孔質基材に形成される前記酸化剤ガスのガス流路と平行な相対する二辺の前記第2の多孔質基材の端部と、に配置される端部シール部材において、
膨潤性を有する所定の端部シール材が、前記配置時に前記多孔質基材側となる面を除く表面に、はっ水処理を施されて形成されることを特徴とする端部シール部材。
An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a first porous substrate having a gas flow path for fuel gas is disposed in the fuel electrode catalyst layer, and the air electrode catalyst layer Formed on the first porous substrate of the fuel cell in which a unit cell having a second porous substrate having an oxidant gas flow path and a gas impermeable separator are laminated. Ends of the first porous substrate on two opposite sides parallel to the gas flow path of the fuel gas, and parallel to the gas flow path of the oxidant gas formed on the second porous substrate. In the end seal member disposed on the two opposite sides of the second porous substrate,
An end seal member, wherein a predetermined end seal material having swelling property is formed by performing water-repellent treatment on a surface excluding a surface which becomes the porous substrate side during the disposition.
前記端部シール材は、膨張黒鉛シートであることを特徴とする請求項5記載の端部シール部材。   The end seal member according to claim 5, wherein the end seal material is an expanded graphite sheet. 前記はっ水処理は、フッ素樹脂材により被覆して施されることを特徴とする請求項5記載の端部シール部材。   6. The end seal member according to claim 5, wherein the water-repellent treatment is performed by coating with a fluororesin material. 電解質を保持した電解質層を燃料極触媒層と空気極触媒層とで挟み、前記燃料極触媒層に燃料ガスのガス流路を有する第1の多孔質基材を配置し、前記空気極触媒層に酸化剤ガスのガス流路を有する第2の多孔質基材を配置した単位セルと、ガス不透過性のセパレータとが積層される燃料電池の前記第1の多孔質基材に形成される前記燃料ガスのガス流路と平行な相対する二辺の前記第1の多孔質基材の端部と、前記第2の多孔質基材に形成される前記酸化剤ガスのガス流路と平行な相対する二辺の前記第2の多孔質基材の端部と、に配置される端部シール部材の製造方法において、
膨潤性を有する所定の端部シール材が、前記配置時に前記多孔質基材側となる面を除く表面に、はっ水処理を施す手順を有することを特徴とする端部シール部材の製造方法。
An electrolyte layer holding an electrolyte is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer, a first porous substrate having a gas flow path for fuel gas is disposed in the fuel electrode catalyst layer, and the air electrode catalyst layer Formed on the first porous substrate of the fuel cell in which a unit cell having a second porous substrate having an oxidant gas flow path and a gas impermeable separator are laminated. Ends of the first porous substrate on two opposite sides parallel to the gas flow path of the fuel gas, and parallel to the gas flow path of the oxidant gas formed on the second porous substrate. In the manufacturing method of the end seal member disposed at the end of the second porous substrate on two opposite sides,
A method for producing an end seal member, comprising: a step in which a predetermined end seal material having swelling property performs a water repellent treatment on a surface excluding a surface which becomes the porous substrate side at the time of the arrangement. .
前記端部シール材は、膨張黒鉛シートであることを特徴とする請求項8記載の端部シール部材の製造方法。   The method for manufacturing an end seal member according to claim 8, wherein the end seal member is an expanded graphite sheet. 前記はっ水処理は、フッ素樹脂材により被覆して施されることを特徴とする請求項8記載の端部シール部材の製造方法。   9. The method for manufacturing an end seal member according to claim 8, wherein the water repellency treatment is performed by coating with a fluororesin material. 前記フッ素樹脂材はシート状に形成されており、
前記はっ水処理は、シート状の前記フッ素樹脂材を前記端部シール材に熱融着して被覆することを特徴とする請求項10記載の端部シール部材の製造方法。
The fluororesin material is formed in a sheet shape,
The method for producing an end seal member according to claim 10, wherein the water-repellent treatment is performed by heat-sealing the sheet-like fluororesin material to the end seal material.
前記フッ素樹脂材は液体状であり、
前記はっ水処理は、前記端部シール材の前記配置時に前記多孔質基材側となる面が前記フッ素樹脂材に触れないように液体状の前記フッ素樹脂材に浸し、その後、前記端部シール材に付着した前記フッ素樹脂材を前記端部シール材に熱融着して被覆することを特徴とする請求項10記載の端部シール部材の製造方法。
The fluororesin material is in a liquid state,
The water-repellent treatment is performed by immersing the liquid sealant in the liquid fluororesin material so that the surface on the porous substrate side does not touch the fluororesin material when the end sealant is disposed, and then the end portion The method of manufacturing an end seal member according to claim 10, wherein the fluororesin material adhering to the seal material is thermally fused and coated on the end seal material.
JP2008154282A 2008-06-12 2008-06-12 Fuel cell, end seal member, and method of manufacturing end seal member Expired - Fee Related JP5504584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154282A JP5504584B2 (en) 2008-06-12 2008-06-12 Fuel cell, end seal member, and method of manufacturing end seal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154282A JP5504584B2 (en) 2008-06-12 2008-06-12 Fuel cell, end seal member, and method of manufacturing end seal member

Publications (2)

Publication Number Publication Date
JP2009301837A true JP2009301837A (en) 2009-12-24
JP5504584B2 JP5504584B2 (en) 2014-05-28

Family

ID=41548544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154282A Expired - Fee Related JP5504584B2 (en) 2008-06-12 2008-06-12 Fuel cell, end seal member, and method of manufacturing end seal member

Country Status (1)

Country Link
JP (1) JP5504584B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144369Y2 (en) * 1981-03-02 1986-12-13
JPS62110262A (en) * 1985-10-25 1987-05-21 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell with end sealing member and its manufacture
JPS6348767A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate having teflon-sealed end and its manufacture
JPH0883618A (en) * 1994-07-12 1996-03-26 Fuji Electric Co Ltd Phosphoric acid fuel cell
JPH08236125A (en) * 1995-03-01 1996-09-13 Fuji Electric Co Ltd Cell for phosphoric acid fuel cell
JP2001023654A (en) * 1999-07-07 2001-01-26 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2002221276A (en) * 2001-01-25 2002-08-09 Mitsubishi Plastics Ind Ltd Packing material and its production method
JP2005285677A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Solid polymer fuel cell
JP2007018924A (en) * 2005-07-08 2007-01-25 Fuji Electric Holdings Co Ltd Fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144369Y2 (en) * 1981-03-02 1986-12-13
JPS62110262A (en) * 1985-10-25 1987-05-21 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell with end sealing member and its manufacture
JPS6348767A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate having teflon-sealed end and its manufacture
JPH0883618A (en) * 1994-07-12 1996-03-26 Fuji Electric Co Ltd Phosphoric acid fuel cell
JPH08236125A (en) * 1995-03-01 1996-09-13 Fuji Electric Co Ltd Cell for phosphoric acid fuel cell
JP2001023654A (en) * 1999-07-07 2001-01-26 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2002221276A (en) * 2001-01-25 2002-08-09 Mitsubishi Plastics Ind Ltd Packing material and its production method
JP2005285677A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Solid polymer fuel cell
JP2007018924A (en) * 2005-07-08 2007-01-25 Fuji Electric Holdings Co Ltd Fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013011054; 化学大辞典 第1版, 1989, p.2213-2214, 株式会社東京化学同人 *

Also Published As

Publication number Publication date
JP5504584B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2006025335A1 (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP2017033644A (en) Resin frame-attached electrolyte membrane-electrode structure and fuel cell
JP5012469B2 (en) Fuel cell and fuel cell
JP2000215903A (en) Solid high-molecular electrolyte type fuel cell
JP2006100267A (en) Solid polymer electrolyte membrane electrode junction body and solid polymer fuel cell
JP2007035621A (en) Fuel cell system for high temperatures
JP2008508679A (en) End-protected catalyst-coated diffusion medium and membrane electrode assembly
JP2006339022A (en) Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2008171613A (en) Fuel cells
JPH08148170A (en) Sealing method for solid polymeric fuel cell
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP4331719B2 (en) Sealing structure of polymer electrolyte fuel cell
JP5585427B2 (en) Membrane electrode assembly and fuel cell using the same
JP2009087614A (en) Diffusion layer of fuel cell, manufacturing method for diffusion layer of fuel cell, and fuel cell
JP2008027672A (en) Conductive porous body and its manufacturing method
JP2005302526A (en) Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JP5504584B2 (en) Fuel cell, end seal member, and method of manufacturing end seal member
JP2008066084A (en) Electrolyte membrane, membrane electrode assembly, and manufacturing method of them
JP3838403B2 (en) Phosphoric acid fuel cell
JP2007250432A (en) Fuel cell
JP2005285677A (en) Solid polymer fuel cell
JP5604404B2 (en) Fuel cell
JP5825241B2 (en) Fuel cell and fuel cell manufacturing method
JP2008226601A (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and manufacturing method of membrane-membrane reinforcing member assembly
JP2017037745A (en) Gas diffusion layer for battery, battery member, membrane electrode assembly, fuel cell, and method for producing gas diffusion layer for battery

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees