JP2013098155A - Electrolyte film and electrode structure with resin frame for fuel cell and fuel cell stack - Google Patents

Electrolyte film and electrode structure with resin frame for fuel cell and fuel cell stack Download PDF

Info

Publication number
JP2013098155A
JP2013098155A JP2011243284A JP2011243284A JP2013098155A JP 2013098155 A JP2013098155 A JP 2013098155A JP 2011243284 A JP2011243284 A JP 2011243284A JP 2011243284 A JP2011243284 A JP 2011243284A JP 2013098155 A JP2013098155 A JP 2013098155A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
solid polymer
resin frame
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243284A
Other languages
Japanese (ja)
Other versions
JP5683433B2 (en
Inventor
Masashi Sugishita
昌史 杉下
Hiroshi Soma
浩 相馬
Naoki Mitsuda
直樹 満田
Kenichi Tanaka
健一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011243284A priority Critical patent/JP5683433B2/en
Publication of JP2013098155A publication Critical patent/JP2013098155A/en
Application granted granted Critical
Publication of JP5683433B2 publication Critical patent/JP5683433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To firmly and easily connect a resin-made frame by going around the outer circumference of a solid polymer electrolyte film, and to satisfactorily suppress a damage of the solid polymer electrolyte film with a simple configuration.SOLUTION: An electrolyte film and electrode structure 10 with a resin frame includes an electrolyte film and electrode structure 10a provided with an anode electrode 20 and a cathode electrode 22 sandwiching a solid polymer electrolyte film 18 therebetween, and a resin-made frame member 24 going around the outer circumference of the solid polymer electrolyte film 18. The resin-made frame member 24 has an inner circumferential edge 24a projecting toward the outer circumference of the anode electrode 20 to come into contact with the an outer circumferential edge of the solid polymer electrolyte film 18, and in the inner circumferential edge 24a, a corner 24ae arranged at a boundary part between the solid polymer electrolyte film 18 and the outer circumferential part of the anode electrode 20 is in the shape of a curved surface of a cross section.

Description

本発明は、第1電極及び第2電極が、固体高分子電解質膜の両側に設けられるとともに、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタックに関する。   The present invention provides an electrolyte membrane / electrode structure in which a first electrode and a second electrode are provided on both sides of a solid polymer electrolyte membrane, and the first electrode has an outer dimension set smaller than that of the second electrode. And an electrolyte membrane / electrode structure with a resin frame for a fuel cell, and a fuel cell stack, comprising a resin frame member provided around the outer periphery of the solid polymer electrolyte membrane.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。この燃料電池は、固体高分子電解質膜の両側に、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とからなるアノード電極及びカソード電極を配設した電解質膜・電極構造体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、所定の数だけ積層して燃料電池スタックを構成するとともに、例えば、車載用燃料電池スタックとして使用されている。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. This fuel cell comprises an electrolyte membrane / electrode structure in which an anode electrode and a cathode electrode each comprising a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon) are disposed on both sides of a solid polymer electrolyte membrane ( MEA) is sandwiched between separators (bipolar plates). A predetermined number of fuel cells are stacked to form a fuel cell stack, and the fuel cell is used as, for example, an in-vehicle fuel cell stack.

この種の電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな表面積に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の表面積に設定される、所謂、段差型MEAを構成する場合がある。   In this type of electrolyte membrane / electrode structure, one gas diffusion layer is set to have a smaller surface area than the solid polymer electrolyte membrane, and the other gas diffusion layer is set to the same surface area as the solid polymer electrolyte membrane. In other words, a so-called step type MEA may be formed.

通常、燃料電池スタックでは、多数の電解質膜・電極構造体が積層されており、コストを抑制するために、前記電解質膜・電極構造体を安価に構成することが要請されている。従って、特に高価な固体高分子電解質膜の使用量を削減するとともに、構成の簡素化を図るため、種々の提案がなされている。   In general, in a fuel cell stack, a large number of electrolyte membrane / electrode structures are laminated, and in order to reduce costs, it is required to configure the electrolyte membrane / electrode structures at low cost. Therefore, various proposals have been made in order to reduce the amount of use of a particularly expensive solid polymer electrolyte membrane and to simplify the configuration.

例えば、特許文献1に開示されている電解質膜−電極接合体では、図6に示すように、電解質膜1と前記電解質膜1の一方の側に配置されたカソード触媒層2aと、前記電解質膜1の他方の側に配置されたアノード触媒層2bと、前記電解質膜1の両側に配置されるガス拡散層3a、3bとを備えている。   For example, in the electrolyte membrane-electrode assembly disclosed in Patent Document 1, as shown in FIG. 6, the electrolyte membrane 1, the cathode catalyst layer 2 a disposed on one side of the electrolyte membrane 1, and the electrolyte membrane 1 is provided with an anode catalyst layer 2b disposed on the other side of 1 and gas diffusion layers 3a and 3b disposed on both sides of the electrolyte membrane 1.

アノード側のガス拡散層3bは、電解質膜1の面積と同等で、且つ、カソード側のガス拡散層3aの面積よりも大きく構成されている。このように構成される電解質膜−電極接合体(MEA)のエッジ領域には、ガスケット構造体4が配置されている。ガス拡散層3a側の電解質膜1の外周部とガスケット構造体4の薄肉部位4aとは、接着層5を介して接合されている。   The gas diffusion layer 3b on the anode side is configured to be equal to the area of the electrolyte membrane 1 and larger than the area of the gas diffusion layer 3a on the cathode side. A gasket structure 4 is disposed in the edge region of the electrolyte membrane-electrode assembly (MEA) configured as described above. The outer peripheral portion of the electrolyte membrane 1 on the gas diffusion layer 3 a side and the thin-walled portion 4 a of the gasket structure 4 are joined via an adhesive layer 5.

特開2007−66766号公報JP 2007-66766 A

しかしながら、上記の特許文献1では、ガスケット構造体4とMEAとを接合する際、接合部位に荷重を付与している。このため、薄肉部位4aの角部4aeが電解質膜1に食い込んでしまい、前記電解質膜1にせん断応力が付与されるおそれがある。   However, in Patent Document 1 described above, when the gasket structure 4 and the MEA are joined, a load is applied to the joining portion. For this reason, the corner 4ae of the thin portion 4a may bite into the electrolyte membrane 1 and shear stress may be applied to the electrolyte membrane 1.

また、燃料電池スタックの組み立て時には、電解質膜−電極接合体に締め付け荷重が付与されるとともに、前記燃料電池スタックの発電時には、電解質膜1が膨潤して前記電解質膜−電極接合体にさらに荷重が付与され、前記電解質膜1にせん断応力がかかる場合がある。   Further, when the fuel cell stack is assembled, a tightening load is applied to the electrolyte membrane-electrode assembly, and when the fuel cell stack generates power, the electrolyte membrane 1 swells and further load is applied to the electrolyte membrane-electrode assembly. The shearing stress may be applied to the electrolyte membrane 1 in some cases.

これにより、電解質膜1に変形が惹起されるとともに、前記電解質膜1に亀裂やせん断等が発生し易く、前記電解質膜1の破損の起点になるという問題が指摘されている。   As a result, it has been pointed out that the electrolyte membrane 1 is deformed and cracks, shears and the like are likely to occur in the electrolyte membrane 1 and become a starting point of breakage of the electrolyte membrane 1.

本発明は、この種の問題を解決するものであり、固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合するとともに、簡単な構成で、前記固体高分子電解質膜の損傷を良好に抑制することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタックを提供することを目的とする。   The present invention solves this type of problem and circulates around the outer periphery of the solid polymer electrolyte membrane to firmly and easily join the resin frame member, and with a simple configuration, the solid polymer electrolyte membrane It is an object of the present invention to provide an electrolyte membrane / electrode structure with a resin frame for a fuel cell and a fuel cell stack capable of satisfactorily suppressing damage to the fuel cell.

本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体に関するものである。   In the present invention, a first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of a solid polymer electrolyte membrane, and the first electrode has an outer dimension larger than that of the second electrode. The present invention relates to an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising a small electrolyte membrane / electrode structure and a resin frame member provided around the outer periphery of the solid polymer electrolyte membrane.

この燃料電池用樹脂枠付き電解質膜・電極構造体では、樹脂製枠部材は、第1電極の外周側に突出して固体高分子電解質膜の外周縁部に当接する内周端部を有するとともに、前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されている。   In the electrolyte membrane / electrode structure with a resin frame for a fuel cell, the resin frame member has an inner peripheral end that protrudes to the outer peripheral side of the first electrode and contacts the outer peripheral edge of the solid polymer electrolyte membrane, In the inner peripheral end portion, a corner portion arranged at a boundary portion between the solid polymer electrolyte membrane and the outer peripheral portion of the first electrode is configured to have a curved cross-sectional shape.

また、この燃料電池用樹脂枠付き電解質膜・電極構造体では、少なくとも樹脂製枠部材の内周端部と固体高分子電解質膜の外周縁部とは、接着剤により一体化されることが好ましい。   In the electrolyte membrane / electrode structure with a resin frame for a fuel cell, it is preferable that at least the inner peripheral edge of the resin frame member and the outer peripheral edge of the solid polymer electrolyte membrane are integrated with an adhesive. .

さらに、この燃料電池用樹脂枠付き電解質膜・電極構造体では、少なくとも樹脂製枠部材の内周端部と固体高分子電解質膜の外周縁部とは、前記樹脂製枠部材を第1電極を構成するガス拡散層の外周端部に含浸させることにより、一体化されることが好ましい。   Further, in the electrolyte membrane / electrode structure with a resin frame for a fuel cell, at least the inner peripheral edge of the resin frame member and the outer peripheral edge of the solid polymer electrolyte membrane are the first electrode and the resin frame member. It is preferable that they are integrated by impregnating the outer peripheral end of the gas diffusion layer to be constituted.

さらにまた、本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体を有し、前記固体高分子電解質膜の外周を周回して樹脂製枠部材が設けられる樹脂枠付き電解質膜・電極構造体と、セパレータとが積層される燃料電池スタックに関するものである。   Furthermore, in the present invention, the first electrode and the second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of the solid polymer electrolyte membrane, and the first electrode is more than the second electrode. An electrolyte membrane / electrode structure having an electrolyte membrane / electrode structure whose outer dimensions are set to be small, and having a resin frame member around the outer periphery of the solid polymer electrolyte membrane, and a separator The present invention relates to a stacked fuel cell stack.

この燃料電池スタックでは、樹脂製枠部材は、第1電極の外周側に突出して一方の面側が固体高分子電解質膜の外周縁部に当接し且つ他方の面側がセパレータに当接する内周端部を有するとともに、前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されている。   In this fuel cell stack, the resin frame member protrudes to the outer peripheral side of the first electrode, and has an inner peripheral end portion where one surface side is in contact with the outer peripheral edge portion of the solid polymer electrolyte membrane and the other surface side is in contact with the separator. In addition, the inner peripheral end portion is configured such that a corner portion disposed at a boundary portion between the solid polymer electrolyte membrane and the outer peripheral portion of the first electrode has a curved cross-sectional shape.

本発明によれば、樹脂枠付き電解質膜・電極構造体に荷重が付与された際、樹脂製枠部材の内周端部が固体高分子電解質膜に食い込むことがない。従って、内周端部の角部を断面曲面形状に構成するだけでよく、簡単な構成で、固体高分子電解質膜にせん断応力がかかることを確実に阻止し、前記固体高分子電解質膜の損傷を良好に抑制することが可能になる。   According to the present invention, when a load is applied to the electrolyte membrane / electrode structure with a resin frame, the inner peripheral end of the resin frame member does not bite into the solid polymer electrolyte membrane. Therefore, it is only necessary to configure the corner portion of the inner peripheral end to have a curved cross-sectional shape, and with a simple configuration, the solid polymer electrolyte membrane is reliably prevented from being subjected to shear stress, and the solid polymer electrolyte membrane is damaged. Can be suppressed satisfactorily.

本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the polymer electrolyte fuel cell in which the resin membrane-attached electrolyte membrane / electrode structure according to the first embodiment of the present invention is incorporated. 前記燃料電池の、図1中、II−II線断面説明図である。FIG. 2 is a sectional view of the fuel cell taken along line II-II in FIG. 1. 前記樹脂枠付き電解質膜・電極構造体のカソード電極側の正面説明図である。It is front explanatory drawing by the side of the cathode electrode of the said electrolyte membrane-electrode structure with a resin frame. 樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the electrolyte membrane and electrode structure with a resin frame. 本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the electrolyte membrane and electrode structure with a resin frame which concerns on the 2nd Embodiment of this invention. 特許文献1に開示された電解質膜−電極接合体の説明図である。6 is an explanatory diagram of an electrolyte membrane-electrode assembly disclosed in Patent Document 1. FIG.

図1及び図2に示すように、本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10は、固体高分子型燃料電池12に組み込まれるとともに、複数の前記燃料電池12が矢印A方向に積層されて燃料電池スタック13が構成される。   As shown in FIGS. 1 and 2, an electrolyte membrane / electrode structure 10 with a resin frame according to the first embodiment of the present invention is incorporated into a solid polymer fuel cell 12 and a plurality of the fuel cells 12. Are stacked in the direction of arrow A to form the fuel cell stack 13.

燃料電池12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成されている。   In the fuel cell 12, the electrolyte membrane / electrode structure 10 with a resin frame is sandwiched between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, a metal plate whose surface is subjected to corrosion prevention, a carbon member, or the like. .

図2に示すように、樹脂枠付き電解質膜・電極構造体10は、電解質膜・電極構造体10aを備えるとともに、前記電解質膜・電極構造体10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜18と、前記固体高分子電解質膜18を挟持するアノード電極(第1電極)20及びカソード電極(第2電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質が使用される。   As shown in FIG. 2, an electrolyte membrane / electrode structure 10 with a resin frame is provided with an electrolyte membrane / electrode structure 10a, and the electrolyte membrane / electrode structure 10a is formed of, for example, a perfluorosulfonic acid thin film with water. And an anode electrode (first electrode) 20 and a cathode electrode (second electrode) 22 sandwiching the solid polymer electrolyte membrane 18. The solid polymer electrolyte membrane 18 uses an HC (hydrocarbon) electrolyte in addition to a fluorine electrolyte.

アノード電極20は、固体高分子電解質膜18及びカソード電極22よりも小さな表面積を有する。なお、アノード電極20とカソード電極22とは、同一の表面積であってもよく、また、前記カソード電極22が前記アノード電極20よりも小さな表面積を有していてもよい。   The anode electrode 20 has a smaller surface area than the solid polymer electrolyte membrane 18 and the cathode electrode 22. The anode electrode 20 and the cathode electrode 22 may have the same surface area, and the cathode electrode 22 may have a smaller surface area than the anode electrode 20.

アノード電極20は、固体高分子電解質膜18の一方の面18aに配置されるとともに、前記固体高分子電解質膜18の外周を額縁状に露呈させる。カソード電極22は、固体高分子電解質膜18の他方の面18bに配置される。   The anode electrode 20 is disposed on one surface 18a of the solid polymer electrolyte membrane 18 and exposes the outer periphery of the solid polymer electrolyte membrane 18 in a frame shape. The cathode electrode 22 is disposed on the other surface 18 b of the solid polymer electrolyte membrane 18.

アノード電極20は、固体高分子電解質膜18の面18aに接合される電極触媒層20aと、前記電極触媒層20aに積層されるガス拡散層20bとを設ける。カソード電極22は、固体高分子電解質膜18の面18bに接合される電極触媒層22aと、前記電極触媒層22aに積層されるガス拡散層22bとを設ける。   The anode electrode 20 is provided with an electrode catalyst layer 20a bonded to the surface 18a of the solid polymer electrolyte membrane 18, and a gas diffusion layer 20b laminated on the electrode catalyst layer 20a. The cathode electrode 22 includes an electrode catalyst layer 22a bonded to the surface 18b of the solid polymer electrolyte membrane 18, and a gas diffusion layer 22b stacked on the electrode catalyst layer 22a.

電極触媒層20a、22aは、カーボンブラックに白金粒子を担持した触媒粒子を形成し、イオン導伝性バインダーとして高分子電解質を使用し、この高分子電解質の溶液中に前記触媒粒子を均一に混合して作製された触媒ペーストを、固体高分子電解質膜18の両面に印刷、塗布又は転写することによって構成される。ガス拡散層20b、22bは、カーボンペーパ等からなるとともに、前記ガス拡散層20bの平面は、前記ガス拡散層22bの平面よりも小さく設定される。   The electrode catalyst layers 20a and 22a form catalyst particles in which platinum particles are supported on carbon black, use a polymer electrolyte as an ion conductive binder, and uniformly mix the catalyst particles in a solution of the polymer electrolyte. The catalyst paste produced in this way is configured by printing, coating or transferring on both sides of the solid polymer electrolyte membrane 18. The gas diffusion layers 20b and 22b are made of carbon paper or the like, and the plane of the gas diffusion layer 20b is set smaller than the plane of the gas diffusion layer 22b.

図1及び図2に示すように、樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、アノード電極20及びカソード電極22に接合される樹脂製枠部材24を備える。樹脂製枠部材24は、例えば、PES(ポリエーテルサルフォン)及びLCP(リキッドクリスタルポリマー)等で、又は必要に応じてこれらにガラスフィラーを含有させて構成される。   As shown in FIGS. 1 and 2, the resin membrane-attached electrolyte membrane / electrode structure 10 circulates around the outer periphery of the solid polymer electrolyte membrane 18 and is joined to the anode electrode 20 and the cathode electrode 22. 24. The resin frame member 24 is made of, for example, PES (polyether sulfone), LCP (liquid crystal polymer), or the like, or contains a glass filler as necessary.

樹脂製枠部材24は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部24aを有する。内周端部24aは、アノード電極20と同一の肉厚を有するとともに、固体高分子電解質膜18と前記アノード電極20の外周部との境界部位に配置される角部24aeが、断面曲面形状(R形状)に構成される。   The resin frame member 24 has an inner peripheral end portion 24 a that protrudes toward the outer peripheral side of the anode electrode 20 and contacts the outer peripheral edge portion of the solid polymer electrolyte membrane 18. The inner peripheral end portion 24a has the same thickness as the anode electrode 20, and the corner portion 24ae disposed at the boundary portion between the solid polymer electrolyte membrane 18 and the outer peripheral portion of the anode electrode 20 has a curved cross-sectional shape ( (R shape).

角部24aeは、全体に亘って湾曲面に形成してもよく、あるいは、少なくとも境界部位に当接する範囲に亘って湾曲面に形成し、その他の部位を直線状又は傾斜面状に形成してもよい。また、以下に説明する第2の実施形態の角部も、この角部24aeと同様に形成してもよい。   The corner 24ae may be formed on the curved surface over the entire surface, or formed on the curved surface over at least the range in contact with the boundary portion, and the other portions may be formed in a linear shape or an inclined surface shape. Also good. Moreover, you may form the corner | angular part of 2nd Embodiment demonstrated below similarly to this corner | angular part 24ae.

樹脂製枠部材24の内周端部24aと固体高分子電解質膜18の外周縁部とは、接着剤層26により接着される。接着剤層26は、例えば、エステル系又はウレタン系のホットメルト接着剤が使用される。ホットメルト接着剤の溶融温度は、例えば、150℃〜170℃であり、樹脂製枠部材24の溶融温度は、例えば、360℃である。樹脂製枠部材24とカソード電極22のガス拡散層22bとは、例えば、樹脂含浸部28により一体化される。   The inner peripheral edge 24 a of the resin frame member 24 and the outer peripheral edge of the solid polymer electrolyte membrane 18 are bonded by an adhesive layer 26. For the adhesive layer 26, for example, an ester-based or urethane-based hot melt adhesive is used. The melting temperature of the hot melt adhesive is, for example, 150 ° C. to 170 ° C., and the melting temperature of the resin frame member 24 is, for example, 360 ° C. The resin frame member 24 and the gas diffusion layer 22b of the cathode electrode 22 are integrated by a resin impregnated portion 28, for example.

図3に示すように、接着剤層26は、固体高分子電解質膜18の外周縁部の全周に亘って額縁状に形成される。樹脂含浸部28は、カソード電極22を構成するガス拡散層22bの全周に亘って額縁状に形成される。   As shown in FIG. 3, the adhesive layer 26 is formed in a frame shape over the entire outer periphery of the solid polymer electrolyte membrane 18. The resin impregnated portion 28 is formed in a frame shape over the entire circumference of the gas diffusion layer 22b constituting the cathode electrode 22.

図1に示すように、燃料電池12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔30a、冷却媒体を供給するための冷却媒体入口連通孔32a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔34bが、矢印C方向(鉛直方向)に配列して設けられる。   As shown in FIG. 1, one end edge of the fuel cell 12 in the arrow B direction (horizontal direction in FIG. 1) communicates with each other in the arrow A direction, which is the stacking direction, and contains an oxidant gas, for example, oxygen An oxidant gas inlet communication hole 30a for supplying gas, a cooling medium inlet communication hole 32a for supplying a cooling medium, and a fuel gas outlet communication hole 34b for discharging a fuel gas, for example, a hydrogen-containing gas, Arranged in the direction of arrow C (vertical direction).

燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔34a、冷却媒体を排出するための冷却媒体出口連通孔32b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔30bが、矢印C方向に配列して設けられる。   The other end edge of the fuel cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, a fuel gas inlet communication hole 34a for supplying fuel gas, and a cooling medium outlet communication hole for discharging the cooling medium. 32b and an oxidant gas outlet communication hole 30b for discharging the oxidant gas are arranged in the direction of arrow C.

第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。   An oxidant gas flow path 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the electrolyte membrane / electrode structure 10 with a resin frame. .

第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が形成される。第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が形成される。   A fuel gas flow path 38 communicating with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b is formed on the surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 10 with a resin frame. Between the surface 14 b of the first separator 14 and the surface 16 b of the second separator 16, a cooling medium flow path 40 communicating with the cooling medium inlet communication hole 32 a and the cooling medium outlet communication hole 32 b is formed.

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。   As shown in FIGS. 1 and 2, the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 44 is integrated with the surfaces 16 a and 16 b of the second separator 16 around the outer peripheral end portion of the second separator 16.

図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂製枠部材24の内周端部24aに当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。   As shown in FIG. 2, the first seal member 42 includes a first convex seal 42a that contacts the inner peripheral end 24a of the resin frame member 24 constituting the electrolyte membrane / electrode structure 10 with a resin frame, And a second convex seal 42b in contact with the second seal member 44 of the two separator 16. The second seal member 44 constitutes a flat seal. Instead of the second convex seal 42b, the second seal member 44 may be provided with a convex seal (not shown).

第1及び第2シール部材42、44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。   The first and second sealing members 42 and 44 include, for example, EPDM, NBR, fluorine rubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber, a cushioning material, Alternatively, a packing material is used.

図1に示すように、第1セパレータ14には、燃料ガス入口連通孔34aを燃料ガス流路38に連通する供給孔部46と、前記燃料ガス流路38を燃料ガス出口連通孔34bに連通する排出孔部48とが形成される。   As shown in FIG. 1, the first separator 14 has a supply hole portion 46 that communicates the fuel gas inlet communication hole 34a with the fuel gas passage 38, and the fuel gas passage 38 communicates with the fuel gas outlet communication hole 34b. A discharge hole 48 is formed.

次いで、樹脂枠付き電解質膜・電極構造体10を製造する方法について、以下に説明する。   Next, a method for producing the resin frame-attached electrolyte membrane / electrode structure 10 will be described below.

先ず、図4に示すように、段差MEAである電解質膜・電極構造体10aが作製される。具体的には、固体高分子電解質膜18の両方の面18a、18bには、電極触媒層20a、22aが塗布される。そして、固体高分子電解質膜18の面18a側に、すなわち、電極触媒層20aにガス拡散層20bが配置されるとともに、前記固体高分子電解質膜18の面18bに、すなわち、電極触媒層22aにガス拡散層22bが配置される。これらが一体に積層されてホットプレス処理されることにより、電解質膜・電極構造体10aが作製される。   First, as shown in FIG. 4, an electrolyte membrane / electrode structure 10a which is a step MEA is produced. Specifically, electrode catalyst layers 20 a and 22 a are applied to both surfaces 18 a and 18 b of the solid polymer electrolyte membrane 18. A gas diffusion layer 20b is disposed on the surface 18a side of the solid polymer electrolyte membrane 18, that is, the electrode catalyst layer 20a, and at the surface 18b of the solid polymer electrolyte membrane 18, that is, on the electrode catalyst layer 22a. A gas diffusion layer 22b is disposed. The electrolyte membrane / electrode structure 10a is manufactured by stacking these together and subjecting them to hot pressing.

一方、樹脂製枠部材24は、射出成形機(図示せず)により予め成形される。   On the other hand, the resin frame member 24 is molded in advance by an injection molding machine (not shown).

樹脂製枠部材24は、肉薄形状の内周端部24aの角部24aeが、断面曲面形状(R形状)に形成される。角部24aeは、少なくとも固体高分子電解質膜18に当接する部位が滑らかに形成されていればよく、前記角部24ae全体をR形状に構成する必要はない。   In the resin frame member 24, the corner 24ae of the thin inner peripheral end 24a is formed in a curved cross-sectional shape (R shape). The corner 24ae only needs to be formed smoothly so that at least the portion in contact with the solid polymer electrolyte membrane 18 is formed, and the entire corner 24ae does not need to be formed in an R shape.

次いで、電解質膜・電極構造体10aでは、アノード電極20の外周から外部に露呈する固体高分子電解質膜18の外周縁部に接着剤層26が設けられる。そして、樹脂製枠部材24と電解質膜・電極構造体10aとが位置合わせされる。この樹脂製枠部材24は、内周端部24aがアノード電極20側に配置され、接着剤層26が加熱溶融(ホットメルト)されるとともに、荷重(プレス等)が付与されることにより、前記内周端部24aと固体高分子電解質膜18とが接着される。   Next, in the electrolyte membrane / electrode structure 10a, an adhesive layer 26 is provided on the outer peripheral edge of the solid polymer electrolyte membrane 18 exposed from the outer periphery of the anode electrode 20 to the outside. Then, the resin frame member 24 and the electrolyte membrane / electrode structure 10a are aligned. In the resin frame member 24, the inner peripheral end 24a is disposed on the anode electrode 20 side, the adhesive layer 26 is heated and melted (hot melted), and a load (press or the like) is applied. The inner peripheral end 24a and the solid polymer electrolyte membrane 18 are bonded.

一方、カソード電極22側には、樹脂含浸部28を形成するための樹脂部材28aが用意される。樹脂部材28aは、枠形状(額縁形状)を有しており、例えば、樹脂製枠部材24と同一の材料で構成される。なお、樹脂部材28aは、フィラーが混入しない樹脂材料を用いて構成してもよい。   On the other hand, a resin member 28a for forming the resin impregnated portion 28 is prepared on the cathode electrode 22 side. The resin member 28a has a frame shape (frame shape), and is made of the same material as the resin frame member 24, for example. In addition, you may comprise the resin member 28a using the resin material which a filler does not mix.

そこで、電解質膜・電極構造体10aと樹脂製枠部材24とには、樹脂部材28aが配置されて荷重が付与された状態で、前記樹脂部材28aが加熱される。加熱方式としては、レーザ溶着、赤外線溶着やインパルス溶着等が採用される。従って、樹脂部材28aは、加熱溶融され、前記樹脂部材28aは、カソード電極22を構成するガス拡散層22b及び樹脂製枠部材24に跨って含浸される。これにより、図2に示すように、カソード電極22を構成するガス拡散層22b及び樹脂製枠部材24に跨って樹脂含浸部28が形成され、樹脂枠付き電解質膜・電極構造体10が製造される。   Therefore, the resin member 28a is heated in a state where the resin member 28a is disposed and a load is applied to the electrolyte membrane / electrode structure 10a and the resin frame member 24. As the heating method, laser welding, infrared welding, impulse welding, or the like is employed. Therefore, the resin member 28 a is heated and melted, and the resin member 28 a is impregnated across the gas diffusion layer 22 b and the resin frame member 24 constituting the cathode electrode 22. As a result, as shown in FIG. 2, the resin impregnated portion 28 is formed across the gas diffusion layer 22b and the resin frame member 24 constituting the cathode electrode 22, and the electrolyte membrane / electrode structure 10 with a resin frame is manufactured. The

樹脂枠付き電解質膜・電極構造体10は、第1セパレータ14及び第2セパレータ16により挟持される。第1セパレータ14は、樹脂製枠部材24の内周端部24aに当接し、第2セパレータ16と共に樹脂枠付き電解質膜・電極構造体10に荷重を付与する。さらに、燃料電池12は、所定数だけ積層されて燃料電池スタック13が構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。   The resin membrane-attached electrolyte membrane / electrode structure 10 is sandwiched between the first separator 14 and the second separator 16. The first separator 14 contacts the inner peripheral end 24 a of the resin frame member 24 and applies a load to the electrolyte membrane / electrode structure 10 with a resin frame together with the second separator 16. Furthermore, a predetermined number of fuel cells 12 are stacked to form a fuel cell stack 13 and a tightening load is applied between end plates (not shown).

このように構成される燃料電池12の動作について、以下に説明する。   The operation of the fuel cell 12 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aに純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して電解質膜・電極構造体10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから供給孔部46を通って第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、電解質膜・電極構造体10aのアノード電極20に供給される。   For this reason, the oxidant gas is introduced into the oxidant gas flow path 36 of the second separator 16 from the oxidant gas inlet communication hole 30a and moves in the direction of arrow B to the cathode electrode 22 of the electrolyte membrane / electrode structure 10a. Supplied. On the other hand, the fuel gas is introduced from the fuel gas inlet communication hole 34 a through the supply hole 46 into the fuel gas flow path 38 of the first separator 14. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 20 of the electrolyte membrane / electrode structure 10a.

従って、各電解質膜・電極構造体10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。   Accordingly, in each electrolyte membrane / electrode structure 10a, the oxidant gas supplied to the cathode electrode 22 and the fuel gas supplied to the anode electrode 20 are consumed by an electrochemical reaction in the electrode catalyst layer to generate power. Done.

次いで、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、排出孔部48を通り燃料ガス出口連通孔34bに沿って矢印A方向に排出される。   Next, the oxidant gas consumed by being supplied to the cathode electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas consumed by being supplied to the anode electrode 20 passes through the discharge hole 48 and is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、電解質膜・電極構造体10aを冷却した後、冷却媒体出口連通孔32bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B. The cooling medium is discharged from the cooling medium outlet communication hole 32b after the electrolyte membrane / electrode structure 10a is cooled.

この場合、第1の実施形態では、図2に示すように、樹脂製枠部材24は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部24aを有するとともに、固体高分子電解質膜18と前記アノード電極20の外周部との境界部位に配置される角部24aeが、断面曲面形状(R形状)に構成されている。   In this case, in the first embodiment, as shown in FIG. 2, the resin frame member 24 protrudes to the outer peripheral side of the anode electrode 20 and contacts the outer peripheral edge of the solid polymer electrolyte membrane 18. 24a, and a corner 24ae disposed at a boundary portion between the solid polymer electrolyte membrane 18 and the outer peripheral portion of the anode electrode 20 is formed in a curved cross-sectional shape (R shape).

このため、図4に示すように、電解質膜・電極構造体10aと樹脂製枠部材24とを接合(接着)する際、前記樹脂製枠部材24の内周端部24aに荷重が付与されても、前記内周端部24aの角部24aeが固体高分子電解質膜18に食い込むことがない。   For this reason, as shown in FIG. 4, when the electrolyte membrane / electrode structure 10a and the resin frame member 24 are joined (adhered), a load is applied to the inner peripheral end 24a of the resin frame member 24. However, the corner 24ae of the inner peripheral end 24a does not bite into the solid polymer electrolyte membrane 18.

さらに、燃料電池12では、図2に示すように、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持するとともに、複数の前記燃料電池12が積層されて燃料電池スタック13を構成している。その際、第1セパレータ14の第1シール部材42では、第1凸状シール42aが樹脂枠付き電解質膜・電極構造体10の樹脂製枠部材24の内周端部24aに当接している。従って、内周端部24aには、第1凸状シール42aを介して積層方向に締め付け荷重が付与されているが、前記内周端部24aの角部24aeが固体高分子電解質膜18に食い込むことがない。   Further, in the fuel cell 12, as shown in FIG. 2, the electrolyte membrane / electrode structure 10 with a resin frame is sandwiched between the first separator 14 and the second separator 16, and a plurality of the fuel cells 12 are stacked to form a fuel. A battery stack 13 is configured. At that time, in the first seal member 42 of the first separator 14, the first convex seal 42 a is in contact with the inner peripheral end 24 a of the resin frame member 24 of the electrolyte membrane / electrode structure 10 with resin frame. Accordingly, a tightening load is applied to the inner peripheral end portion 24a in the stacking direction via the first convex seal 42a, but the corner portion 24ae of the inner peripheral end portion 24a bites into the solid polymer electrolyte membrane 18. There is nothing.

これにより、第1の実施形態では、内周端部24aの角部24aeを断面曲面形状に構成するだけでよく、簡単な構成で、固体高分子電解質膜18にせん断応力がかかることを確実に阻止することができる。このため、固体高分子電解質膜18の損傷を良好に抑制することが可能になるという効果が得られる。   Thus, in the first embodiment, it is only necessary to configure the corner portion 24ae of the inner peripheral end portion 24a to have a curved cross-sectional shape, and it is ensured that shear stress is applied to the solid polymer electrolyte membrane 18 with a simple configuration. Can be blocked. For this reason, the effect that it becomes possible to suppress well the damage of the solid polymer electrolyte membrane 18 is acquired.

図5は、本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体50の要部断面説明図である。なお、第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。   FIG. 5 is a cross-sectional explanatory view of a main part of an electrolyte membrane / electrode structure 50 with a resin frame according to the second embodiment of the present invention. In addition, the same referential mark is attached | subjected to the component same as the electrolyte membrane and electrode structure 10 with a resin frame which concerns on 1st Embodiment, and the detailed description is abbreviate | omitted.

樹脂枠付き電解質膜・電極構造体50は、アノード電極20及びカソード電極22に接合される樹脂製枠部材52を備える。樹脂製枠部材52は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部52aを有する。内周端部52aの先端側及び樹脂製枠部材52の前記内周端部52aとは反対の面の先端側には、アノード電極20のガス拡散層20b及びカソード電極22のガス拡散層22bにそれぞれ一体化される第1樹脂突起部54a及び第2樹脂突起部54bが一体に設けられる。   The electrolyte membrane / electrode structure 50 with a resin frame includes a resin frame member 52 bonded to the anode electrode 20 and the cathode electrode 22. The resin frame member 52 has an inner peripheral end portion 52 a that protrudes toward the outer peripheral side of the anode electrode 20 and contacts the outer peripheral edge portion of the solid polymer electrolyte membrane 18. The gas diffusion layer 20b of the anode electrode 20 and the gas diffusion layer 22b of the cathode electrode 22 are formed on the distal end side of the inner peripheral end portion 52a and the distal end side of the surface opposite to the inner peripheral end portion 52a of the resin frame member 52. A first resin protrusion 54a and a second resin protrusion 54b that are integrated with each other are integrally provided.

第1樹脂突起部54aは、アノード電極20の外周端部を周回して枠形状(額縁形状)に形成されるとともに、第2樹脂突起部54bは、カソード電極22の外周端部を周回して枠形状(額縁形状)に形成される。第1樹脂突起部54aは、固体高分子電解質膜18とアノード電極20の外周部との境界部位に配置される角部54aeが、断面曲面形状(R形状)に構成される。   The first resin protrusion 54 a circulates around the outer peripheral end of the anode electrode 20 and is formed in a frame shape (frame shape), and the second resin protrusion 54 b circulates around the outer peripheral end of the cathode electrode 22. It is formed in a frame shape (frame shape). As for the 1st resin projection part 54a, the corner | angular part 54ae arrange | positioned in the boundary site | part of the solid polymer electrolyte membrane 18 and the outer peripheral part of the anode electrode 20 is comprised by cross-sectional curved surface shape (R shape).

なお、第1樹脂突起部54a及び第2樹脂突起部54bは、断面矩形状を有しているが、これに限定されるものではない。例えば、第1樹脂突起部54a及び第2樹脂突起部54bは、アノード電極20側とは反対の端面及びカソード電極22側とは反対の端面を、それぞれ樹脂製枠部材52から離間する方向に向かって前記樹脂製枠部材52側に傾斜させる傾斜面として構成してもよい(図5中、二点鎖線参照)。さらに、第2樹脂突起部54bに代えて、樹脂含浸部28(第1の実施形態)を用いてもよい。   In addition, although the 1st resin projection part 54a and the 2nd resin projection part 54b have a cross-sectional rectangular shape, it is not limited to this. For example, the first resin protrusion 54 a and the second resin protrusion 54 b face the end surface opposite to the anode electrode 20 side and the end surface opposite to the cathode electrode 22 side in directions away from the resin frame member 52, respectively. It may be configured as an inclined surface inclined toward the resin frame member 52 side (see a two-dot chain line in FIG. 5). Further, the resin impregnated portion 28 (first embodiment) may be used in place of the second resin protruding portion 54b.

このように構成される樹脂枠付き電解質膜・電極構造体50では、第1樹脂突起部54a及び第2樹脂突起部54bが、加熱装置を構成する加熱板56a、56bにより加熱溶着される。加熱板56a、56bは、所定温度に加熱されており、第1樹脂突起部54a及び第2樹脂突起部54bに荷重を付与することにより、前記第1樹脂突起部54a及び前記第2樹脂突起部54bが溶融されてガス拡散層20b及びガス拡散層22bにそれぞれ含浸される。このため、第1樹脂含浸部58a及び第2樹脂含浸部58bが形成される。   In the electrolyte membrane / electrode structure 50 with the resin frame configured as described above, the first resin protrusion 54a and the second resin protrusion 54b are heat-welded by the heating plates 56a and 56b constituting the heating device. The heating plates 56a and 56b are heated to a predetermined temperature, and by applying a load to the first resin projection 54a and the second resin projection 54b, the first resin projection 54a and the second resin projection 54 54b is melted and impregnated into the gas diffusion layer 20b and the gas diffusion layer 22b, respectively. For this reason, the 1st resin impregnation part 58a and the 2nd resin impregnation part 58b are formed.

このように構成される第2の実施形態では、第1樹脂突起部54aは、固体高分子電解質膜18とアノード電極20の外周部との境界部位に配置される角部54aeが、断面曲面形状(R形状)に構成されている。このため、樹脂製枠部材52の内周端部52aに荷重が付与されても、第1樹脂突起部54aの角部54aeが固体高分子電解質膜18に食い込むことがない。従って、第2の実施形態では、上記の第1の実施形態と同様の効果が得られる。   In the second embodiment configured as described above, the first resin protrusion 54a has a curved cross-sectional shape at the corner 54ae disposed at the boundary between the solid polymer electrolyte membrane 18 and the outer periphery of the anode electrode 20. (R shape). For this reason, even if a load is applied to the inner peripheral end portion 52 a of the resin frame member 52, the corner portion 54 ae of the first resin protrusion 54 a does not bite into the solid polymer electrolyte membrane 18. Therefore, in the second embodiment, the same effect as in the first embodiment can be obtained.

10、50…樹脂枠付き電解質膜・電極構造体
10a…電解質膜・電極構造体 12…燃料電池
14、16…セパレータ 18…固体高分子電解質膜
20…アノード電極 20a、22a…電極触媒層
20b、22b…ガス拡散層 22…カソード電極
24、52…樹脂製枠部材 24a、52a…内周端部
24ae、54ae…角部 26…接着剤層
28…樹脂含浸部 30a…酸化剤ガス入口連通孔
30b…酸化剤ガス出口連通孔 32a…冷却媒体入口連通孔
32b…冷却媒体出口連通孔 34a…燃料ガス入口連通孔
34b…燃料ガス出口連通孔 36…酸化剤ガス流路
38…燃料ガス流路 40…冷却媒体流路
42、44…シール部材 54a、54b…樹脂突起部
DESCRIPTION OF SYMBOLS 10, 50 ... Electrolyte membrane / electrode structure 10a with resin frame ... Electrolyte membrane / electrode structure 12 ... Fuel cell 14, 16 ... Separator 18 ... Solid polymer electrolyte membrane 20 ... Anode electrode 20a, 22a ... Electrode catalyst layer 20b, 22b ... Gas diffusion layer 22 ... Cathode electrode 24, 52 ... Resin frame member 24a, 52a ... Inner peripheral edge 24ae, 54ae ... Corner 26 ... Adhesive layer 28 ... Resin impregnation part 30a ... Oxidant gas inlet communication hole 30b ... Oxidant gas outlet communication hole 32a ... Cooling medium inlet communication hole 32b ... Cooling medium outlet communication hole 34a ... Fuel gas inlet communication hole 34b ... Fuel gas outlet communication hole 36 ... Oxidant gas flow path 38 ... Fuel gas flow path 40 ... Cooling medium flow paths 42, 44 ... sealing members 54a, 54b ... resin protrusions

Claims (4)

それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、
前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体であって、
前記樹脂製枠部材は、前記第1電極の外周側に突出して前記固体高分子電解質膜の外周縁部に当接する内周端部を有するとともに、
前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
A first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of the solid polymer electrolyte membrane, and the first electrode is set to have an outer dimension smaller than that of the second electrode. An electrolyte membrane / electrode structure;
A resin frame member provided around the outer periphery of the solid polymer electrolyte membrane;
An electrolyte membrane / electrode structure with a resin frame for a fuel cell comprising:
The resin frame member has an inner peripheral end that protrudes toward the outer peripheral side of the first electrode and contacts the outer peripheral edge of the solid polymer electrolyte membrane,
The fuel cell resin frame is characterized in that the inner peripheral end portion is configured such that a corner portion disposed at a boundary portion between the solid polymer electrolyte membrane and the outer peripheral portion of the first electrode has a curved cross-sectional shape. Electrode membrane / electrode structure.
請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、少なくとも前記樹脂製枠部材の前記内周端部と前記固体高分子電解質膜の外周縁部とは、接着剤により一体化されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。   The electrolyte membrane / electrode structure with a resin frame for a fuel cell according to claim 1, wherein at least the inner peripheral edge of the resin frame member and the outer peripheral edge of the solid polymer electrolyte membrane are integrated by an adhesive. An electrolyte membrane / electrode structure with a resin frame for a fuel cell. 請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、少なくとも前記樹脂製枠部材の前記内周端部と前記固体高分子電解質膜の外周縁部とは、前記樹脂製枠部材を前記第1電極を構成する前記ガス拡散層の外周端部に含浸させることにより、一体化されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。   2. The electrolyte membrane / electrode structure with a resin frame for a fuel cell according to claim 1, wherein at least the inner peripheral end portion of the resin frame member and the outer peripheral edge portion of the solid polymer electrolyte membrane are the resin frame member. An electrolyte membrane / electrode structure with a resin frame for a fuel cell, wherein the outer peripheral end of the gas diffusion layer constituting the first electrode is impregnated. それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体を有し、前記固体高分子電解質膜の外周を周回して樹脂製枠部材が設けられる樹脂枠付き電解質膜・電極構造体と、セパレータとが積層される燃料電池スタックであって、
前記樹脂製枠部材は、前記第1電極の外周側に突出して一方の面側が前記固体高分子電解質膜の外周縁部に当接し且つ他方の面側が前記セパレータに当接する内周端部を有するとともに、
前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されることを特徴とする燃料電池スタック。
A first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of the solid polymer electrolyte membrane, and the first electrode is set to have an outer dimension smaller than that of the second electrode. A fuel cell stack in which an electrolyte membrane / electrode structure having an electrolyte membrane / electrode structure and having a resin frame member provided around a periphery of the solid polymer electrolyte membrane and provided with a resin frame member, and a separator are laminated There,
The resin-made frame member has an inner peripheral end that protrudes toward the outer peripheral side of the first electrode and has one surface abutting on the outer peripheral edge of the solid polymer electrolyte membrane and the other surface abutting on the separator. With
In the fuel cell stack, the inner peripheral end portion is configured such that a corner portion disposed at a boundary portion between the solid polymer electrolyte membrane and the outer peripheral portion of the first electrode has a curved cross-sectional shape.
JP2011243284A 2011-11-07 2011-11-07 Fuel cell stack Active JP5683433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243284A JP5683433B2 (en) 2011-11-07 2011-11-07 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243284A JP5683433B2 (en) 2011-11-07 2011-11-07 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2013098155A true JP2013098155A (en) 2013-05-20
JP5683433B2 JP5683433B2 (en) 2015-03-11

Family

ID=48619861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243284A Active JP5683433B2 (en) 2011-11-07 2011-11-07 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP5683433B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012105B2 (en) 2012-07-03 2015-04-21 Honda Motor Co., Ltd. Membrane electrode assembly for fuel cell
US9331344B2 (en) 2013-11-11 2016-05-03 Honda Motor Co., Ltd. Fuel cell
WO2017141490A1 (en) 2016-02-15 2017-08-24 日産自動車株式会社 Unit cell structure for fuel cell
JP2018097917A (en) * 2016-12-08 2018-06-21 本田技研工業株式会社 Resin frame-attached electrolyte membrane-electrode structure and method of manufacturing the same
US10141592B2 (en) 2013-10-09 2018-11-27 Honda Motor Co., Ltd. Resin-framed membrane electrode assembly for fuel cell
US10243221B2 (en) 2014-12-08 2019-03-26 Honda Motor Co., Ltd. Resin-framed membrane-electrode assembly for fuel cell and method for manufacturing the same
JP2019071174A (en) * 2017-10-05 2019-05-09 トヨタ自動車株式会社 Method for manufacturing single cell of fuel battery
US10559835B2 (en) 2014-11-20 2020-02-11 Honda Motor Co., Ltd. Resin-framed membrane-electrode assembly for fuel cell
US10581091B2 (en) 2013-12-26 2020-03-03 Honda Motor Co., Ltd. Resin-framed membrane electrode assembly
JP2021153041A (en) * 2020-03-18 2021-09-30 本田技研工業株式会社 Method and working mold for manufacturing resin frame member for fuel cel
US11611087B2 (en) 2020-03-18 2023-03-21 Honda Motor Co., Ltd. Method of producing resin frame member for fuel cell and processing die

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329504A (en) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd Polyelectrolyte fuel cell
JP2004172096A (en) * 2002-10-29 2004-06-17 Honda Motor Co Ltd Membrane electrode assembly
JP2004281113A (en) * 2003-03-13 2004-10-07 Osaka Gas Co Ltd Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it
JP2007066766A (en) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly
US20070298302A1 (en) * 2003-09-20 2007-12-27 Umicore Ag & Co Kg Catalyst-Coated Membrane With Integrated Sealing Material and Membrane-Electrode Assembly Produced Therefrom
JP2008041337A (en) * 2006-08-03 2008-02-21 Japan Gore Tex Inc Membrane-electrode assembly, its manufacturing method and polymer electrolyte fuel cell using it
JP2008226601A (en) * 2007-03-12 2008-09-25 Matsushita Electric Ind Co Ltd Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and manufacturing method of membrane-membrane reinforcing member assembly
JP2009514144A (en) * 2003-07-14 2009-04-02 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Membrane electrode assembly for electrochemical devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329504A (en) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd Polyelectrolyte fuel cell
JP2004172096A (en) * 2002-10-29 2004-06-17 Honda Motor Co Ltd Membrane electrode assembly
JP2004281113A (en) * 2003-03-13 2004-10-07 Osaka Gas Co Ltd Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it
JP2009514144A (en) * 2003-07-14 2009-04-02 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Membrane electrode assembly for electrochemical devices
US20070298302A1 (en) * 2003-09-20 2007-12-27 Umicore Ag & Co Kg Catalyst-Coated Membrane With Integrated Sealing Material and Membrane-Electrode Assembly Produced Therefrom
JP2007066766A (en) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly
JP2008041337A (en) * 2006-08-03 2008-02-21 Japan Gore Tex Inc Membrane-electrode assembly, its manufacturing method and polymer electrolyte fuel cell using it
JP2008226601A (en) * 2007-03-12 2008-09-25 Matsushita Electric Ind Co Ltd Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and manufacturing method of membrane-membrane reinforcing member assembly

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012105B2 (en) 2012-07-03 2015-04-21 Honda Motor Co., Ltd. Membrane electrode assembly for fuel cell
US10141592B2 (en) 2013-10-09 2018-11-27 Honda Motor Co., Ltd. Resin-framed membrane electrode assembly for fuel cell
US9331344B2 (en) 2013-11-11 2016-05-03 Honda Motor Co., Ltd. Fuel cell
US10581091B2 (en) 2013-12-26 2020-03-03 Honda Motor Co., Ltd. Resin-framed membrane electrode assembly
US10559835B2 (en) 2014-11-20 2020-02-11 Honda Motor Co., Ltd. Resin-framed membrane-electrode assembly for fuel cell
US10243221B2 (en) 2014-12-08 2019-03-26 Honda Motor Co., Ltd. Resin-framed membrane-electrode assembly for fuel cell and method for manufacturing the same
KR20180105250A (en) 2016-02-15 2018-09-27 닛산 지도우샤 가부시키가이샤 Single cell structure of fuel cell
WO2017141490A1 (en) 2016-02-15 2017-08-24 日産自動車株式会社 Unit cell structure for fuel cell
US11018351B2 (en) 2016-02-15 2021-05-25 Nissan Motor Co., Ltd. Single cell structure for fuel cell
JP2018097917A (en) * 2016-12-08 2018-06-21 本田技研工業株式会社 Resin frame-attached electrolyte membrane-electrode structure and method of manufacturing the same
JP2019071174A (en) * 2017-10-05 2019-05-09 トヨタ自動車株式会社 Method for manufacturing single cell of fuel battery
JP2021153041A (en) * 2020-03-18 2021-09-30 本田技研工業株式会社 Method and working mold for manufacturing resin frame member for fuel cel
US11611087B2 (en) 2020-03-18 2023-03-21 Honda Motor Co., Ltd. Method of producing resin frame member for fuel cell and processing die

Also Published As

Publication number Publication date
JP5683433B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5683433B2 (en) Fuel cell stack
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5681792B2 (en) ELECTROLYTE MEMBRANE / ELECTRODE STRUCTURE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP6104050B2 (en) Electrolyte membrane / electrode structure for fuel cells
JP5638508B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP5855540B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5855442B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP2008171613A (en) Fuel cells
JP5912942B2 (en) Electrolyte membrane / electrode structure with resin frame and fuel cell
JP6092053B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6090791B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
CN110380080B (en) Resin frame-equipped electrolyte membrane-electrode assembly for fuel cell
JP6666664B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2016058161A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6144650B2 (en) Manufacturing method of fuel cell
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2013157093A (en) Fuel cell
JP6126049B2 (en) Manufacturing method of fuel cell
JP6158758B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5604404B2 (en) Fuel cell
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6442393B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R150 Certificate of patent or registration of utility model

Ref document number: 5683433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150