JP2002329504A - Polyelectrolyte fuel cell - Google Patents

Polyelectrolyte fuel cell

Info

Publication number
JP2002329504A
JP2002329504A JP2001133062A JP2001133062A JP2002329504A JP 2002329504 A JP2002329504 A JP 2002329504A JP 2001133062 A JP2001133062 A JP 2001133062A JP 2001133062 A JP2001133062 A JP 2001133062A JP 2002329504 A JP2002329504 A JP 2002329504A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrode
gasket
electrolyte membrane
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001133062A
Other languages
Japanese (ja)
Other versions
JP4859281B2 (en
Inventor
Yasushi Sugawara
靖 菅原
Hideo Obara
英夫 小原
Hiroki Kusakabe
弘樹 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001133062A priority Critical patent/JP4859281B2/en
Publication of JP2002329504A publication Critical patent/JP2002329504A/en
Application granted granted Critical
Publication of JP4859281B2 publication Critical patent/JP4859281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve concentration of loads such as differential pressures of fuel and oxidizer gas and vibration to a cell in a polyelectrolyte film portion between a gasket and an electrode and easy fracture of the polyelectrolyte film in an edge part of the electrode or a gasket end face. SOLUTION: An angle α comprised of an end part face of at least one electrode and a contact surface of the polyelectrolyte film and the electrode is >90 deg. and <180 deg.. An angle β comprised of the end face of the gasket in at least one electrode side and a contact surface of the polyelectrolyte film and the gasket is >90 deg. and <180 deg.. By this, the loads to the polyelectrolyte film are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池に関する。さらに詳しくは、高分子電解質膜を挟
む電極およびその周縁部に配したガスケットの対向する
端面部分の改良に関する。
[0001] The present invention relates to a polymer electrolyte fuel cell. More specifically, the present invention relates to an improvement in an electrode sandwiching a polymer electrolyte membrane and an opposed end face portion of a gasket disposed on a peripheral portion thereof.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池は、水素などの
燃料ガスと空気などの酸化ガスをガス拡散電極によって
電気化学的に反応させて、電気と熱とを同時に発生させ
るものである。このような高分子電解質燃料電池の一般
的な構成を図1に示した。図1において、水素イオンを
選択的に輸送する高分子電解質膜11の両面には、白金
族金属触媒を担持したカーボン粉末を主成分とする触媒
層12が密着して配置されている。触媒層12の外面に
は、ガス通気性と導電性を兼ね備えた一対の拡散層13
がこれに密着して配置されている。この拡散層13と触
媒層12により電極14が構成される。電極14の外側
には、導電性セパレータ板16が配置されている。導電
性セパレータ板16は、電極14と高分子電解質膜11
とで形成される膜−電極接合体(MEA)を機械的に固
定するとともに、隣接するMEA同士を互いに電気的に
直列に接続し、さらに電極に反応ガスを供給しかつ反応
により発生したガスや余剰のガスを運び去るためのガス
流路17を一方の面に有する。
2. Description of the Related Art In a polymer electrolyte fuel cell, a fuel gas such as hydrogen and an oxidizing gas such as air are electrochemically reacted by a gas diffusion electrode to simultaneously generate electricity and heat. FIG. 1 shows a general configuration of such a polymer electrolyte fuel cell. In FIG. 1, a catalyst layer 12 mainly composed of a carbon powder carrying a platinum group metal catalyst is disposed in close contact with both sides of a polymer electrolyte membrane 11 that selectively transports hydrogen ions. A pair of diffusion layers 13 having both gas permeability and conductivity are provided on the outer surface of the catalyst layer 12.
Are arranged in close contact with this. The diffusion layer 13 and the catalyst layer 12 form an electrode 14. Outside the electrode 14, a conductive separator plate 16 is arranged. The conductive separator plate 16 includes the electrode 14 and the polymer electrolyte membrane 11.
And the membrane-electrode assembly (MEA) formed by the above is mechanically fixed, the adjacent MEAs are electrically connected to each other in series, a reaction gas is supplied to the electrodes, and a gas generated by the reaction is supplied. A gas passage 17 for carrying away excess gas is provided on one surface.

【0003】ガス流路は、セパレータ板16と別に設け
ることもできるが、セパレータ板の表面に溝を設けてガ
ス流路とする方式が一般的である。セパレータ板16の
他方の面には、電池温度を一定に保つための冷却水を循
環させる冷却流路18が設けられる。このように冷却水
を循環させることにより、反応により発生した熱エネル
ギーは、温水などの形で利用することができる。このよ
うな積層型の電池では、ガスの供給孔および排出孔、さ
らには冷却水の供給孔および排出孔を、積層電池内部に
確保したいわゆる内部マニホルド型が一般的である。
The gas flow path can be provided separately from the separator plate 16, but a gas flow path is generally provided by providing a groove on the surface of the separator plate. On the other surface of the separator plate 16, a cooling channel 18 for circulating cooling water for keeping the battery temperature constant is provided. By circulating the cooling water in this way, the heat energy generated by the reaction can be used in the form of hot water or the like. In such a stacked battery, a so-called internal manifold type in which a gas supply hole and a discharge hole, and further, a cooling water supply hole and a discharge hole are secured inside the stacked battery is generally used.

【0004】電極14の周縁部には、それぞれ対極への
ガス漏れあるいは外部へのガスの漏れを防止するために
シール機能を有するガスケット15が設けられる。ガス
ケットには、Oリング、ゴム状シート、弾性樹脂と剛性
樹脂との複合シートなどが用いられる。MEAの取り扱
い性の観点からは、ある程度剛性を有する複合材系のガ
スケットをMEAと一体化させることが多い。上記のよ
うな高分子電解質型燃料電池スタックでは、バイポーラ
板等の構成部品の電気的接触抵抗を低減するため、電池
全体を恒常的に締め付けることが必要である。このため
には、多数の単電池を一方向に積み重ね、その両端にそ
れぞれ端板を配置し、その2つの端板の間を締結用部材
を用いて固定することが効果的である。締め付け方式と
しては、単電池を面内でできるだけ均一に締め付けるこ
とが望ましい。機械的強度の観点から、端板等の締結用
部材にはステンレス鋼などの金属材料が通常用いられ
る。
A gasket 15 having a sealing function for preventing gas leakage to the counter electrode or gas leakage to the outside is provided at the peripheral portion of the electrode 14. As the gasket, an O-ring, a rubber-like sheet, a composite sheet of an elastic resin and a rigid resin, or the like is used. From the viewpoint of the handleability of the MEA, a composite gasket having some rigidity is often integrated with the MEA. In the polymer electrolyte fuel cell stack as described above, it is necessary to constantly tighten the entire cell in order to reduce the electrical contact resistance of components such as a bipolar plate. To this end, it is effective to stack a number of unit cells in one direction, arrange end plates at both ends thereof, and fix the two end plates using a fastening member. As a tightening method, it is desirable to tighten the cells as uniformly as possible within the plane. From the viewpoint of mechanical strength, metal materials such as stainless steel are usually used for fastening members such as end plates.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような剛性のあるガスケットを用いている高分子電解質
型燃料電池においては、ガスケットと電極との間の高分
子電解質膜部分に、燃料ガスと酸化剤ガスの差圧、電池
への振動などの負荷が集中し、電極あるいはガスケット
端面のエッジ部で高分子電解質膜の破損が起こりやすい
という問題がある。
However, in a polymer electrolyte fuel cell using a rigid gasket as described above, the fuel gas and the oxidized gas are deposited on the polymer electrolyte membrane between the gasket and the electrode. There is a problem that loads such as a differential pressure of the agent gas and vibrations to the battery are concentrated, and the polymer electrolyte membrane is likely to be damaged at an edge of the electrode or the end face of the gasket.

【0006】[0006]

【課題を解決するための手段】以上の課題を解決するた
め本発明の高分子電解質型燃料電池は、少なくとも一方
の電極の端面と、前記高分子電解質膜と前記電極との接
面とがなす角度αが90°<α<180°であることを
特徴とする。また、少なくとも一方のガスケットの電極
側の端面と、高分子電解質膜と前記ガスケットとの接面
とがなす角度βが90°<β<180°であることを特
徴とする。これらガスケットおよび電極の少なくとも一
方は、打ち抜き型により所定のサイズに形成され、その
切断面と、その切断面を有するガスケットおよび/また
は電極と高分子電解質膜との接面とが鈍角になるよう
に、電解質膜と接合されていることが好ましい。
In order to solve the above problems, a polymer electrolyte fuel cell according to the present invention has an end face of at least one electrode and a contact surface between the polymer electrolyte membrane and the electrode. The angle α is 90 ° <α <180 °. Further, an angle β formed between an electrode-side end surface of at least one gasket and a contact surface between the polymer electrolyte membrane and the gasket is 90 ° <β <180 °. At least one of the gasket and the electrode is formed into a predetermined size by a punching die, and a cut surface thereof is formed at an obtuse angle with a contact surface between the gasket and / or the electrode having the cut surface and the polymer electrolyte membrane. , And the electrolyte membrane.

【0007】[0007]

【発明の実施の形態】上記のように本発明の高分子電解
質型燃料電池においては、電極端部の切断面と、高分子
電解質膜と前記電極との接面とがなす角度が鈍角になっ
ている。このため、電極端部のエッジ部で高分子電解質
膜を破損することが少ない。また、ガスケット端部の切
断面と、高分子電解質膜と前記ガスケットの接面とがな
す角度が鈍角になっている。したがって、ガスケット端
部のエッジ部で高分子電解質膜を破損することが少な
い。さらに、ガスケットおよび電極端部の切断面がとも
に鈍角になっていると、ガスケットと電極との間の高分
子電解質膜の破損がより少なくなる。本発明に用いる電
極の電極基材は、カーボンペーパーなどの炭素繊維から
なる不織布であるのが好ましい。ガスケットは、非導電
性弾性樹脂と非導電性剛性樹脂から構成されるのが好ま
しい。
As described above, in the polymer electrolyte fuel cell of the present invention, the angle between the cut surface of the electrode end and the contact surface between the polymer electrolyte membrane and the electrode becomes an obtuse angle. ing. Therefore, the polymer electrolyte membrane is less likely to be damaged at the edge of the electrode. Further, the angle formed by the cut surface at the end of the gasket and the contact surface between the polymer electrolyte membrane and the gasket is obtuse. Therefore, the polymer electrolyte membrane is less likely to be damaged at the edge of the gasket end. Further, when the cut surfaces of the gasket and the electrode end are both obtuse, damage of the polymer electrolyte membrane between the gasket and the electrode is further reduced. The electrode substrate of the electrode used in the present invention is preferably a nonwoven fabric made of carbon fibers such as carbon paper. The gasket is preferably made of a non-conductive elastic resin and a non-conductive rigid resin.

【0008】以下、本発明の実施の形態を図面を参照し
て説明する。図2は、高分子電解質膜21、これを挟む
一対の電極23および電極の周縁部に配した一対のガス
ケット25からなるMEAを示している。高分子電解質
膜の破損が問題となる電極周縁部においては、拡散層が
直に高分子電解質膜に接しているので、図2では、触媒
層を省略して示している。図3は、電極周縁部における
MEAの要部の拡大断面図である。本発明では、少なく
とも一方の電極23の外周端面と、高分子電解質膜21
と前記電極23との接面とがなす角度αを90°<α<
180°とする。または、少なくとも一方の電極側のガ
スケット25の端面と、高分子電解質膜21と前記ガス
ケット25の接面とがなす角度βを90°<β<180
°とする。図3(a)では、電極およびガスケットの端
面が直線状になっているが、図3(b)および(c)の
ように、電極およびガスケットの端面が丸みをもってい
てもよいことはいうまでもない。図3は、一対の電極お
よび一対のガスケットがともに前記の条件を満たす最も
好ましい態様を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows an MEA including a polymer electrolyte membrane 21, a pair of electrodes 23 sandwiching the polymer electrolyte membrane 21, and a pair of gaskets 25 arranged on the periphery of the electrodes. Since the diffusion layer is in direct contact with the polymer electrolyte membrane at the periphery of the electrode where damage to the polymer electrolyte membrane is a problem, the catalyst layer is not shown in FIG. FIG. 3 is an enlarged cross-sectional view of a main part of the MEA at the periphery of the electrode. In the present invention, the outer peripheral end face of at least one electrode 23 and the polymer electrolyte membrane 21
And the contact surface between the electrode 23 and the electrode 23 is 90 ° <α <
180 °. Alternatively, the angle β between the end surface of the gasket 25 on at least one electrode side and the contact surface between the polymer electrolyte membrane 21 and the gasket 25 is set to 90 ° <β <180.
°. In FIG. 3A, the end faces of the electrode and the gasket are straight, but it goes without saying that the end faces of the electrode and the gasket may be rounded as shown in FIGS. 3B and 3C. Absent. FIG. 3 shows a most preferable embodiment in which both the pair of electrodes and the pair of gaskets satisfy the above conditions.

【0009】[0009]

【実施例】本発明に好適の実施例を、図面を参照しなが
ら詳細に説明する。 《実施例1》粒径が数ミクロン以下のカーボン粉末を塩
化白金酸水溶液に浸漬し、還元処理によりカーボン粉末
の表面に白金触媒を担持させた。カーボンと担持した白
金との重量比は1:1とした。ついで、この白金を担持
したカーボン粉末を高分子電解質のアルコール溶液中に
分散させ、スラリー化した。一方、電極となる厚さ40
0μmのカーボンペーパーを、フッ素樹脂の水性ディス
パージョン(ダイキン工業(株)製:商品名ネオフロン
ND1)に含浸した後、これを乾燥し、400℃で30
分加熱処理して撥水性を付与した。次に、撥水処理を施
したカーボンペーパーの片面に、カーボン粉末を含む上
記のスラリーを均一に塗布して触媒層を形成した。これ
を電極サイズの打ち抜き型で打ち抜き、電極とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail with reference to the drawings. Example 1 A carbon powder having a particle diameter of several microns or less was immersed in an aqueous solution of chloroplatinic acid, and a platinum catalyst was supported on the surface of the carbon powder by a reduction treatment. The weight ratio of carbon to the supported platinum was 1: 1. Next, the carbon powder carrying platinum was dispersed in an alcohol solution of a polymer electrolyte to form a slurry. On the other hand, the thickness of the electrode 40
After impregnating a 0 μm carbon paper with an aqueous dispersion of fluororesin (manufactured by Daikin Industries, Ltd., trade name: Neoflon ND1), this is dried and dried at 400 ° C. for 30 minutes.
A minute heat treatment was applied to impart water repellency. Next, the above-mentioned slurry containing carbon powder was uniformly applied to one surface of the water-repellent carbon paper to form a catalyst layer. This was punched out by a punching die having an electrode size to obtain an electrode.

【0010】このとき打ち抜き型の刃の角度および向き
を調整することにより、図5(a)に示すように、電極
23の端面と、電極23と高分子電解質膜21との接面
とがなす角度αを135°にした。このようにして作製
した2枚の電極23を、電極よりも一回り外寸の大きい
高分子電解質膜21の両面に、触媒層を有する面がそれ
ぞれ高分子電解質膜と向き合うようにして、高分子電解
質膜の中央に位置するようにして重ね合わせた。それら
電極の外周部には、シリコンゴム/ポリエチレンテレフ
タレート/シリコンゴムの3層に積層した複合材料ガス
ケットを位置合わせし、100℃で5分間ホットプレス
してMEAを得た。ここに用いたガスケット25は、図
5(a)に示すように、その内縁部の切断面と高分子電
解質膜の接面とのなす角度βが90°になるよう打ち抜
き型を調整した。このMEAを用いて構成した単電池を
電池Aとする。
At this time, by adjusting the angle and direction of the blade of the punching die, the end face of the electrode 23 and the contact surface between the electrode 23 and the polymer electrolyte membrane 21 are formed as shown in FIG. The angle α was set to 135 °. The two electrodes 23 produced in this manner were placed on both sides of the polymer electrolyte membrane 21 having a size slightly larger than the electrodes, with the surfaces having the catalyst layers facing the polymer electrolyte membrane, respectively. They were overlapped so as to be located at the center of the electrolyte membrane. A composite material gasket laminated in three layers of silicon rubber / polyethylene terephthalate / silicone rubber was positioned on the outer periphery of the electrodes, and hot-pressed at 100 ° C. for 5 minutes to obtain an MEA. In the gasket 25 used here, as shown in FIG. 5A, the punching die was adjusted so that the angle β formed between the cut surface of the inner edge and the contact surface of the polymer electrolyte membrane was 90 °. A cell formed using this MEA is referred to as a battery A.

【0011】《実施例2》図5(b)に示すように、電
極および高分子電解質膜の接面と電極の端面とがなす角
度αが90°、ガスケットおよび高分子電解質膜の接面
とガスケットの端面とがなす角度βが135°であるこ
と以外は実施例1と同様にしてMEAを得た。このME
Aを用いて構成した単電池を電池Bとする。
<< Embodiment 2 >> As shown in FIG. 5 (b), the angle α between the contact surface of the electrode and the polymer electrolyte membrane and the end surface of the electrode is 90 °, and the contact angle between the gasket and the polymer electrolyte membrane is 90 °. An MEA was obtained in the same manner as in Example 1 except that the angle β formed by the end face of the gasket was 135 °. This ME
A single cell constituted by using A is referred to as a battery B.

【0012】《実施例3》図5(c)に示すように、電
極および高分子電解質膜の接面と電極の端面とがなす角
度αが135°、ガスケットおよび高分子電解質膜の接
面とガスケットの端面とがなす角度βが135°である
こと以外は実施例1と同様にしてMEAを得た。このM
EAを用いて構成した単電池を電池Cとする。
<< Embodiment 3 >> As shown in FIG. 5 (c), the angle α between the contact surface of the electrode and the polymer electrolyte membrane and the end surface of the electrode is 135 °, and the contact surface of the gasket and the polymer electrolyte membrane is An MEA was obtained in the same manner as in Example 1 except that the angle β formed by the end face of the gasket was 135 °. This M
A cell formed using EA is referred to as a battery C.

【0013】《比較例1》図5(d)に示すように、電
極および高分子電解質膜の接面と電極の端面とがなす角
度αが90°、ガスケットおよび高分子電解質膜の接面
とガスケットの端面とがなす角度βが90°であること
以外は実施例1と同様にしてMEAを得た。このMEA
を用いて構成した単電池を電池Dとする。
Comparative Example 1 As shown in FIG. 5D, the angle α between the contact surface of the electrode and the polymer electrolyte membrane and the end surface of the electrode is 90 °, and the contact angle between the gasket and the polymer electrolyte membrane is 90 °. An MEA was obtained in the same manner as in Example 1 except that the angle β formed by the end face of the gasket was 90 °. This MEA
A cell constituted using the above is referred to as a battery D.

【0014】以上の単電池について、電池温度75℃に
おいて、アノードに露点が85℃となるように加湿した
水素を1気圧で供給し、カソードに露点が75℃となる
ように加湿した空気を2気圧で供給し、水素利用率70
%、酸素利用率20%、電流密度0.7A/cm2で6
時間作動させた。その後電流密度を0A/cm2にして
水素側を窒素に置換し、セル温度を室温(約25℃)に
降温し、アノード、カソードともに常圧密閉状態で6時
間放置した。この作動条件を1サイクルとして、サイク
ルを繰り返した。そのときのサイクル数に対する0.7
A/cm2における電圧を図6に示した。図6から実施
例1、2および3による電池A、BおよびCは、それぞ
れ比較例の電池Dに比べて寿命が長くなっていることが
わかる。電圧が低下した電池を分解してMEAを観察し
たところ、すべて電極とガスケットとの境界部における
高分子電解質膜の破損やピンホールによるものであっ
た。すなわち、実施例の構成によれば、電極とガスケッ
トとの境界部における電解質膜への負荷を軽減できてい
ることがわかる。
At the cell temperature of 75 ° C., at the battery temperature of 75 ° C., humidified hydrogen was supplied to the anode at a pressure of 85 ° C. at 1 atm, and humidified air was supplied to the cathode at a pressure of 75 ° C. Supply at atmospheric pressure, hydrogen utilization rate 70
%, Oxygen utilization 20%, current density 0.7 A / cm 2 at 6
Activated for hours. Thereafter, the current density was set to 0 A / cm 2 , the hydrogen side was replaced with nitrogen, the cell temperature was lowered to room temperature (about 25 ° C.), and both the anode and the cathode were allowed to stand at normal pressure in a sealed state for 6 hours. This operating condition was defined as one cycle, and the cycle was repeated. 0.7 for the number of cycles at that time
The voltage at A / cm 2 is shown in FIG. FIG. 6 shows that the batteries A, B, and C according to Examples 1, 2, and 3 each have a longer life than the battery D of the comparative example. When the MEA was observed by disassembling the battery with a reduced voltage, all were due to breakage of the polymer electrolyte membrane and pinholes at the boundary between the electrode and the gasket. That is, according to the configuration of the example, it is understood that the load on the electrolyte membrane at the boundary between the electrode and the gasket can be reduced.

【0015】次に、上記と同じ条件で各電池を作動さ
せ、電流密度0.7A/cm2で電力を取り出しなが
ら、単電池に対して加速度3G、周波数20Hzの振動
を加える試験を行った。試験時間に対する0.7A/c
2での電圧の変化を図7に示した。図7から実施例の
電池A、BおよびCは、それぞれ比較例の電池Dに比べ
てサイクル寿命が長くなっていることがわかる。電圧が
低下した電池を分解してMEAを観察したところ、すべ
て電極とガスケットとの境界部における高分子電解質膜
の破損やピンホールによるものであった。
Next, each battery was operated under the same conditions as described above, and a test was conducted in which a single cell was subjected to an acceleration of 3 G and a frequency of 20 Hz while extracting power at a current density of 0.7 A / cm 2 . 0.7 A / c for test time
The change in voltage at m 2 is shown in FIG. From FIG. 7, it can be seen that the batteries A, B and C of the examples have a longer cycle life than the battery D of the comparative example. When the MEA was observed by disassembling the battery with a reduced voltage, all were due to breakage of the polymer electrolyte membrane and pinholes at the boundary between the electrode and the gasket.

【0016】以上から明らかなように、本発明の構造に
より、高分子型燃料電池の起動・停止や振動による性能
の低下を抑制できることがわかる。実施例においては、
打ち抜き型により切断面の角度を調整したが、他の成形
技術、例えば切削加工、熱成形などにより切断面の角度
の調整を行った場合も同様の効果が得られる。また、実
施例においては、電極およびガスケットの切断面はフラ
ットであるが、切断面の接線方向と高分子電解質膜の接
面とがなす角度を実施例と同様に調整すれば曲面であっ
ても同様の効果が得られる。
As is clear from the above, it can be understood that the structure of the present invention can suppress the deterioration of the performance of the polymer fuel cell due to start / stop and vibration. In the example,
Although the angle of the cut surface is adjusted by the punching die, the same effect can be obtained when the angle of the cut surface is adjusted by another molding technique, for example, cutting or thermoforming. Further, in the embodiment, the cut surface of the electrode and the gasket is flat, but if the angle formed between the tangential direction of the cut surface and the contact surface of the polymer electrolyte membrane is adjusted in the same manner as in the embodiment, the cut surface may be a curved surface. Similar effects can be obtained.

【0017】[0017]

【発明の効果】以上のように本発明によれば、高分子電
解質型燃料電池の作動時に起きる燃料ガスと酸化剤ガス
の差圧や外部からの振動による応力などによる電極とガ
スケットとの間の高分子電解質膜の破損による性能の低
下を抑制することができる。
As described above, according to the present invention, the difference between the electrode and the gasket due to the differential pressure between the fuel gas and the oxidizing gas generated during the operation of the polymer electrolyte fuel cell and the stress caused by external vibrations. A decrease in performance due to breakage of the polymer electrolyte membrane can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高分子電解質型燃料電池の構成を示す縦断面図
である。
FIG. 1 is a longitudinal sectional view showing a configuration of a polymer electrolyte fuel cell.

【図2】同電池のMEAの縦断面略図である。FIG. 2 is a schematic longitudinal sectional view of an MEA of the battery.

【図3】本発明の高分子電解質型燃料電池のMEAの実
施の形態を示す要部の断面図である。
FIG. 3 is a sectional view of a main part showing an embodiment of a MEA of a polymer electrolyte fuel cell according to the present invention.

【図4】従来例の高分子電解質型燃料電池のMEAの要
部の断面図である。
FIG. 4 is a cross-sectional view of a main part of a MEA of a conventional polymer electrolyte fuel cell.

【図5】実施例および比較例の高分子電解質型燃料電池
のMEAの要部の断面図である。
FIG. 5 is a cross-sectional view of a main part of a MEA of a polymer electrolyte fuel cell of an example and a comparative example.

【図6】実施例および比較例の高分子電解質型燃料電池
の起動・停止のサイクル数と定電流密度での電圧変化を
示す図である。
FIG. 6 is a diagram showing the number of start / stop cycles and the voltage change at a constant current density of the polymer electrolyte fuel cells of the examples and comparative examples.

【図7】実施例および比較例の高分子電解質型燃料電池
の振動試験のサイクル数と定電流密度での電圧変化を示
す図である。
FIG. 7 is a diagram showing the number of cycles in a vibration test of a polymer electrolyte fuel cell of an example and a comparative example and a voltage change at a constant current density.

【符号の説明】[Explanation of symbols]

11、21 高分子電解質膜 12 触媒層 13 拡散層 14、23 電極 15、25 ガスケット 16 セパレータ板 17 ガス流路 18 冷却水の流路 11, 21 polymer electrolyte membrane 12 catalyst layer 13 diffusion layer 14, 23 electrode 15, 25 gasket 16 separator plate 17 gas flow path 18 cooling water flow path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下部 弘樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 CC03 CX03 CX05 EE05 EE18 HH03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Kusakabe 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H026 AA06 CC03 CX03 CX05 EE05 EE18 HH03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜、前記高分子電解質膜を
挟む触媒層を有する一対の電極、前記電極の一方に燃料
ガスを供給するガス流路を有するアノード側導電性セパ
レータ板、前記電極の他方に酸化剤ガスを供給するガス
流路を有するカソード側導電性セパレータ板、および前
記各電極の周縁部に配したガスケットを具備し、少なく
とも一方の電極の端面と、前記高分子電解質膜と前記電
極との接面とがなす角度αが90°<α<180°であ
ることを特徴とする高分子電解質型燃料電池。
1. An anode-side conductive separator plate having a polymer electrolyte membrane, a pair of electrodes having a catalyst layer sandwiching the polymer electrolyte membrane, a gas flow path for supplying a fuel gas to one of the electrodes, On the other side, a cathode-side conductive separator plate having a gas flow path for supplying an oxidizing gas, and a gasket disposed on a peripheral portion of each of the electrodes, an end surface of at least one of the electrodes, the polymer electrolyte membrane, A polymer electrolyte fuel cell, wherein an angle α formed by a contact surface with an electrode satisfies 90 ° <α <180 °.
【請求項2】 前記電極の電極基材が炭素繊維からなる
不織布である請求項1記載の高分子電解質型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the electrode substrate of the electrode is a nonwoven fabric made of carbon fiber.
【請求項3】 高分子電解質膜、前記高分子電解質膜を
挟む触媒層を有する一対の電極、前記電極の一方に燃料
ガスを供給するガス流路を有するアノード側導電性セパ
レータ板、前記電極の他方に酸化剤ガスを供給するガス
流路を有するカソード側導電性セパレータ板、および前
記各電極の周縁部に配したガスケットを具備し、少なく
とも一方のガスケットの電極側の端面と、前記高分子電
解質膜と前記ガスケットとの接面とがなす角度βが90
°<β<180°であることを特徴とする高分子電解質
型燃料電池。
3. An anode-side conductive separator plate having a polymer electrolyte membrane, a pair of electrodes having a catalyst layer sandwiching the polymer electrolyte membrane, a gas flow path for supplying a fuel gas to one of the electrodes, On the other side, a cathode-side conductive separator plate having a gas flow path for supplying an oxidizing gas, and a gasket disposed on a peripheral portion of each of the electrodes, an electrode-side end surface of at least one of the gaskets, and the polymer electrolyte The angle β between the membrane and the contact surface with the gasket is 90
° <β <180 °, wherein the polymer electrolyte fuel cell is characterized in that:
【請求項4】 前記ガスケットが、非導電性弾性樹脂と
非導電性剛性樹脂から構成される請求項3記載の高分子
電解質型燃料電池。
4. The polymer electrolyte fuel cell according to claim 3, wherein the gasket is made of a non-conductive elastic resin and a non-conductive rigid resin.
【請求項5】 前記電極およびガスケットの少なくとも
一方が、打ち抜き型により所定のサイズに切断されてい
る請求項1〜4のいずれかに記載の高分子電解質型燃料
電池。
5. The polymer electrolyte fuel cell according to claim 1, wherein at least one of the electrode and the gasket is cut into a predetermined size by a punching die.
JP2001133062A 2001-04-27 2001-04-27 Membrane electrode assembly for polymer electrolyte fuel cell Expired - Fee Related JP4859281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133062A JP4859281B2 (en) 2001-04-27 2001-04-27 Membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133062A JP4859281B2 (en) 2001-04-27 2001-04-27 Membrane electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002329504A true JP2002329504A (en) 2002-11-15
JP4859281B2 JP4859281B2 (en) 2012-01-25

Family

ID=18980988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133062A Expired - Fee Related JP4859281B2 (en) 2001-04-27 2001-04-27 Membrane electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4859281B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335453A (en) * 2003-04-14 2004-11-25 Matsushita Electric Ind Co Ltd Cell for fuel cell, fuel cell, fuel cell power generating system and manufacturing methods of fuel cell
EP1469540A3 (en) * 2003-04-14 2006-09-20 Matsushita Electric Industrial Co., Ltd. Fuel cell and method of producing a fuel cell
JP2008218130A (en) * 2007-03-02 2008-09-18 Toyota Motor Corp Fuel cell
JP2013098155A (en) * 2011-11-07 2013-05-20 Honda Motor Co Ltd Electrolyte film and electrode structure with resin frame for fuel cell and fuel cell stack
JP2016167433A (en) * 2015-03-10 2016-09-15 本田技研工業株式会社 Manufacturing method for membrane electrode assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148169A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Sealing method for solid polymeric fuel cell
JPH10308228A (en) * 1997-05-06 1998-11-17 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacture thereof
JPH11116679A (en) * 1997-10-16 1999-04-27 Sumitomo Chem Co Ltd Polymer electrode, polymer electrode membrane, and fuel battery
JP2000109792A (en) * 1998-10-07 2000-04-18 Nok Corp Gasket material
JP2000182639A (en) * 1998-12-16 2000-06-30 Toyota Motor Corp Sealing member and fuel cell using it
JP2001243963A (en) * 2000-02-25 2001-09-07 Sanyo Electric Co Ltd Cell for fuel cell and fuel cell having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148169A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Sealing method for solid polymeric fuel cell
JPH10308228A (en) * 1997-05-06 1998-11-17 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacture thereof
JPH11116679A (en) * 1997-10-16 1999-04-27 Sumitomo Chem Co Ltd Polymer electrode, polymer electrode membrane, and fuel battery
JP2000109792A (en) * 1998-10-07 2000-04-18 Nok Corp Gasket material
JP2000182639A (en) * 1998-12-16 2000-06-30 Toyota Motor Corp Sealing member and fuel cell using it
JP2001243963A (en) * 2000-02-25 2001-09-07 Sanyo Electric Co Ltd Cell for fuel cell and fuel cell having the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335453A (en) * 2003-04-14 2004-11-25 Matsushita Electric Ind Co Ltd Cell for fuel cell, fuel cell, fuel cell power generating system and manufacturing methods of fuel cell
EP1469540A3 (en) * 2003-04-14 2006-09-20 Matsushita Electric Industrial Co., Ltd. Fuel cell and method of producing a fuel cell
US7320839B2 (en) 2003-04-14 2008-01-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and conductive separator for the same
JP4514027B2 (en) * 2003-04-14 2010-07-28 パナソニック株式会社 Fuel cell and fuel cell
JP2008218130A (en) * 2007-03-02 2008-09-18 Toyota Motor Corp Fuel cell
JP2013098155A (en) * 2011-11-07 2013-05-20 Honda Motor Co Ltd Electrolyte film and electrode structure with resin frame for fuel cell and fuel cell stack
JP2016167433A (en) * 2015-03-10 2016-09-15 本田技研工業株式会社 Manufacturing method for membrane electrode assembly

Also Published As

Publication number Publication date
JP4859281B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP3939150B2 (en) Polymer electrolyte fuel cell
US8007949B2 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
JP2000100457A (en) Fuel cell
JPH11204122A (en) Solid polyelectrolyte fuel cell
JPH11154523A (en) Cell and stack of solid polymer electrolyte fuel cell
JP3321219B2 (en) Method for producing diaphragm for solid polymer electrolyte electrochemical cell
JP4514027B2 (en) Fuel cell and fuel cell
KR100504965B1 (en) Electrode for fuel cell and method of manufacturing the electrode
JP2001126750A (en) Polymer electrolytic fuel cell and clamping method thereof
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2004253269A (en) Polymer electrolyte fuel cell and its operating method
JP2003303596A (en) Polymer electrolyte type fuel cell and manufacturing method thereof
JP4083304B2 (en) Polymer electrolyte fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2003297389A (en) Polyelectrolyte fuel cell
JP2010003470A (en) Fuel cell
CA2340046A1 (en) Pem fuel cell with improved long-term performance, method for operating a pem fuel cell and pem fuel cell storage battery
KR101423614B1 (en) Membrane electrode assembly for fuel cell
JP2001126743A (en) Polymer electrolytic fuel cell
JP4314696B2 (en) Polymer electrolyte fuel cell stack
JP2004349013A (en) Fuel cell stack
JP2001167789A (en) High molecule electrolyte fuel cell
JP2002270197A (en) High molecular electrolyte type fuel cull
JPH06333581A (en) Solid poly electrolyte fuel cell
JP2004311056A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees