JP2011080741A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2011080741A
JP2011080741A JP2010162261A JP2010162261A JP2011080741A JP 2011080741 A JP2011080741 A JP 2011080741A JP 2010162261 A JP2010162261 A JP 2010162261A JP 2010162261 A JP2010162261 A JP 2010162261A JP 2011080741 A JP2011080741 A JP 2011080741A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
refrigerant
expansion valve
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010162261A
Other languages
Japanese (ja)
Other versions
JP5510145B2 (en
Inventor
Atsushi Itagaki
敦 板垣
Takashi Sugiyama
隆 杉山
Sota Shimada
宗太 嶋田
Toshiyuki Fuji
利行 藤
Shintaro Sanada
慎太郎 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010162261A priority Critical patent/JP5510145B2/en
Publication of JP2011080741A publication Critical patent/JP2011080741A/en
Application granted granted Critical
Publication of JP5510145B2 publication Critical patent/JP5510145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device capable of suppressing evaporation pressure of a heat exchanger when a heat exchange target of the heat exchanger acting as an evaporator in defrosting is high temperature hot water, and capable of maintaining reliability of the heat pump device. <P>SOLUTION: The heat pump device has a heat pump cycle A constituted by a compressor 100, a four-way valve 200, a refrigerant-water heat exchanger 300, an expansion valve 400, and an outdoor heat exchanger 500 using outside air as a heat source. During defrosting for removing frost on the outdoor heat exchanger 500, the four-way valve 200 is switched, and the flow direction of the refrigerant is opposite from the one in heating, and an opening of the expansion valve 400 is adjusted based on detection information having a correlation with a temperature of hot water flowing in the refrigerant-water heat exchanger 300, for example, a condensation temperature of the refrigerant-water heat exchanger 300. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートポンプ装置の除霜に関する。   The present invention relates to defrosting of a heat pump device.

従来から、ヒートポンプ装置の除霜運転においては、冷媒の流れを四路切換弁にて暖房運転時(熱源側熱交換器が蒸発器として作用する給湯運転時)とは逆方向に切換え、圧縮機の吐出冷媒を熱源側熱交換器に流すことにより、熱源側熱交換器の除霜を行うリバース除霜方式が知られている。   Conventionally, in the defrosting operation of the heat pump device, the refrigerant flow is switched by the four-way switching valve in the opposite direction to that in the heating operation (during the hot water supply operation in which the heat source side heat exchanger acts as an evaporator). There is known a reverse defrosting method in which a defrosting of the heat source side heat exchanger is performed by flowing the discharged refrigerant in the heat source side heat exchanger.

このリバース除霜方式を用いたヒートポンプ装置には、ヒートポンプ式の給湯装置があり、図7に示すように、給湯運転時、圧縮機1から吐出する高温高圧の冷媒が、四路切換弁14を経て給湯用熱交換器2に供給され、この給湯用熱交換器2の冷媒と水との熱交換によって、水を加熱する。次に、冷媒は膨張弁3で減圧されて、熱源側熱交換器4に供給されて外気から熱を吸熱して蒸発した後、圧縮機1に戻る。   The heat pump device using the reverse defrosting method includes a heat pump type hot water supply device. As shown in FIG. 7, during the hot water supply operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 Then, it is supplied to the hot water supply heat exchanger 2, and water is heated by heat exchange between the refrigerant of the hot water supply heat exchanger 2 and water. Next, the refrigerant is decompressed by the expansion valve 3, supplied to the heat source side heat exchanger 4, absorbs heat from the outside air and evaporates, and then returns to the compressor 1.

この給湯運転時には、熱源側熱交換器4が蒸発器として作用するため、外気温度が低く、熱源側熱交換器4に着霜が生じると、四路切換弁14にて給湯運転時とは冷媒の流れを逆方向に切換え、除霜運転に移行する。   Since the heat source side heat exchanger 4 acts as an evaporator during this hot water supply operation, if the outside air temperature is low and frost formation occurs in the heat source side heat exchanger 4, the four-way switching valve 14 is different from that during the hot water supply operation. The flow is switched to the reverse direction, and the process moves to the defrosting operation.

除霜運転時、圧縮機1から吐出する高温高圧の冷媒は、四路切換弁14を経て熱源側熱交換器4に供給され、この熱源側熱交換器4を流れる冷媒の熱により、熱源側熱交換器4の着霜が融霜除去される。次に、冷媒は膨張弁3を通って給湯用熱交換器2に供給されて蒸発し、温水から熱を吸熱した後、圧縮機1に戻る(例えば、特許文献1参照。)。   During the defrosting operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is supplied to the heat source side heat exchanger 4 through the four-way switching valve 14, and the heat of the refrigerant flowing through the heat source side heat exchanger 4 is used on the heat source side. The frost on the heat exchanger 4 is defrosted. Next, the refrigerant is supplied to the hot water supply heat exchanger 2 through the expansion valve 3 to evaporate, absorbs heat from the hot water, and then returns to the compressor 1 (see, for example, Patent Document 1).

しかしながら、特許文献1のリバース除霜方式では、除霜運転時、冷媒は膨張弁3で制御することなく、給湯用熱交換器2に供給されているため、給湯用熱交換器2の熱交換対象が空気よりも高い温度の温水の場合、蒸発器として働く給湯用熱交換器2での冷媒の蒸発圧力が大きくなりすぎてしまうおそれがある。この結果、圧縮機1に負担がかかり、ヒートポンプ装置の信頼性の低下につながるという欠点があった。   However, in the reverse defrosting method of Patent Document 1, since the refrigerant is supplied to the hot water supply heat exchanger 2 without being controlled by the expansion valve 3 during the defrosting operation, the heat exchange of the hot water supply heat exchanger 2 is performed. When the object is hot water having a temperature higher than that of air, the evaporation pressure of the refrigerant in the hot water supply heat exchanger 2 that functions as an evaporator may be excessively increased. As a result, there is a drawback in that the compressor 1 is burdened and the reliability of the heat pump device is reduced.

特開2001−108256号公報(第4頁−第6頁、第4図)Japanese Patent Laid-Open No. 2001-108256 (pages 4-6, FIG. 4)

本発明は上記問題点に鑑み、除霜運転時、蒸発器として作用する熱交換器の熱源が高温の温水の場合、この熱交換器の蒸発圧力を抑制し、ヒートポンプ装置の信頼性を維持することができるヒートポンプ装置を提供することを目的とする。   In view of the above problems, the present invention suppresses the evaporation pressure of the heat exchanger and maintains the reliability of the heat pump device when the heat source of the heat exchanger acting as an evaporator is hot water during defrosting operation. It is an object of the present invention to provide a heat pump device that can perform such a process.

本発明は上記課題を解決するため、請求項1記載の発明は、圧縮機、四方弁、冷媒−水熱交換器、膨張弁および室外熱交換器からなるヒートポンプサイクルを有するヒートポンプ装置であって、前記室外熱交換器への着霜を除去する除霜運転時に、前記四方弁を切換えて暖房運転時と冷媒の流れ方向を逆方向とし、かつ、前記冷媒−水熱交換器に流れる温水の温度に相関のある検知情報に基づいて前記膨張弁の開度を調整することを特徴とする構成となっている。   In order to solve the above problems, the present invention is a heat pump device having a heat pump cycle comprising a compressor, a four-way valve, a refrigerant-water heat exchanger, an expansion valve, and an outdoor heat exchanger, During the defrosting operation for removing frost on the outdoor heat exchanger, the temperature of the hot water flowing in the refrigerant-water heat exchanger is changed by switching the four-way valve so that the flow direction of the refrigerant is opposite to that during the heating operation. The opening of the expansion valve is adjusted on the basis of detection information correlated with.

請求項2記載の発明は、請求項1記載のヒートポンプ装置であって、前記検知情報は前記冷媒−水熱交換器の凝縮温度であり、前記膨張弁の開度は、前記凝縮温度が所定温度以上の場合の第1開度を、前記所定温度未満の場合の第2開度より小さくすることを特徴とする構成となっている。   Invention of Claim 2 is the heat pump apparatus of Claim 1, Comprising: The said detection information is the condensation temperature of the said refrigerant | coolant-water heat exchanger, The opening degree of the said expansion valve is the said condensation temperature predetermined temperature. The first opening in the above case is configured to be smaller than the second opening when the temperature is lower than the predetermined temperature.

請求項3記載の発明は、請求項1記載のヒートポンプ装置であって、前記検知情報は前記圧縮機の吐出圧力であり、前記膨張弁の開度は、前記吐出圧力が所定圧力以上の場合の第1開度を、前記所定圧力未満の場合の第2開度より小さくすることを特徴とする構成となっている。   Invention of Claim 3 is the heat pump apparatus of Claim 1, Comprising: The said detection information is the discharge pressure of the said compressor, The opening degree of the said expansion valve is the case where the said discharge pressure is more than predetermined pressure. The first opening is made smaller than the second opening when the pressure is less than the predetermined pressure.

請求項4記載の発明は、請求項2または請求項3記載のヒートポンプ装置であって、前記第1開度の場合には、前記室外熱交換器の出口温度が所定の第1温度以上に到達したときに除霜運転を終了し、前記第2開度の場合には、前記室外熱交換器の出口温度が前記第1温度より高い所定の第2温度以上に到達したときに除霜運転を終了することを特徴とする構成となっている。   The invention according to claim 4 is the heat pump device according to claim 2 or claim 3, wherein the outlet temperature of the outdoor heat exchanger reaches a predetermined first temperature or more in the case of the first opening degree. When the second defrosting operation is performed, the defrosting operation is terminated when the outlet temperature of the outdoor heat exchanger reaches a predetermined second temperature higher than the first temperature. It is the structure characterized by complete | finishing.

請求項1乃至請求項3記載の発明によれば、除霜運転時、蒸発器として作用する熱交換器での熱交換対象が高温の温水であっても、膨張弁を制御することで熱交換器の蒸発圧力を調整できるため、圧縮機に負担がかからず、ヒートポンプ装置の信頼性を維持することができる。   According to the first to third aspects of the invention, during the defrosting operation, even if the heat exchange target in the heat exchanger acting as an evaporator is high-temperature hot water, heat exchange is performed by controlling the expansion valve. Since the evaporation pressure of the vessel can be adjusted, the compressor is not burdened and the reliability of the heat pump device can be maintained.

請求項4記載の本発明によれば、第1開度の場合の除霜運転の終了判断のための室外熱交換器の出口温度を第2開度の場合のそれよりも低くすることで、無駄な除霜運転が無くなり、室外熱交換器の凝縮圧力を抑制できるため、圧縮機に負担がかからず、ヒートポンプ装置の信頼性を維持することができる。   According to this invention of Claim 4, by making the exit temperature of the outdoor heat exchanger for the completion | finish judgment of the defrost operation in the case of the 1st opening lower than that in the case of the 2nd opening, Since the useless defrosting operation is eliminated and the condensation pressure of the outdoor heat exchanger can be suppressed, the compressor is not burdened and the reliability of the heat pump device can be maintained.

本発明によるヒートポンプ装置を示す回路構成図である。It is a circuit block diagram which shows the heat pump apparatus by this invention. 本発明によるヒートポンプ装置の暖房運転と除霜運転の制御の第1実施例を示すフローチャートである。It is a flowchart which shows 1st Example of control of the heating operation of a heat pump apparatus by this invention, and a defrost operation. 本発明によるヒートポンプ装置の除霜運転モードと除霜運転条件の一例を示す図である。It is a figure which shows an example of the defrost operation mode and defrost operation conditions of the heat pump apparatus by this invention. 本発明によるヒートポンプ装置の暖房運転と除霜運転の制御の第1実施例の一部を変更したフローチャートである。It is the flowchart which changed a part of 1st Example of control of the heating operation of a heat pump apparatus by this invention, and a defrost operation. 本発明によるヒートポンプ装置の暖房運転と除霜運転の制御の第2実施例を示すフローチャートである。It is a flowchart which shows 2nd Example of control of the heating operation of a heat pump apparatus by this invention, and a defrost operation. 本発明によるヒートポンプ装置の暖房運転と除霜運転の制御の第2実施例の一部を変更したフローチャートである。It is the flowchart which changed a part of 2nd Example of control of the heating operation of a heat pump apparatus by this invention, and a defrost operation. 従来のヒートポンプ装置を示す回路構成図である。It is a circuit block diagram which shows the conventional heat pump apparatus.

以下、本発明の実施形態を添付図面に基づき詳細に説明する。本発明によるヒートポンプ装置は、暖房運転時、冷媒回路の作用で水を加熱することで温水を生成し、この温水を給湯、床暖房、ラジエータなどに利用する装置である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The heat pump device according to the present invention is a device that generates hot water by heating water by the action of a refrigerant circuit during heating operation, and uses this hot water for hot water supply, floor heating, a radiator, and the like.

ヒートポンプ装置は、図1に示すように、圧縮機100、四方弁200、冷媒−水熱交換器300、膨張弁400および外気を熱交換対象とする室外熱交換器500(背景技術の熱源側熱交換器4に相当)を冷媒管で順次接続する冷媒回路と、循環ポンプ600、冷媒−水熱交換器300(背景技術の給湯用熱交換器2に相当)および暖房端末700を配水管で順次接続する温水回路とを備えるヒートポンプサイクルAを有している。本実施形態では、暖房端末700として床暖房パネルを形成し、この床暖房パネルに温水が循環されるようになっている。   As shown in FIG. 1, the heat pump apparatus includes a compressor 100, a four-way valve 200, a refrigerant-water heat exchanger 300, an expansion valve 400, and an outdoor heat exchanger 500 (external heat source side heat in the background art). A refrigerant circuit that sequentially connects a refrigerant pipe, a circulation pump 600, a refrigerant-water heat exchanger 300 (corresponding to the heat exchanger 2 for hot water supply in the background art), and a heating terminal 700 sequentially through a water distribution pipe. It has a heat pump cycle A comprising a hot water circuit to be connected. In the present embodiment, a floor heating panel is formed as the heating terminal 700, and hot water is circulated through the floor heating panel.

冷媒回路には、圧縮機100の吐出圧力を検知する圧縮機吐出圧力センサSpが四方弁200と冷媒−水熱交換器300の間に配置されている。また、暖房運転時の冷媒−水熱交換器300の凝縮温度を検知する冷媒−水熱交換器温度センサSt1が冷媒−水熱交換器300に配置され、暖房運転時における冷媒流れ方向での室外熱交換器入口の冷媒温度(以下、室外熱交換器500の入口温度と称す)を検知する室外熱交換器温度センサSt2が室外熱交換器500の膨張弁400側の入口付近に配置されている。なお、この室外熱交換器温度センサSt2は、除霜運転時における冷媒流れ方向での室外熱交換器出口の冷媒温度(以下、室外熱交換器500の出口温度と称す)を検知するセンサでもある。更に、熱交換対象となる外気を室外機内に導入するための室外ファン800が室外熱交換器500の付近に配置されている。   In the refrigerant circuit, a compressor discharge pressure sensor Sp that detects the discharge pressure of the compressor 100 is disposed between the four-way valve 200 and the refrigerant-water heat exchanger 300. Further, a refrigerant-water heat exchanger temperature sensor St1 for detecting the condensation temperature of the refrigerant-water heat exchanger 300 during heating operation is disposed in the refrigerant-water heat exchanger 300, and the outdoor in the refrigerant flow direction during heating operation. An outdoor heat exchanger temperature sensor St2 for detecting the refrigerant temperature at the inlet of the heat exchanger (hereinafter referred to as the inlet temperature of the outdoor heat exchanger 500) is disposed in the vicinity of the inlet of the outdoor heat exchanger 500 on the expansion valve 400 side. . The outdoor heat exchanger temperature sensor St2 is also a sensor that detects the refrigerant temperature at the outlet of the outdoor heat exchanger in the refrigerant flow direction during the defrosting operation (hereinafter referred to as the outlet temperature of the outdoor heat exchanger 500). . Furthermore, an outdoor fan 800 for introducing outside air to be heat exchanged into the outdoor unit is disposed in the vicinity of the outdoor heat exchanger 500.

そして、ヒートポンプ装置は、マイクロコンピュータからなる暖房運転と除霜運転を制御するコントローラ900を有している。コントローラ900は、圧縮機吐出圧力センサSp、冷媒−水熱交換器温度センサSt1、室外熱交換器温度センサSt2の検知信号に基づいて演算処理を行い、その結果により、圧縮機100、四方弁200、膨張弁400および室外ファン800に制御信号を出力するようになっている。   And the heat pump apparatus has the controller 900 which controls the heating operation and defrost operation which consist of microcomputers. The controller 900 performs arithmetic processing based on detection signals of the compressor discharge pressure sensor Sp, the refrigerant-water heat exchanger temperature sensor St1, and the outdoor heat exchanger temperature sensor St2, and based on the results, the compressor 100 and the four-way valve 200 are processed. The control signal is output to the expansion valve 400 and the outdoor fan 800.

以上説明してきたヒートポンプ装置の動作を説明する。まず、図1を用いて暖房運転と除霜運転の基本動作を説明する。暖房運転を開始する場合には、コントローラ900は四方弁200に制御信号を出力し、冷媒の流れ方向が実線矢印の方向となるように四方弁200をONにし、その後、圧縮機100の運転を開始することにより、室外熱交換器500を蒸発器、冷媒−水熱交換器300を凝縮器として機能させる。   The operation of the heat pump apparatus described above will be described. First, basic operations of the heating operation and the defrosting operation will be described with reference to FIG. When starting the heating operation, the controller 900 outputs a control signal to the four-way valve 200, turns on the four-way valve 200 so that the flow direction of the refrigerant is in the direction of the solid arrow, and then operates the compressor 100. By starting, the outdoor heat exchanger 500 functions as an evaporator and the refrigerant-water heat exchanger 300 functions as a condenser.

圧縮機100から吐出される高温高圧の冷媒が四方弁200を経て冷媒−水熱交換器300に供給され、冷媒−水熱交換器300による冷媒と水との熱交換によって、水を加熱する。このとき、高温高圧の冷媒は冷媒−水熱交換器300で凝縮される。また、温水回路内を実線矢印のように流れる水は、冷媒の熱により加熱されて温水となる。   The high-temperature and high-pressure refrigerant discharged from the compressor 100 is supplied to the refrigerant-water heat exchanger 300 through the four-way valve 200, and heats the water by heat exchange between the refrigerant and water by the refrigerant-water heat exchanger 300. At this time, the high-temperature and high-pressure refrigerant is condensed in the refrigerant-water heat exchanger 300. The water flowing in the hot water circuit as indicated by the solid line arrow is heated by the heat of the refrigerant to become hot water.

冷媒はその後、膨張弁400で減圧されて液相状態あるいは二相状態となり、室外熱交換器500に供給されて外気から熱を吸熱して蒸発し、四方弁200を経て圧縮機100に戻る。なお、暖房運転時には、コントローラ900は冷媒−水熱交換器300での冷媒から温水への放熱および室外熱交換器500での冷媒の外気からの吸熱が最適な効率となるように冷媒の流量を調整するため、膨張弁400の開度を制御する。また、コントローラ900は室外ファン800をONにし、室外熱交換器500に外気を導入して、室外熱交換器500による冷媒と外気との熱交換を促進する。   Thereafter, the refrigerant is decompressed by the expansion valve 400 to be in a liquid phase state or a two-phase state, supplied to the outdoor heat exchanger 500, absorbs heat from the outside air, evaporates, and returns to the compressor 100 through the four-way valve 200. During the heating operation, the controller 900 adjusts the flow rate of the refrigerant so that the heat radiation from the refrigerant to the hot water in the refrigerant-water heat exchanger 300 and the heat absorption from the outside air of the refrigerant in the outdoor heat exchanger 500 have an optimum efficiency. In order to adjust, the opening degree of the expansion valve 400 is controlled. In addition, the controller 900 turns on the outdoor fan 800 and introduces outside air into the outdoor heat exchanger 500 to promote heat exchange between the refrigerant and the outside air by the outdoor heat exchanger 500.

この暖房運転の継続中に、室外熱交換器温度センサSt2が所定温度以下の室外熱交換器500の入口温度を検知したとき、室外熱交換器500に着霜が生じたと判断し、四方弁200によって暖房運転時と冷媒の流れ方向を逆方向に切換えるリバース除霜方式の除霜運転に移行する。   During the heating operation, when the outdoor heat exchanger temperature sensor St2 detects the inlet temperature of the outdoor heat exchanger 500 that is equal to or lower than a predetermined temperature, it is determined that frost formation has occurred in the outdoor heat exchanger 500, and the four-way valve 200 Thus, the process shifts to the reverse defrosting type defrosting operation in which the flow direction of the refrigerant is switched to the reverse direction during the heating operation.

暖房運転から除霜運転に移行する場合には、コントローラ900は、室外熱交換器温度センサSt2による室外熱交換器500の入口温度の検知信号に基づいて除霜運転への移行を決定し、圧縮機100の運転を停止して、冷媒の流れ方向が点線矢印の方向となるように四方弁200をOFFにし、その後、圧縮機100の運転を開始することにより、冷媒−水熱交換器300を蒸発器、室外熱交換器500を凝縮器として機能させる。   When shifting from the heating operation to the defrosting operation, the controller 900 determines the shift to the defrosting operation based on the detection signal of the inlet temperature of the outdoor heat exchanger 500 by the outdoor heat exchanger temperature sensor St2, and compresses it. The operation of the compressor 100 is stopped, the four-way valve 200 is turned off so that the flow direction of the refrigerant becomes the direction of the dotted arrow, and then the operation of the compressor 100 is started, whereby the refrigerant-water heat exchanger 300 is The evaporator and the outdoor heat exchanger 500 are caused to function as a condenser.

圧縮機100の運転を開始し、除霜運転が開始されると、圧縮機100から吐出される高温高圧の冷媒が四方弁200を経て室外熱交換器500に供給され、室外熱交換器500に流れる冷媒の熱により、室外熱交換器500の着霜が融霜除去される。このとき、高温高圧の冷媒は室外熱交換器500で凝縮される。   When the operation of the compressor 100 is started and the defrosting operation is started, the high-temperature and high-pressure refrigerant discharged from the compressor 100 is supplied to the outdoor heat exchanger 500 through the four-way valve 200, and is supplied to the outdoor heat exchanger 500. The frost formation of the outdoor heat exchanger 500 is defrosted by the heat of the flowing refrigerant. At this time, the high-temperature and high-pressure refrigerant is condensed in the outdoor heat exchanger 500.

冷媒はその後、膨張弁400を経て冷媒−水熱交換器300に供給されて温水から熱を吸熱して蒸発し、四方弁200を経て圧縮機100に戻る。本発明では、暖房運転から除霜運転に移行する場合に、圧縮機100の運転を停止して四方弁200をOFFにした後、除霜運転に入る直前の暖房運転時の温水温度に相関のある冷媒の凝縮温度または凝縮圧力に基づいて膨張弁400の開度を調整することにより、除霜運転時の冷媒−水熱交換器300での冷媒の蒸発圧力が大きくなりすぎないようにしている。   Thereafter, the refrigerant is supplied to the refrigerant-water heat exchanger 300 via the expansion valve 400, absorbs heat from the hot water and evaporates, and returns to the compressor 100 via the four-way valve 200. In the present invention, when the operation is shifted from the heating operation to the defrosting operation, the operation of the compressor 100 is stopped and the four-way valve 200 is turned off. By adjusting the opening degree of the expansion valve 400 based on the condensing temperature or condensing pressure of a certain refrigerant, the evaporating pressure of the refrigerant in the refrigerant-water heat exchanger 300 during the defrosting operation is prevented from becoming too large. .

本発明では、暖房運転時、室外熱交換器500の入口温度が、予め定めた温度以下になったことを検知すると、圧縮機100の運転を停止して四方弁200をOFFにし、その後、膨張弁400の開度を調整して圧縮機100の運転を開始することにより、除霜運転を開始する。除霜運転を所定時間継続した後、室外熱交換器500の出口温度が、予め定めた温度から所定温度以上の温度上昇があったことを検知すると、圧縮機100の運転を停止して四方弁200をONにすることにより、除霜運転を終了する。   In the present invention, during the heating operation, when it is detected that the inlet temperature of the outdoor heat exchanger 500 has become equal to or lower than a predetermined temperature, the operation of the compressor 100 is stopped, the four-way valve 200 is turned off, and then the expansion is performed. The defrosting operation is started by adjusting the opening degree of the valve 400 and starting the operation of the compressor 100. After the defrosting operation is continued for a predetermined time, when the outlet temperature of the outdoor heat exchanger 500 detects that the temperature rises from a predetermined temperature to a predetermined temperature or more, the operation of the compressor 100 is stopped and the four-way valve is stopped. By turning on 200, the defrosting operation is terminated.

上述の除霜運転を開始するため、本発明のヒートポンプ装置は、図3に示すように、除霜運転に入る直前の温水温度が高い場合の高温出湯モードと、除霜運転に入る直前の温水温度が低い場合の低温出湯モードの2種類の除霜運転モードを有し、ヒートポンプ装置は、高温出湯モードまたは低温出湯モードを選択して除霜運転を行う。高温出湯モードまたは低温出湯モードでの除霜運転は、冷媒−水熱交換器凝縮温度、膨張弁パルス数、圧縮機回転数、冷媒−水熱交換器蒸発圧力の各除霜運転条件の数値に則って制御される運転である。なお、除霜運転条件の数値のうち、膨張弁パルス数が高温出湯モードと低温出湯モードで異なる数値になっている。   In order to start the above-described defrosting operation, as shown in FIG. 3, the heat pump device of the present invention has a hot water discharge mode when the hot water temperature just before entering the defrosting operation is high, and hot water just before entering the defrosting operation. There are two types of defrosting operation modes, a low temperature hot water mode when the temperature is low, and the heat pump device performs the defrosting operation by selecting the high temperature hot water mode or the low temperature hot water mode. The defrosting operation in the high-temperature tapping mode or low-temperature tapping mode is the numerical value of each defrosting operation condition of refrigerant-water heat exchanger condensing temperature, number of expansion valve pulses, compressor rotation speed, refrigerant-water heat exchanger evaporating pressure. The operation is controlled accordingly. In addition, among the numerical values of the defrosting operation conditions, the number of expansion valve pulses is different in the high temperature hot water mode and the low temperature hot water mode.

次に、図2乃至図4を用いて本発明の特徴となる除霜運転動作を説明する。図2および図4において、Sはステップを、数字はステップ番号をそれぞれ表す。なお、本発明の第1実施例として、除霜運転モードの選択に、冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置と、圧縮機吐出圧力センサSpの検知結果を用いるヒートポンプ装置の二つの実施例について説明する。また、この二つの実施例で説明するヒートポンプ装置の暖房能力については、圧縮機吐出圧力センサSpの検知結果を用いるヒートポンプ装置の方がより大きな暖房能力を持つ装置であるとして説明する。   Next, the defrosting operation characteristic of the present invention will be described with reference to FIGS. 2 and 4, S represents a step, and the numeral represents a step number. As a first embodiment of the present invention, a heat pump device that uses the detection result of the refrigerant-water heat exchanger temperature sensor St1 and a heat pump device that uses the detection result of the compressor discharge pressure sensor Sp to select the defrosting operation mode. These two embodiments will be described. Moreover, about the heating capability of the heat pump apparatus demonstrated in these two Example, it demonstrates as the heat pump apparatus using the detection result of the compressor discharge pressure sensor Sp is an apparatus with a larger heating capability.

まず、冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置について説明する。図2に示すように、コントローラ900は圧縮機100と四方弁200とがONであるかどうかにより、暖房運転中であるかどうかを判断する(S1)。暖房運転中であれば(S1−YES)、S2に移行し、暖房運転中でなければ(S1−NO)、ルーチンを終了する。S2では、室外熱交換器500の入口温度Toを検知し、入口温度Toが−10℃以下であれば(S2−YES)、除霜運転への移行を決定してS3に移行し、入口温度Toが−10℃以下でなければ(S2−NO)、暖房運転の継続を決定して、ルーチンを終了する。   First, the heat pump device using the detection result of the refrigerant-water heat exchanger temperature sensor St1 will be described. As shown in FIG. 2, the controller 900 determines whether or not the heating operation is being performed based on whether or not the compressor 100 and the four-way valve 200 are ON (S1). If the heating operation is being performed (S1-YES), the process proceeds to S2, and if the heating operation is not being performed (S1-NO), the routine is terminated. In S2, the inlet temperature To of the outdoor heat exchanger 500 is detected, and if the inlet temperature To is −10 ° C. or lower (S2-YES), the transition to the defrosting operation is determined and the routine proceeds to S3. If To is not -10 degrees C or less (S2-NO), the continuation of heating operation will be determined and a routine will be complete | finished.

本実施形態では、室外熱交換器500の入口温度Toの検知は、室外熱交換器温度センサSt2により検知され、コントローラ900は、室外熱交換器温度センサSt2の検知信号に基づいて、除霜運転への移行の要否を判断する。S3では、冷媒−水熱交換器300の凝縮温度Twを冷媒−水熱交換器温度センサSt1で検知し、凝縮温度Twが37℃以上であれば(S3−YES)、S4に移行し、凝縮温度Twが37℃未満であれば(S3−NO)、S7に移行する。   In the present embodiment, the detection of the inlet temperature To of the outdoor heat exchanger 500 is detected by the outdoor heat exchanger temperature sensor St2, and the controller 900 performs the defrosting operation based on the detection signal of the outdoor heat exchanger temperature sensor St2. Determine whether or not to move to In S3, the condensing temperature Tw of the refrigerant-water heat exchanger 300 is detected by the refrigerant-water heat exchanger temperature sensor St1, and if the condensing temperature Tw is 37 ° C. or higher (S3-YES), the process proceeds to S4 to condense If temperature Tw is less than 37 degreeC (S3-NO), it will transfer to S7.

本実施形態では、温水温度に相関のある冷媒−水熱交換器300の凝縮温度Twを検知することで温水温度を間接的に検知する。S4では、コントローラ900は、高温出湯モードによる運転制御を開始し、室外ファン800をOFFにするとともに、圧縮機100を停止する。コントローラ900は圧縮機100の停止から所定時間経過後、四方弁200をOFFとし(S5)、膨張弁400を絞る(S6)。S6では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば150パルスとする制御信号を出力し、膨張弁400の開度を絞る。   In the present embodiment, the hot water temperature is indirectly detected by detecting the condensation temperature Tw of the refrigerant-water heat exchanger 300 having a correlation with the hot water temperature. In S4, the controller 900 starts operation control in the high-temperature hot water mode, turns off the outdoor fan 800, and stops the compressor 100. The controller 900 turns off the four-way valve 200 after a predetermined time has elapsed from the stop of the compressor 100 (S5) and throttles the expansion valve 400 (S6). In S6, the controller 900 outputs a control signal for setting the number of expansion valve pulses to, for example, 150 pulses to the expansion valve 400, thereby narrowing the opening degree of the expansion valve 400.

一方、S7ではS4と同様に、コントローラ900は、低温出湯モードによる運転制御を開始し、室外ファン800をOFFにするとともに、圧縮機100を停止する。コントローラ900は圧縮機100の停止から所定時間経過後、四方弁200をOFFとし(S8)、膨張弁400を全開にする(S9)。S9では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば480パルスとする制御信号を出力し、膨張弁400の開度を全開にする。   On the other hand, in S7, similarly to S4, the controller 900 starts operation control in the low-temperature hot water mode, turns off the outdoor fan 800, and stops the compressor 100. The controller 900 turns off the four-way valve 200 after a predetermined time has elapsed from the stop of the compressor 100 (S8), and fully opens the expansion valve 400 (S9). In S9, the controller 900 outputs a control signal for setting the number of expansion valve pulses to, for example, 480 pulses to the expansion valve 400 to fully open the opening of the expansion valve 400.

なお、膨張弁400の開度は、弁を開閉するステッピングモータに上述の制御信号を出力することにより調整され、膨張弁400は、ステッピングモータに480パルスの制御信号を出力すると全開に、0パルスの制御信号を出力すると全閉になるように制御される弁であり、0パルスから480パルスまでの間で膨張弁パルス数が大きくなると、これに対応するように膨張弁400の開度も大きくなるように制御されるものである。   The opening degree of the expansion valve 400 is adjusted by outputting the above-mentioned control signal to a stepping motor that opens and closes the valve. The expansion valve 400 is fully opened when a control signal of 480 pulses is output to the stepping motor, and is 0 pulse. When the number of expansion valve pulses increases from 0 pulse to 480 pulses, the opening degree of the expansion valve 400 also increases to correspond to this. It is controlled to become.

更に、上述のように、凝縮温度Twが37℃未満のとき、膨張弁400の開度を全開(480パルス)にすることにより、室外熱交換器500に可能な限り高温の冷媒を供給して、冷媒−水熱交換器300の蒸発圧力が上限値を超えることなく、除霜能力を発揮するようにしている。一方、上述のように、凝縮温度Twが37℃以上のとき、膨張弁400の開度を絞る(150パルス)ことにより、冷媒−水熱交換器300の蒸発圧力が上限値を超えないようにしている。   Furthermore, as described above, when the condensation temperature Tw is less than 37 ° C., the opening of the expansion valve 400 is fully opened (480 pulses) to supply the highest possible refrigerant to the outdoor heat exchanger 500. The evaporating pressure of the refrigerant-water heat exchanger 300 exhibits the defrosting capability without exceeding the upper limit value. On the other hand, as described above, when the condensation temperature Tw is equal to or higher than 37 ° C., the evaporation pressure of the refrigerant-water heat exchanger 300 is prevented from exceeding the upper limit value by narrowing the opening degree of the expansion valve 400 (150 pulses). ing.

S6およびS9において膨張弁400の開度を調整した後、コントローラ900は圧縮機100を回転させ、除霜運転を開始する(S10)。S10では、コントローラ900から圧縮機100に対し、圧縮機回転数を例えば70rpsとする制御信号を出力する。その後、S11では、コントローラ900は、室外熱交換器温度センサSt2で取得する室外熱交換器500の出口温度Toが15℃より高いか否かを判断する。コントローラ900は、室外熱交換器500の出口温度Toが15℃より高ければ(S11−YES)、圧縮機100を停止し(S12)、室外熱交換器500の出口温度Toが15℃以下であれば(S11−NO)、S11のステップを繰返し実行する。コントローラ900は、S12において圧縮機100を停止してから所定時間経過後、四方弁200をONとし、除霜運転を終了する(S13)。次に、膨張弁400を除霜運転に入る直前の暖房運転時の開度に調整する(S14)。S14において膨張弁400の開度を調整した後、コントローラ900は室外ファン800をONとし(S15)、除霜運転から暖房運転に戻される。   After adjusting the opening degree of the expansion valve 400 in S6 and S9, the controller 900 rotates the compressor 100 and starts the defrosting operation (S10). In S10, the controller 900 outputs a control signal for setting the compressor rotation speed to, for example, 70 rps to the compressor 100. Thereafter, in S11, the controller 900 determines whether or not the outlet temperature To of the outdoor heat exchanger 500 acquired by the outdoor heat exchanger temperature sensor St2 is higher than 15 ° C. If the outlet temperature To of the outdoor heat exchanger 500 is higher than 15 ° C (S11-YES), the controller 900 stops the compressor 100 (S12), and if the outlet temperature To of the outdoor heat exchanger 500 is 15 ° C or less. If (S11-NO), step S11 is repeatedly executed. The controller 900 turns on the four-way valve 200 after a predetermined time has elapsed after stopping the compressor 100 in S12, and ends the defrosting operation (S13). Next, the expansion valve 400 is adjusted to the opening degree during the heating operation immediately before entering the defrosting operation (S14). After adjusting the opening degree of the expansion valve 400 in S14, the controller 900 turns on the outdoor fan 800 (S15), and returns from the defrosting operation to the heating operation.

次に、圧縮機吐出圧力センサSpの検知結果を用いるヒートポンプ装置について説明する。図4に示すように、上述の冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置と相違するS3’、S6’、S9’の各ステップのみを説明し、共通するステップの説明は省略する。冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置との相違点は、図3に示すように、暖房能力の大きいヒートポンプ装置であるため、除霜運転条件のうち、冷媒−水熱交換器凝縮温度と膨張弁パルス数の数値を変更している点である。なお、各除霜運転条件の数値については、本実施例において説明した数値に限らず、圧縮機100、冷媒−水熱交換器300、膨張弁400などの仕様により、適宜設定されるものである。   Next, a heat pump device using the detection result of the compressor discharge pressure sensor Sp will be described. As shown in FIG. 4, only the steps S3 ′, S6 ′, and S9 ′ different from the heat pump device using the detection result of the refrigerant-water heat exchanger temperature sensor St1 described above will be described, and the description of the common steps will be described. Omitted. The difference from the heat pump device using the detection result of the refrigerant-water heat exchanger temperature sensor St1 is a heat pump device having a large heating capacity as shown in FIG. The point is that the values of the exchanger condensing temperature and the number of expansion valve pulses are changed. In addition, about the numerical value of each defrost operation condition, it is suitably set not only by the numerical value demonstrated in the present Example but according to specifications, such as the compressor 100, the refrigerant | coolant-water heat exchanger 300, the expansion valve 400. .

以下、S3’、S6’、S9’の各ステップを説明する。図4のフローチャートにおいて、S3’では、圧縮機吐出圧力センサSpを利用して冷媒−水熱交換器300の凝縮圧力(圧縮機100の吐出圧力より若干小さくなる)を検知し、実験的に予め定めた凝縮圧力と凝縮温度の変換テーブルにしたがって、検知した凝縮圧力を凝縮温度に変換する。この変換した冷媒−水熱交換器300の凝縮温度Twが50℃以上であれば(S3’−YES)、S4に移行し、凝縮温度Twが50℃未満であれば(S3’−NO)、S7に移行する。   Hereinafter, each step of S3 ', S6', and S9 'will be described. In the flowchart of FIG. 4, in S3 ′, the condensation pressure of the refrigerant-water heat exchanger 300 (slightly smaller than the discharge pressure of the compressor 100) is detected using the compressor discharge pressure sensor Sp, and experimentally preliminarily detected. The detected condensing pressure is converted into a condensing temperature according to a predetermined condensing pressure and condensing temperature conversion table. If the condensing temperature Tw of the converted refrigerant-water heat exchanger 300 is 50 ° C. or higher (S3′-YES), the process proceeds to S4, and if the condensing temperature Tw is lower than 50 ° C. (S3′-NO), The process proceeds to S7.

上述の変換テーブルはコントローラ900内の図示しない記憶手段に記憶され、コントローラ900は変換テーブルにしたがって、凝縮圧力を凝縮温度に変換する。以上のように、S3’では、凝縮温度に相関のある冷媒−水熱交換器300の凝縮圧力を検知し、この凝縮圧力を凝縮温度に変換することで温水温度を間接的に取得することが特徴になっている。   The above conversion table is stored in a storage means (not shown) in the controller 900, and the controller 900 converts the condensing pressure into the condensing temperature according to the conversion table. As described above, in S3 ′, the hot water temperature can be indirectly acquired by detecting the condensing pressure of the refrigerant-water heat exchanger 300 correlated with the condensing temperature and converting the condensing pressure into the condensing temperature. It has become a feature.

S6’では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば200パルスとする制御信号を出力し、膨張弁400の開度を絞る。S9’では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば400パルスとする制御信号を出力し、膨張弁400の開度を全開にせずに若干絞る。ここで、膨張弁400を若干絞るのは、暖房能力が大きいと、冷媒の流量が大きくなるので、冷媒の流れる冷媒音を抑制するためである。   In S <b> 6 ′, a control signal for setting the number of expansion valve pulses to, for example, 200 pulses is output from the controller 900 to the expansion valve 400 to reduce the opening of the expansion valve 400. In S <b> 9 ′, a control signal for setting the number of expansion valve pulses to, for example, 400 pulses is output from the controller 900 to the expansion valve 400, and the opening degree of the expansion valve 400 is slightly reduced without being fully opened. Here, the reason why the expansion valve 400 is slightly throttled is that, if the heating capacity is large, the flow rate of the refrigerant increases, so that the refrigerant noise flowing through the refrigerant is suppressed.

なお、以上説明してきたヒートポンプ装置の除霜運転動作では、S3やS3’での凝縮温度Twの検知に替えて、温水温度センサを利用して、直接、温水温度を検知するようにしてもよい。   In the defrosting operation of the heat pump apparatus described above, the hot water temperature may be detected directly using a hot water temperature sensor instead of detecting the condensation temperature Tw at S3 or S3 ′. .

また、以上説明してきたヒートポンプ装置の除霜運転動作では、室外熱交換器500の入口温度Toが−10℃以下であれば、除霜運転への移行を決定し、入口温度Toが−10℃以下でなければ、暖房運転の継続を決定するようにしたが、除霜運転への移行条件としては、これに限るものではなく、例えば、以下のような3つの移行条件のうち、いずれか1つを選択して適用してもよい。   Further, in the defrosting operation of the heat pump apparatus described above, if the inlet temperature To of the outdoor heat exchanger 500 is −10 ° C. or lower, the transition to the defrosting operation is determined, and the inlet temperature To is −10 ° C. If not below, the continuation of the heating operation is determined, but the transition condition to the defrosting operation is not limited to this, and for example, any one of the following three transition conditions: You may choose one to apply.

(1)室外熱交換器500の入口温度Toが暖房運転時に、−25℃以下になった場合、除霜運転への移行を決定し、それ以外の場合、暖房運転の継続を決定する。   (1) When the inlet temperature To of the outdoor heat exchanger 500 becomes −25 ° C. or lower during the heating operation, the transition to the defrosting operation is determined. In other cases, the continuation of the heating operation is determined.

(2)室外熱交換器500の入口温度Toが暖房運転時に圧縮機100の運転開始10分後の温度よりも、所定時間経過後、5℃以上の温度下降があった場合、除霜運転への移行を決定し、それ以外の場合、暖房運転の継続を決定する。   (2) When the inlet temperature To of the outdoor heat exchanger 500 is lower than the temperature 10 minutes after the start of the operation of the compressor 100 during the heating operation by a predetermined time, and when the temperature drops by 5 ° C. or more, the defrosting operation is started. In other cases, it is determined to continue the heating operation.

(3)室外熱交換器500の入口温度Toが暖房運転時に、例えば5分毎に検知される温度において5分前に検知された温度よりも、2℃以上の温度下降があった場合、除霜運転への移行を決定し、それ以外の場合、暖房運転の継続を決定する。   (3) When the inlet temperature To of the outdoor heat exchanger 500 has a temperature drop of 2 ° C. or more during heating operation, for example, at a temperature detected every 5 minutes, a temperature of 2 ° C. or more is detected. The transition to the frost operation is determined, and otherwise, the continuation of the heating operation is determined.

以上説明してきた本実施形態では、除霜運転時に、冷媒−水熱交換器300に流れる温水の温度に相関のある検知情報に基づき、冷媒が膨張弁400で制御されるため、除霜運転時に、膨張弁400で減圧された冷媒が、蒸発器として作用する冷媒−水熱交換器300に供給されることになり、この結果、温水温度が高温であっても、冷媒−水熱交換器300の蒸発圧力が大きくなりすぎるおそれがない。例えば、図3に示すように、冷媒−水熱交換器300の蒸発圧力を、圧縮機100の使用範囲を超えない上限値1.6MPa以内に抑制することができ、また、圧縮機100の使用範囲を超えないため、圧縮機100の吸込圧力も大きくなりすぎることなく、低圧縮比での運転を防ぐことができる。また、本実施形態では、除霜運転時に蒸発器として作用する熱交換器の熱交換対象が空気よりも高温の温水であるため、従来の空気調和機の除霜運転では不要な制御であった膨張弁400の開度を調整するという特徴がある。   In the present embodiment described above, the refrigerant is controlled by the expansion valve 400 based on the detection information correlated with the temperature of the hot water flowing through the refrigerant-water heat exchanger 300 during the defrosting operation. The refrigerant depressurized by the expansion valve 400 is supplied to the refrigerant-water heat exchanger 300 acting as an evaporator. As a result, even if the hot water temperature is high, the refrigerant-water heat exchanger 300 is used. There is no possibility that the evaporation pressure of the liquid becomes too large. For example, as shown in FIG. 3, the evaporation pressure of the refrigerant-water heat exchanger 300 can be suppressed within an upper limit value of 1.6 MPa that does not exceed the use range of the compressor 100. Since it does not exceed the range, the operation at a low compression ratio can be prevented without increasing the suction pressure of the compressor 100 too much. Moreover, in this embodiment, since the heat exchange object of the heat exchanger that acts as an evaporator during the defrosting operation is hot water having a temperature higher than that of air, the control is unnecessary in the defrosting operation of the conventional air conditioner. There is a feature that the opening degree of the expansion valve 400 is adjusted.

更に、以上説明してきた本実施形態では、除霜運転に移行する場合、圧縮機100の停止から所定時間経過後、四方弁200をOFFとするようにし、また、除霜運転を終了する場合、圧縮機100の停止から所定時間経過後、四方弁200をONとするようにしている。この結果、四方弁200の切換え時には、四方弁200の高圧側と低圧側の差圧を小さくできるため、スライド弁の動きがスムーズとなり、弁切換音を小さくすることができる。   Furthermore, in this embodiment described above, when shifting to the defrosting operation, the four-way valve 200 is turned OFF after a predetermined time has elapsed from the stop of the compressor 100, and when the defrosting operation is terminated, The four-way valve 200 is turned on after a predetermined time has elapsed since the compressor 100 was stopped. As a result, when the four-way valve 200 is switched, the differential pressure between the high-pressure side and the low-pressure side of the four-way valve 200 can be reduced, so that the slide valve can move smoothly and the valve switching sound can be reduced.

以上説明してきた本発明によるヒートポンプ装置によれば、圧縮機100、四方弁200、冷媒−水熱交換器300、膨張弁400および室外熱交換器500からなるヒートポンプサイクルAを有するヒートポンプ装置であって、室外熱交換器500への着霜を除去する除霜運転時に、四方弁200を切換えて暖房運転時と冷媒の流れ方向を逆方向とし、かつ、冷媒−水熱交換器300に流れる温水の温度に相関のある検知情報に基づいて膨張弁400の開度を調整することを特徴としている。   The heat pump device according to the present invention described above is a heat pump device having a heat pump cycle A including the compressor 100, the four-way valve 200, the refrigerant-water heat exchanger 300, the expansion valve 400, and the outdoor heat exchanger 500. During the defrosting operation for removing frost formation on the outdoor heat exchanger 500, the four-way valve 200 is switched to reverse the flow direction of the refrigerant during the heating operation and the hot water flowing in the refrigerant-water heat exchanger 300 It is characterized in that the opening degree of the expansion valve 400 is adjusted based on detection information correlated with temperature.

検知情報は冷媒−水熱交換器300の凝縮温度であり、膨張弁400の開度は、この凝縮温度が所定温度以上の場合の第1開度(例えば膨張弁パルス数が150パルス)を、前記所定温度未満の場合の第2開度(例えば膨張弁パルス数が480パルス)より小さくすることを特徴としている。また、検知情報は圧縮機100の吐出圧力であり、膨張弁400の開度は、この吐出圧力が所定圧力以上の場合の第1開度(例えば膨張弁パルス数が200パルス)を、前記所定圧力未満の場合の第2開度(例えば膨張弁パルス数が400パルス)より小さくすることを特徴としている。   The detection information is the condensation temperature of the refrigerant-water heat exchanger 300, and the opening degree of the expansion valve 400 is the first opening degree when the condensation temperature is equal to or higher than a predetermined temperature (for example, the number of expansion valve pulses is 150 pulses). It is characterized by being made smaller than the second opening (for example, the number of expansion valve pulses is 480 pulses) when the temperature is lower than the predetermined temperature. The detection information is the discharge pressure of the compressor 100, and the opening of the expansion valve 400 is the first opening when the discharge pressure is equal to or higher than a predetermined pressure (for example, the number of expansion valve pulses is 200 pulses). It is characterized by being made smaller than the second opening (for example, the number of expansion valve pulses is 400 pulses) when the pressure is less than the pressure.

これにより、除霜運転時、蒸発器として作用する冷媒−水熱交換器300の熱交換対象である温水の温度が高温であっても、膨張弁400の開度を制御することで冷媒−水熱交換器300の蒸発圧力を調整できるため、圧縮機100に負担がかからず、ヒートポンプ装置の信頼性を維持することができる。   Thereby, at the time of defrosting operation, even if the temperature of the hot water that is the heat exchange target of the refrigerant-water heat exchanger 300 that acts as an evaporator is high, the opening degree of the expansion valve 400 is controlled to make the refrigerant-water Since the evaporation pressure of the heat exchanger 300 can be adjusted, the compressor 100 is not burdened and the reliability of the heat pump device can be maintained.

次に、図5および図6を用いて本発明の特徴となる除霜運転動作の第2実施例を説明する。図5および図6において、Sはステップを、数字はステップ番号をそれぞれ表す。なお、本発明の第2実施例として、除霜運転モードの選択に、冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置と、圧縮機吐出圧力センサSpの検知結果を用いるヒートポンプ装置の二つの実施例について説明する。また、この二つの実施例で説明するヒートポンプ装置の暖房能力については、圧縮機吐出圧力センサSpの検知結果を用いるヒートポンプ装置の方がより大きな暖房能力を持つ装置であるとして説明する。   Next, a second embodiment of the defrosting operation characteristic of the present invention will be described with reference to FIGS. 5 and 6, S represents a step, and the numeral represents a step number. As a second embodiment of the present invention, a heat pump device that uses the detection result of the refrigerant-water heat exchanger temperature sensor St1 and a heat pump device that uses the detection result of the compressor discharge pressure sensor Sp for selecting the defrosting operation mode. These two embodiments will be described. Moreover, about the heating capability of the heat pump apparatus demonstrated in these two Example, it demonstrates as the heat pump apparatus using the detection result of the compressor discharge pressure sensor Sp is an apparatus with a larger heating capability.

また、本実施例では、ヒートポンプ装置の構成、基本動作および除霜運転条件や、ヒートポンプ装置の除霜運転時、膨張弁400の開度を調整したことによる効果については、図1乃至図4を用いて説明した第1実施例と同じであるため、説明を省略する。図1乃至図4を用いて説明した第1実施例と相違する点は、調整された膨張弁400の開度に応じて除霜運転の終了判断条件の数値を変更したことである。   Further, in this embodiment, the effects of adjusting the opening of the expansion valve 400 during the defrosting operation of the configuration, basic operation and defrosting operation conditions of the heat pump device and the heat pump device are shown in FIGS. Since this is the same as the first embodiment described with reference to FIG. The difference from the first embodiment described with reference to FIGS. 1 to 4 is that the numerical value of the defrosting operation end determination condition is changed in accordance with the adjusted opening degree of the expansion valve 400.

まず、冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置について説明する。図5に示すように、コントローラ900は圧縮機100と四方弁200とがONであるかどうかにより、暖房運転中であるかどうかを判断する(S20)。暖房運転中であれば(S20−YES)、S21に移行し、暖房運転中でなければ(S20−NO)、ルーチンを終了する。S21では、室外熱交換器500の入口温度Toを検知し、入口温度Toが−10℃以下であれば(S21−YES)、除霜運転への移行を決定してS22に移行し、入口温度Toが−10℃以下でなければ(S21−NO)、暖房運転の継続を決定して、ルーチンを終了する。   First, the heat pump device using the detection result of the refrigerant-water heat exchanger temperature sensor St1 will be described. As illustrated in FIG. 5, the controller 900 determines whether the heating operation is being performed based on whether the compressor 100 and the four-way valve 200 are ON (S20). If the heating operation is being performed (S20-YES), the process proceeds to S21. If the heating operation is not being performed (S20-NO), the routine is terminated. In S21, the inlet temperature To of the outdoor heat exchanger 500 is detected, and if the inlet temperature To is −10 ° C. or lower (S21—YES), the transition to the defrosting operation is determined and the routine proceeds to S22. If To is not −10 ° C. or lower (S21—NO), the continuation of the heating operation is determined and the routine is terminated.

S21における室外熱交換器500の入口温度Toの検知は、室外熱交換器温度センサSt2により検知され、コントローラ900は、室外熱交換器温度センサSt2の検知信号に基づいて、除霜運転への移行の要否を判断する。S22では、冷媒−水熱交換器300の凝縮温度Twを冷媒−水熱交換器温度センサSt1で検知し、凝縮温度Twが37℃以上であれば(S22−YES)、S23に移行し、凝縮温度Twが37℃未満であれば(S22−NO)、S28に移行する。   The detection of the inlet temperature To of the outdoor heat exchanger 500 in S21 is detected by the outdoor heat exchanger temperature sensor St2, and the controller 900 shifts to the defrosting operation based on the detection signal of the outdoor heat exchanger temperature sensor St2. Determine the necessity of In S22, the condensing temperature Tw of the refrigerant-water heat exchanger 300 is detected by the refrigerant-water heat exchanger temperature sensor St1, and if the condensing temperature Tw is 37 ° C. or higher (S22-YES), the process proceeds to S23 to condense. If temperature Tw is less than 37 degreeC (S22-NO), it will transfer to S28.

S22において、温水温度に相関のある冷媒−水熱交換器300の凝縮温度Twを検知することで温水温度を間接的に検知する。S23では、コントローラ900は、高温出湯モードによる運転制御を開始し、室外ファン800をOFFにするとともに、圧縮機100を停止する。コントローラ900は圧縮機100の停止から所定時間経過後、四方弁200をOFFとし(S24)、膨張弁400を絞る(S25)。S25では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば150パルスとする制御信号を出力し、膨張弁400の開度を絞る。   In S22, the hot water temperature is indirectly detected by detecting the condensation temperature Tw of the refrigerant-water heat exchanger 300 correlated with the hot water temperature. In S23, the controller 900 starts operation control in the high-temperature hot-water supply mode, turns off the outdoor fan 800, and stops the compressor 100. The controller 900 turns off the four-way valve 200 after a predetermined time has elapsed from the stop of the compressor 100 (S24) and throttles the expansion valve 400 (S25). In S25, the controller 900 outputs a control signal for setting the number of expansion valve pulses to, for example, 150 pulses to the expansion valve 400, thereby narrowing the opening degree of the expansion valve 400.

S25において膨張弁400の開度を絞った後、コントローラ900は圧縮機100を回転させ、除霜運転を開始する(S26)。S26では、コントローラ900から圧縮機100に対し、圧縮機回転数を例えば70rpsとする制御信号を出力する。その後、S27では、コントローラ900は、室外熱交換器温度センサSt2で取得する室外熱交換器500の出口温度Toが10℃より高いか否かを判断する。室外熱交換器500の出口温度Toが10℃より高ければ(S27−YES)、S33に移行し、室外熱交換器500の出口温度Toが10℃以下であれば(S27−NO)、S27のステップを繰返し実行する。   After reducing the opening degree of the expansion valve 400 in S25, the controller 900 rotates the compressor 100 and starts the defrosting operation (S26). In S <b> 26, the controller 900 outputs a control signal for setting the compressor rotational speed to, for example, 70 rps to the compressor 100. Thereafter, in S27, the controller 900 determines whether or not the outlet temperature To of the outdoor heat exchanger 500 acquired by the outdoor heat exchanger temperature sensor St2 is higher than 10 ° C. If the outlet temperature To of the outdoor heat exchanger 500 is higher than 10 ° C (S27-YES), the process proceeds to S33, and if the outlet temperature To of the outdoor heat exchanger 500 is 10 ° C or lower (S27-NO), Repeat steps.

一方、S28ではS23と同様に、コントローラ900は、低温出湯モードによる運転制御を開始し、室外ファン800をOFFにするとともに、圧縮機100を停止する。コントローラ900は圧縮機100の停止から所定時間経過後、四方弁200をOFFとし(S29)、膨張弁400を全開にする(S30)。S30では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば480パルスとする制御信号を出力し、膨張弁400の開度を全開にする。   On the other hand, in S28, as in S23, the controller 900 starts operation control in the low-temperature hot water mode, turns off the outdoor fan 800, and stops the compressor 100. The controller 900 turns off the four-way valve 200 after a predetermined time has elapsed from the stop of the compressor 100 (S29), and fully opens the expansion valve 400 (S30). In S30, a control signal for setting the number of expansion valve pulses to, for example, 480 pulses is output from the controller 900 to the expansion valve 400 to fully open the opening of the expansion valve 400.

S30において膨張弁400の開度を全開にした後、コントローラ900は圧縮機100を回転させ、除霜運転を開始する(S31)。S31では、コントローラ900から圧縮機100に対し、圧縮機回転数を例えば70rpsとする制御信号を出力する。その後、S32では、コントローラ900は、室外熱交換器温度センサSt2で取得する室外熱交換器500の出口温度Toが15℃より高いか否かを判断する。室外熱交換器500の出口温度Toが15℃より高ければ(S32−YES)、S33に移行し、室外熱交換器500の出口温度Toが15℃以下であれば(S32−NO)、S32のステップを繰返し実行する。   After fully opening the opening of the expansion valve 400 in S30, the controller 900 rotates the compressor 100 and starts the defrosting operation (S31). In S <b> 31, the controller 900 outputs a control signal for setting the compressor rotational speed to, for example, 70 rps to the compressor 100. Thereafter, in S32, the controller 900 determines whether or not the outlet temperature To of the outdoor heat exchanger 500 acquired by the outdoor heat exchanger temperature sensor St2 is higher than 15 ° C. If the outlet temperature To of the outdoor heat exchanger 500 is higher than 15 ° C (S32-YES), the process proceeds to S33, and if the outlet temperature To of the outdoor heat exchanger 500 is 15 ° C or lower (S32-NO), the process proceeds to S32. Repeat steps.

S27およびS32において室外熱交換器500の出口温度Toが10℃あるいは15℃より高いと判断した後、コントローラ900は圧縮機100を停止し(S33)、所定時間経過後、四方弁200をONとし、除霜運転を終了する(S34)。次に、膨張弁400を除霜運転に入る直前の暖房運転時の開度に調整する(S35)。S35において膨張弁400の開度を調整した後、コントローラ900は室外ファン800をONとし(S36)、除霜運転から暖房運転に戻される。   After determining that the outlet temperature To of the outdoor heat exchanger 500 is higher than 10 ° C. or 15 ° C. in S 27 and S 32, the controller 900 stops the compressor 100 (S 33), and turns on the four-way valve 200 after a predetermined time. The defrosting operation is terminated (S34). Next, the expansion valve 400 is adjusted to the opening degree at the time of heating operation immediately before entering the defrosting operation (S35). After adjusting the opening degree of the expansion valve 400 in S35, the controller 900 turns on the outdoor fan 800 (S36), and returns from the defrosting operation to the heating operation.

次に、圧縮機吐出圧力センサSpの検知結果を用いるヒートポンプ装置について説明する。図6に示すように、上述の冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置と相違するS22’、S25’、S30’の各ステップのみを説明し、共通するステップの説明は省略する。冷媒−水熱交換器温度センサSt1の検知結果を用いるヒートポンプ装置との相違点は、図3に示すように、暖房能力の大きいヒートポンプ装置であるため、除霜運転条件のうち、冷媒−水熱交換器凝縮温度と膨張弁パルス数の数値を変更している点である。   Next, a heat pump device using the detection result of the compressor discharge pressure sensor Sp will be described. As shown in FIG. 6, only the steps S22 ′, S25 ′, and S30 ′ different from the heat pump device using the detection result of the refrigerant-water heat exchanger temperature sensor St1 described above will be described, and the description of the common steps will be described. Omitted. The difference from the heat pump device using the detection result of the refrigerant-water heat exchanger temperature sensor St1 is a heat pump device having a large heating capacity as shown in FIG. The point is that the values of the exchanger condensing temperature and the number of expansion valve pulses are changed.

以下、S22’、S25’、S30’の各ステップを説明する。図6のフローチャートにおいて、S22’では、圧縮機吐出圧力センサSpを利用して冷媒−水熱交換器300の凝縮圧力(圧縮機100の吐出圧力より若干小さくなる)を検知し、実験的に予め定めた凝縮圧力と凝縮温度の変換テーブルにしたがって、検知した凝縮圧力を凝縮温度に変換する。この変換した冷媒−水熱交換器300の凝縮温度Twが50℃以上であれば(S22’−YES)、S23に移行し、凝縮温度Twが50℃未満であれば(S22’−NO)、S28に移行する。   Hereinafter, each step of S22 ', S25', and S30 'will be described. In the flowchart of FIG. 6, in S22 ′, the compressor discharge pressure sensor Sp is used to detect the condensing pressure of the refrigerant-water heat exchanger 300 (slightly smaller than the discharge pressure of the compressor 100), and experimentally in advance. The detected condensing pressure is converted into a condensing temperature according to a predetermined condensing pressure and condensing temperature conversion table. If the condensing temperature Tw of the converted refrigerant-water heat exchanger 300 is 50 ° C. or more (S22′-YES), the process proceeds to S23, and if the condensing temperature Tw is less than 50 ° C. (S22′-NO), The process proceeds to S28.

上述の変換テーブルはコントローラ900内の図示しない記憶手段に記憶され、コントローラ900は変換テーブルにしたがって、凝縮圧力を凝縮温度に変換する。以上のように、S22’では、凝縮温度に相関のある冷媒−水熱交換器300の凝縮圧力を検知し、この凝縮圧力を凝縮温度に変換することで温水温度を間接的に取得することが特徴になっている。   The above conversion table is stored in a storage means (not shown) in the controller 900, and the controller 900 converts the condensing pressure into the condensing temperature according to the conversion table. As described above, in S22 ′, it is possible to indirectly detect the hot water temperature by detecting the condensation pressure of the refrigerant-water heat exchanger 300 having a correlation with the condensation temperature and converting the condensation pressure into the condensation temperature. It has become a feature.

S25’では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば200パルスとする制御信号を出力し、膨張弁400の開度を絞る。S30’では、コントローラ900から膨張弁400に対し、膨張弁パルス数を例えば400パルスとする制御信号を出力し、膨張弁400の開度を全開にせずに若干絞る。ここで、膨張弁400を若干絞るのは、暖房能力が大きいと、冷媒の流量が大きくなるので、冷媒の流れる冷媒音を抑制するためである。   In S <b> 25 ′, the controller 900 outputs a control signal for setting the number of expansion valve pulses to, for example, 200 pulses to the expansion valve 400 to narrow the opening degree of the expansion valve 400. In S30 ', a control signal for setting the number of expansion valve pulses to 400, for example, is output from the controller 900 to the expansion valve 400, and the opening degree of the expansion valve 400 is slightly reduced without being fully opened. Here, the reason why the expansion valve 400 is slightly throttled is that, if the heating capacity is large, the flow rate of the refrigerant increases, so that the refrigerant noise flowing through the refrigerant is suppressed.

以上説明してきた本実施形態では、除霜運転時に膨張弁400の開度を絞った場合と全開(または若干絞る)の場合とで、圧縮機100を停止して除霜運転を終了するための判断条件の数値を変更した。室外熱交換器500の出口温度Toの判断条件の数値を、膨張弁400の開度を絞った場合には、例えば10℃、膨張弁400の開度が全開(または若干絞る)の場合には、例えば15℃にそれぞれ設定したことにより、除霜運転中に室外熱交換器500の凝縮圧力が大きくなりすぎるおそれがなく、圧縮機100の負担を軽減することができる。   In the present embodiment that has been described above, the compressor 100 is stopped and the defrosting operation is ended when the opening degree of the expansion valve 400 is reduced during the defrosting operation and when it is fully opened (or slightly reduced). The numerical value of the judgment condition was changed. The numerical value of the condition for determining the outlet temperature To of the outdoor heat exchanger 500 is, for example, 10 ° C. when the opening degree of the expansion valve 400 is reduced, and when the opening degree of the expansion valve 400 is fully opened (or slightly reduced). For example, by setting each at 15 ° C., there is no possibility that the condensation pressure of the outdoor heat exchanger 500 becomes too large during the defrosting operation, and the burden on the compressor 100 can be reduced.

具体的に述べると、除霜運転時に膨張弁400の開度を絞った場合には、室外熱交換器出口における冷媒の過冷却度が全開の場合に比べて大きくなるため、室外熱交換器500の出口温度Toが同じ値であれば、除霜運転の終了判断時の室外熱交換器500の凝縮温度は、全開の場合に比べて高くなる。この結果、凝縮温度の高い方が時間的に早く着霜除去されることとなり、膨張弁400の開度を絞った場合には、室外熱交換器500の着霜除去から時間が経過した時点で除霜運転の終了が判断されるおそれがある。   More specifically, when the opening degree of the expansion valve 400 is reduced during the defrosting operation, the degree of supercooling of the refrigerant at the outdoor heat exchanger outlet becomes larger than that when the refrigerant is fully opened. If the outlet temperature To is the same value, the condensation temperature of the outdoor heat exchanger 500 at the time of judging the end of the defrosting operation is higher than in the case of full opening. As a result, the higher the condensation temperature, the faster the frost is removed. When the opening degree of the expansion valve 400 is reduced, the time when the outdoor heat exchanger 500 has removed the frost has elapsed. The end of the defrosting operation may be determined.

このため、室外熱交換器500の着霜が除去され、室外熱交換器500に流れる冷媒の熱交換対象である霜が除去された状態で除霜運転を継続すると、霜の融け始めから大きくなる室外熱交換器500の凝縮圧力は時間の経過とともに大きくなり、圧縮機100に負担がかかってしまう。   For this reason, if frost formation of the outdoor heat exchanger 500 is removed and the defrosting operation is continued in a state where the frost that is the heat exchange target of the refrigerant flowing in the outdoor heat exchanger 500 is removed, the frost is increased from the start of melting. The condensation pressure of the outdoor heat exchanger 500 increases with the passage of time, which places a burden on the compressor 100.

本実施形態では、このような問題点を解決するため、膨張弁400の開度が全開の場合には、除霜運転の終了判断時の室外熱交換器500の凝縮温度が高くなりすぎることがないので、室外熱交換器500の出口温度Toを、室外熱交換器500に付着した霜が無くなる温度として十分余裕のある温度、例えば15℃に設定している。   In this embodiment, in order to solve such a problem, when the opening degree of the expansion valve 400 is fully open, the condensation temperature of the outdoor heat exchanger 500 at the time of determining the end of the defrosting operation may be too high. Therefore, the outlet temperature To of the outdoor heat exchanger 500 is set to a temperature having a sufficient margin, for example, 15 ° C. as a temperature at which frost attached to the outdoor heat exchanger 500 disappears.

一方、膨張弁400の開度を絞った場合には、除霜運転の終了判断時の室外熱交換器500の凝縮温度が高くなってしまうため、室外熱交換器500の出口温度Toを、室外熱交換器500に付着した霜が無くなる温度であり、かつ、除霜運転の終了判断時の室外熱交換器500の凝縮温度が低くなる温度、例えば10℃に設定している。   On the other hand, when the opening degree of the expansion valve 400 is reduced, the condensation temperature of the outdoor heat exchanger 500 at the time of determining the end of the defrosting operation becomes high, so the outlet temperature To of the outdoor heat exchanger 500 is set to the outdoor temperature. The temperature is set to a temperature at which the frost adhered to the heat exchanger 500 disappears and the condensation temperature of the outdoor heat exchanger 500 at the time of determining the completion of the defrosting operation is lowered, for example, 10 ° C.

したがって、本実施形態によるヒートポンプ装置では、第1開度(例えば膨張弁パルス数が150パルス)の場合には、室外熱交換器500の出口温度が所定の第1温度(例えば10℃)以上に到達したときに除霜運転を終了し、第2開度(例えば膨張弁パルス数が480パルス)の場合には、室外熱交換器500の出口温度が第1温度(例えば10℃)より高い所定の第2温度(例えば15℃)以上に到達したときに除霜運転を終了することを特徴としている。   Therefore, in the heat pump device according to the present embodiment, when the first opening (for example, the number of expansion valve pulses is 150 pulses), the outlet temperature of the outdoor heat exchanger 500 is equal to or higher than a predetermined first temperature (for example, 10 ° C.). When the defrosting operation is completed and the second opening degree (for example, the number of expansion valve pulses is 480 pulses), the outlet temperature of the outdoor heat exchanger 500 is higher than the first temperature (for example, 10 ° C.). The defrosting operation is ended when the second temperature (for example, 15 ° C.) or higher is reached.

これにより、除霜運転時に膨張弁400の開度を絞った場合の除霜運転の終了を判断する条件である室外熱交換器500の出口温度を、膨張弁400の開度を全開とした場合のそれよりも低く設定したことで、除霜運転の終了判断を時間的に早めて、室外熱交換器500の着霜が除去された状態での無駄な除霜運転がなくなるため、除霜運転中の室外熱交換器500の凝縮圧力の上昇を抑え、圧縮機100に負担がかからず、ヒートポンプ装置の信頼性を維持することができる。   Thereby, when the opening temperature of the expansion valve 400 is fully opened, the outlet temperature of the outdoor heat exchanger 500 which is a condition for determining the end of the defrosting operation when the opening degree of the expansion valve 400 is reduced during the defrosting operation. By setting it lower than that, the end of the defrosting operation is advanced in time, and the useless defrosting operation in the state where the frost formation of the outdoor heat exchanger 500 is removed is eliminated. The rise in the condensation pressure of the inside outdoor heat exchanger 500 can be suppressed, the compressor 100 is not burdened, and the reliability of the heat pump device can be maintained.

100 圧縮機
200 四方弁
300 冷媒−水熱交換器
400 膨張弁
500 室外熱交換器
600 循環ポンプ
700 暖房装置
800 室外ファン
900 コントローラ
A ヒートポンプサイクル
Sp 圧縮機吐出圧力センサ
St1 冷媒−水熱交換器温度センサ
St2 室外熱交換器温度センサ
DESCRIPTION OF SYMBOLS 100 Compressor 200 Four-way valve 300 Refrigerant-water heat exchanger 400 Expansion valve 500 Outdoor heat exchanger 600 Circulation pump 700 Heating device 800 Outdoor fan 900 Controller A Heat pump cycle Sp Compressor discharge pressure sensor St1 Refrigerant-water heat exchanger temperature sensor St2 outdoor heat exchanger temperature sensor

Claims (4)

圧縮機、四方弁、冷媒−水熱交換器、膨張弁および室外熱交換器からなるヒートポンプサイクルを有するヒートポンプ装置であって、前記室外熱交換器への着霜を除去する除霜運転時に、前記四方弁を切換えて暖房運転時と冷媒の流れ方向を逆方向とし、かつ、前記冷媒−水熱交換器に流れる温水の温度に相関のある検知情報に基づいて前記膨張弁の開度を調整することを特徴とするヒートポンプ装置。   A heat pump device having a heat pump cycle comprising a compressor, a four-way valve, a refrigerant-water heat exchanger, an expansion valve, and an outdoor heat exchanger, and at the time of defrosting operation for removing frost formation on the outdoor heat exchanger, The four-way valve is switched to reverse the direction of refrigerant flow during heating operation and to adjust the opening of the expansion valve based on detection information correlated with the temperature of hot water flowing through the refrigerant-water heat exchanger. A heat pump device characterized by that. 前記検知情報は前記冷媒−水熱交換器の凝縮温度であり、前記膨張弁の開度は、前記凝縮温度が所定温度以上の場合の第1開度を、前記所定温度未満の場合の第2開度より小さくすることを特徴とする請求項1記載のヒートポンプ装置。   The detection information is a condensing temperature of the refrigerant-water heat exchanger, and the opening of the expansion valve is a first opening when the condensing temperature is equal to or higher than a predetermined temperature, and a second opening when the condensing temperature is lower than the predetermined temperature. The heat pump device according to claim 1, wherein the heat pump device is smaller than the opening. 前記検知情報は前記圧縮機の吐出圧力であり、前記膨張弁の開度は、前記吐出圧力が所定圧力以上の場合の第1開度を、前記所定圧力未満の場合の第2開度より小さくすることを特徴とする請求項1記載のヒートポンプ装置。   The detection information is the discharge pressure of the compressor, and the opening of the expansion valve is smaller than the first opening when the discharge pressure is equal to or higher than a predetermined pressure and smaller than the second opening when the discharge pressure is lower than the predetermined pressure. The heat pump device according to claim 1, wherein 前記第1開度の場合には、前記室外熱交換器の出口温度が所定の第1温度以上に到達したときに除霜運転を終了し、前記第2開度の場合には、前記室外熱交換器の出口温度が前記第1温度より高い所定の第2温度以上に到達したときに除霜運転を終了することを特徴とする請求項2または請求項3記載のヒートポンプ装置。   In the case of the first opening, the defrosting operation is terminated when the outlet temperature of the outdoor heat exchanger reaches a predetermined first temperature or higher, and in the case of the second opening, the outdoor heat is The heat pump device according to claim 2 or 3, wherein the defrosting operation is terminated when an outlet temperature of the exchanger reaches a predetermined second temperature higher than the first temperature.
JP2010162261A 2009-09-09 2010-07-16 Heat pump equipment Active JP5510145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162261A JP5510145B2 (en) 2009-09-09 2010-07-16 Heat pump equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009207720 2009-09-09
JP2009207720 2009-09-09
JP2010162261A JP5510145B2 (en) 2009-09-09 2010-07-16 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2011080741A true JP2011080741A (en) 2011-04-21
JP5510145B2 JP5510145B2 (en) 2014-06-04

Family

ID=44074955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162261A Active JP5510145B2 (en) 2009-09-09 2010-07-16 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP5510145B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083392A1 (en) * 2013-12-04 2015-06-11 三菱電機株式会社 Heat pump device
JP2015214929A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
JP2015214930A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
JP2015214927A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
JP2016133257A (en) * 2015-01-19 2016-07-25 ダイキン工業株式会社 Air-conditioner
WO2017138108A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119499B2 (en) * 2017-01-27 2018-11-06 Ford Global Technologies, Llc Exhaust gas recirculation system and method for operation thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0163964U (en) * 1987-10-15 1989-04-25
JPH1089816A (en) * 1996-09-09 1998-04-10 Daikin Ind Ltd Heat pump system
JP2004184019A (en) * 2002-12-05 2004-07-02 Fuji Electric Retail Systems Co Ltd Inside cooling/heating device for vending machine
JP2009036487A (en) * 2007-08-03 2009-02-19 Toshiba Carrier Corp Water heater
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0163964U (en) * 1987-10-15 1989-04-25
JPH1089816A (en) * 1996-09-09 1998-04-10 Daikin Ind Ltd Heat pump system
JP2004184019A (en) * 2002-12-05 2004-07-02 Fuji Electric Retail Systems Co Ltd Inside cooling/heating device for vending machine
JP2009036487A (en) * 2007-08-03 2009-02-19 Toshiba Carrier Corp Water heater
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083392A1 (en) * 2013-12-04 2015-06-11 三菱電機株式会社 Heat pump device
JP2015214929A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
JP2015214930A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
JP2015214927A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same
JP2016133257A (en) * 2015-01-19 2016-07-25 ダイキン工業株式会社 Air-conditioner
WO2017138108A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP5510145B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5510145B2 (en) Heat pump equipment
JP6346122B2 (en) Hot water heating system
JP4539553B2 (en) Heat pump water heater
JP3783711B2 (en) Heat pump water heater
JP5343618B2 (en) Refrigeration cycle equipment
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
JP5776314B2 (en) Heat pump water heater
JP3901192B2 (en) Heat pump water heater
JP5457861B2 (en) Defrosting operation method of heat pump device
JP3659197B2 (en) Heat pump water heater
JP2010071544A (en) Air-conditioning system
JP2007155299A (en) Air conditioner
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP5708249B2 (en) Heat pump water heater
JP2005147610A (en) Heat pump water heater
JP2005090784A (en) Defrost adjusting device and controlling method, and heat pump type water heater
JP2007292390A (en) Heat pump type water heater
JP5034654B2 (en) Heat pump water heater
JP3800862B2 (en) Heat pump water heater
JP5678098B2 (en) Water heater
JP4021374B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP4950004B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5510145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350