JP2011079968A - High thermal conductivity and low loss factor build-up material - Google Patents

High thermal conductivity and low loss factor build-up material Download PDF

Info

Publication number
JP2011079968A
JP2011079968A JP2009233485A JP2009233485A JP2011079968A JP 2011079968 A JP2011079968 A JP 2011079968A JP 2009233485 A JP2009233485 A JP 2009233485A JP 2009233485 A JP2009233485 A JP 2009233485A JP 2011079968 A JP2011079968 A JP 2011079968A
Authority
JP
Japan
Prior art keywords
epoxy resin
build
high thermal
thermal conductivity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009233485A
Other languages
Japanese (ja)
Inventor
Unsho Yo
雲照 葉
Chung-Hao Chang
中浩 張
Cheng-Nan Yen
政男 嚴
Li-Hung Liu
勵▲こう▼ 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniplus Electronics Co Ltd
Original Assignee
Uniplus Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uniplus Electronics Co Ltd filed Critical Uniplus Electronics Co Ltd
Priority to JP2009233485A priority Critical patent/JP2011079968A/en
Publication of JP2011079968A publication Critical patent/JP2011079968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high thermal conductivity and low loss factor build-up material which has excellent thermal conductivity, fluidity and heat stability and a low loss factor, reduces cost and increases yield percentage. <P>SOLUTION: The build-up material is obtained by uniformly blending an epoxy resin precursor 2, a double-curing agent compound 3, a catalyst 4, a flow modifier 5, a high thermal conductive inorganic filler 6 and a solvent 7. The epoxy resin precursor 2 is prepared by blending in a fixed ratio at least two epoxy resins selected from a trifunctional epoxy resin, a rubber-modified or dimer-acid-modified epoxy resin, a brominated epoxy resin, a halogen-free/P-contained epoxy resin, a halogen-free/P-free epoxy resin, a long-chain halogen-free epoxy resin and a bisphenol A epoxy resin. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ビルドアップ材料に関し、特に、熱伝導性、流動性および熱安定性に富み、コストを削減し、歩留まり率を向上させ、高密度連結プリント基板または基板のパッケージングに用いられる高熱伝導性で、低損失係数のビルドアップ材料に関する。   The present invention relates to build-up materials, and in particular, has high thermal conductivity, fluidity and thermal stability, reduces cost, improves yield rate, and high thermal conductivity used for packaging high density connected printed circuit boards or boards. And build-up materials with low loss factor.

電子技術の日進月歩にともない、各種ハイテク産業が次々と現れ、性能がよく、人に優しい電子製品が絶え間なく発売されている。これらの電子製品は、軽薄短小が基本的なコンセプトである。電子製品には、少なくとも一つのマザーボードが設けられ、たくさんの電子デバイスおよび基板により構成されている。基板は、各電子デバイスを搭載し、電気的に接続する役割がある。プリント基板が最もよく用いられる基板である。   With the progress of electronic technology, various high-tech industries are appearing one after another, and high-performance and human-friendly electronic products are constantly released. The basic concept of these electronic products is light, thin and small. An electronic product is provided with at least one motherboard, and is composed of many electronic devices and substrates. The substrate has a role of mounting and electrically connecting each electronic device. A printed circuit board is the most commonly used board.

プリント基板は、電子部品を接続して性能を十分に発揮させるため、電子製品において、不可欠な基本部品である。プリント基板は、品質に優劣があると、電子製品の信頼性に影響を及ぼし、競争力を左右することになるため、「電子製品の母」と呼ばれるほど重要なものである。   A printed circuit board is an indispensable basic component in an electronic product in order to connect an electronic component and fully exhibit the performance. A printed circuit board is so important that it is called “the mother of an electronic product” because the quality of the printed circuit board affects the reliability of the electronic product and affects the competitiveness.

市販されている基板の製造技術は、耐熱性ガラス基材エポキシ樹脂積層板(FR-4)が主流であり、耐熱性、低導電率および環境保護が考慮されている。高周波プリント基板は、これ以外に、低損失係数という性質を有する。現在、最もよく用いられている方法に、樹脂付銅箔(Resin Coated Copper ; RCC)法およびLDPP(Laser Drillable Prepreg)法がある。RCCは、銅箔を表面処理して、層間絶縁膜を塗布し、B段階(B-Stage)までベイクした後に、所定の大きさに裁断し、重ね合わせ、プレスを加える。LDPPは、調合したビルドアップ材料をガラス繊維に浸し、B段階(B-Stage)までベイクした後に、所定の大きさに裁断し、重ね合わせ、プレスを加える。   A commercially available substrate manufacturing technique is mainly a heat-resistant glass-based epoxy resin laminate (FR-4), and heat resistance, low electrical conductivity, and environmental protection are considered. In addition to this, the high-frequency printed circuit board has a property of a low loss coefficient. At present, the most commonly used methods include resin-coated copper foil (Resin Coated Copper; RCC) method and LDPP (Laser Drillable Prepreg) method. In RCC, a copper foil is surface-treated, an interlayer insulating film is applied, baked to B-stage, cut into a predetermined size, overlapped, and pressed. In LDPP, the prepared buildup material is dipped in glass fiber, baked to B-stage, cut into a predetermined size, overlapped, and pressed.

RCC法およびLDPP法に用いられるビルドアップ材料には、以下のような欠点があったため、RCC法およびLDPP法は、完璧な作製法とは言えなかった。1、樹脂の流動性が悪く、穴を十分に充填できなった。2、生産コストが高く、信号伝達が不十分であった。3、熱伝導性、流動性および熱安定性が不良である。4、プリント基板の歩留まり率が低かった。5、樹脂含有量の制限により、穴埋めおよび面塗りを同時に行うことができなかった。6、厚い銅箔を用いたプリント基板を製作するのが困難だった。
一方、先行技術として、例えば特許文献1及び2は、基板に対して半導体チップを実装する際にビルドアップ材料層を構造的に如何に配置して用いるか、つまり実装技術の改善を図るものであった。
The build-up materials used in the RCC method and the LDPP method have the following drawbacks, and thus the RCC method and the LDPP method cannot be said to be perfect manufacturing methods. 1. The fluidity of the resin was poor and the holes could not be filled sufficiently. 2. Production cost was high and signal transmission was insufficient. 3. Thermal conductivity, fluidity and thermal stability are poor. 4. The yield rate of the printed circuit board was low. 5. Due to restriction of resin content, hole filling and surface coating could not be performed simultaneously. 6. It was difficult to produce a printed circuit board using thick copper foil.
On the other hand, as prior art, for example, Patent Documents 1 and 2 are intended to structurally arrange and use a build-up material layer when mounting a semiconductor chip on a substrate, that is, to improve mounting technology. there were.

特開2009−33158号公報JP 2009-33158 A 特開2008−141144号公報JP 2008-141144 A

本発明の目的は、熱伝導性、流動性および熱安定性に富み、損失係数(dissipation factor)が低く、コストを削減し、歩留まり率を向上させる高熱伝導性で、低損失係数(low dissipation factor)のビルドアップ材料の改善を図ることにある。   The purpose of the present invention is high thermal conductivity, fluidity and thermal stability, low dissipation factor, low cost, high thermal conductivity, low yield factor (low dissipation factor) ) To improve the build-up materials.

上述の目的を達成するため、本発明は、高熱伝導性で、低損失係数のビルドアップ材料を提供する。本発明の高熱伝導性で、低損失係数のビルドアップ材料は、エポキシ樹脂前駆体、双硬化剤化合物、触媒、流動調整剤、高熱伝導無機充填剤および溶剤が均等に調合されてなる。エポキシ樹脂前駆体は、三官能エポキシ樹脂、ゴム変性または二量体酸変性エポキシ樹脂、臭素化エポキシ樹脂、ノンハロゲン/リン含有エポキシ樹脂、ノンハロゲン・ノンリンエポキシ樹脂、長鏈ノンハロゲンエポキシ樹脂、ビスフェノールA型エポキシ樹脂から少なくとも二種類のエポキシ樹脂が一定の比率で調合されてなる。   In order to achieve the above object, the present invention provides a build-up material with high thermal conductivity and low loss factor. The build-up material having a high thermal conductivity and a low loss factor according to the present invention comprises an epoxy resin precursor, a bi-curing agent compound, a catalyst, a flow regulator, a high thermal conductivity inorganic filler, and a solvent that are uniformly mixed. Epoxy resin precursor is trifunctional epoxy resin, rubber-modified or dimer acid-modified epoxy resin, brominated epoxy resin, non-halogen / phosphorus-containing epoxy resin, non-halogen / non-phosphorus epoxy resin, Nagatoro non-halogen epoxy resin, bisphenol A type At least two types of epoxy resins are prepared from the epoxy resin at a certain ratio.

実施において、三官能エポキシ樹脂は、添加比率が50%以下で、ゴム変性または二量体酸変性エポキシ樹脂は添加比率が50%以下で、臭素化エポキシ樹脂は添加比率が80%以下で、ノンハロゲン/リン含有エポキシ樹脂は添加比率が80%以下で、ノンハロゲン・ノンリンエポキシ樹脂は添加比率が90%以下で、長鏈ノンハロゲンエポキシ樹脂は添加比率50%以下で、ビスフェノールA型エポキシ樹脂は添加比率80%以下である。双硬化剤化合物は、添加量が2〜20phrで、触媒は0.1〜5phrで、流動調整剤は0.1〜5phrで、高熱伝導無機充填剤は15〜45phrで、溶剤は3〜25phrである。双硬化剤化合物は、アミン系硬化剤および酸無水物系硬化剤が均等に調合されて形成された化合物である。アミン系硬化剤は、添加比率が10%以下で、酸無水物系硬化剤は添加比率が30%以下である。触媒は、イミダゾール系触媒で、添加比率が10%以下である。流動調整剤は、ポリプロピレンまたは変性ポリプロピレンで、共重合体の平均分子量が5,000〜200,000で、添加比率が0.05〜10%である。高熱伝導無機充填剤は、窒化シリコン、窒化アルミニウム、窒化ホウ素、炭化ケイ素、三酸化二アルミニウム、二酸化ケイ素、酸化マグネシウム、酸化亜鉛、酸化ベリリウム、水酸化アルミニウムおよびケイ酸アルミニウムからなるグループから一つが選択され、粒度が1〜50umで、添加比率が90%以下である。溶剤は、ジメチルホルムアミド、酢酸メチル、メチルエチルケトンおよびシクロヘキサノンからなるグループから一つが選択される。   In practice, the trifunctional epoxy resin has an addition ratio of 50% or less, the rubber-modified or dimer acid-modified epoxy resin has an addition ratio of 50% or less, the brominated epoxy resin has an addition ratio of 80% or less, and is non-halogen. / Phosphorus-containing epoxy resin has an addition ratio of 80% or less, non-halogen / non-phosphorus epoxy resin has an addition ratio of 90% or less, Nagatoro non-halogen epoxy resin has an addition ratio of 50% or less, and bisphenol A type epoxy resin has an addition ratio 80% or less. The twin curing agent compound is added in an amount of 2 to 20 phr, the catalyst is 0.1 to 5 phr, the flow regulator is 0.1 to 5 phr, the high thermal conductive inorganic filler is 15 to 45 phr, and the solvent is 3 to 25 phr. The twin curing agent compound is a compound formed by uniformly mixing an amine curing agent and an acid anhydride curing agent. The addition ratio of the amine curing agent is 10% or less, and the addition ratio of the acid anhydride curing agent is 30% or less. The catalyst is an imidazole catalyst, and the addition ratio is 10% or less. The flow regulator is polypropylene or modified polypropylene, and the copolymer has an average molecular weight of 5,000 to 200,000 and an addition ratio of 0.05 to 10%. High thermal conductivity inorganic filler is selected from the group consisting of silicon nitride, aluminum nitride, boron nitride, silicon carbide, dialuminum trioxide, silicon dioxide, magnesium oxide, zinc oxide, beryllium oxide, aluminum hydroxide and aluminum silicate The particle size is 1 to 50 um, and the addition ratio is 90% or less. The solvent is selected from the group consisting of dimethylformamide, methyl acetate, methyl ethyl ketone and cyclohexanone.

本発明の高熱伝導性で、低損失係数のビルドアップ材料は、以下の4つの長所がある。1、損失係数を大幅に低下させ、信号の伝達を十分に行うことができる。2、熱伝導性および熱安定性が良好である。3、材料の損失を減少させ、歩留まり率を向上させることができる。4、穴埋めおよび面塗りを同時に行い、工程を簡潔にすることができる。   The build-up material with high thermal conductivity and low loss factor of the present invention has the following four advantages. 1. The loss factor can be greatly reduced, and signal transmission can be sufficiently performed. 2. Thermal conductivity and thermal stability are good. 3. The loss of material can be reduced and the yield rate can be improved. 4. The hole filling and surface coating can be performed simultaneously to simplify the process.

本発明の一実施形態による高熱伝導性で、低損失係数のビルドアップ材料の作製図である。1 is a fabrication diagram of a build-up material with high thermal conductivity and low loss factor according to one embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1を参照する。図1は、本発明の一実施形態による高熱伝導性で、低損失係数のビルドアップ材料の作製図である。図1に示すように、本発明の高熱伝導性で、低損失係数のビルドアップ材料1は、エポキシ樹脂前駆体2、双硬化剤化合物3、触媒4、流動調整剤(Flow modifier)5、高熱伝導無機充填剤(Filler)6および溶剤7が均等に調合されてなる。   Please refer to FIG. FIG. 1 is a fabrication diagram of a build-up material with high thermal conductivity and low loss factor according to one embodiment of the present invention. As shown in FIG. 1, the build-up material 1 of the present invention with high thermal conductivity and low loss coefficient is composed of an epoxy resin precursor 2, a bi-curing agent compound 3, a catalyst 4, a flow modifier 5, a high heat Conductive inorganic filler (Filler) 6 and solvent 7 are uniformly mixed.

エポキシ樹脂前駆体2は、三官能エポキシ樹脂(Trifunctional)、ゴム変性または二量体酸変性エポキシ樹脂(Rubber-modified or Dimmer-acid-modified Epoxy)、臭素化エポキシ樹脂(Br-contained Epoxy)、ノンハロゲン/リン含有エポキシ樹脂(Br-free/P-contained Epoxy)、ノンハロゲン・ノンリンエポキシ樹脂(Br-Free/P-Free Epoxy)、長鏈ノンハロゲンエポキシ樹脂、ビスフェノールA型エポキシ樹脂(Bisphenol A;BPA)から少なくとも二種類のエポキシ樹脂が一定の比率で、調合されてなるものである。   The epoxy resin precursor 2 is composed of a trifunctional epoxy resin (Trifunctional), a rubber-modified or dimer-acid-modified epoxy resin, a brominated epoxy resin, and a non-halogen. / Phosphorus-containing epoxy resin (Br-free / P-contained Epoxy), non-halogen, non-phosphorus epoxy resin (Br-Free / P-Free Epoxy), Nagatoro non-halogen epoxy resin, bisphenol A type epoxy resin (Bisphenol A; BPA) From the above, at least two kinds of epoxy resins are mixed at a certain ratio.

三官能エポキシ樹脂は、添加比率が50%以下である。ゴム変性または二量体酸変性エポキシ樹脂は、添加比率が50%以下である。臭素化エポキシ樹脂は、添加比率が80%以下である。ノンハロゲン/リン含有エポキシ樹脂は、添加比率が90%以下である。ノンハロゲン・ノンリンエポキシ樹脂は、添加比率が90%以下である。長鏈ノンハロゲンエポキシ樹脂は、添加比率50%以下である。ビスフェノールA型エポキシ樹脂は、添加比率80%以下である。   The trifunctional epoxy resin has an addition ratio of 50% or less. The rubber-modified or dimer acid-modified epoxy resin has an addition ratio of 50% or less. The addition ratio of brominated epoxy resin is 80% or less. The halogen-free / phosphorus-containing epoxy resin has an addition ratio of 90% or less. Non-halogen / non-phosphorus epoxy resin has an addition ratio of 90% or less. Nagano non-halogen epoxy resin has an addition ratio of 50% or less. The bisphenol A type epoxy resin has an addition ratio of 80% or less.

双硬化剤化合物3は、アミン系硬化剤(Amine)および酸無水物系硬化剤(Acid Anhydride)が均等に調合されて形成された化合物である。アミン系硬化剤は、添加比率が10%以下である。酸無水物系硬化剤は、添加比率が30%以下である。触媒4は、イミダゾール系触媒(Imidazole Catalyst)であり、添加比率が10%以下である。流動調整剤5は、ポリプロピレンまたは変性ポリプロピレンであり、共重合体の平均分子量(M.W.)が5,000〜200,000で、添加比率が0.05〜10%である。高熱伝導無機充填剤6は、窒化シリコン(SiN)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、炭化ケイ素(SiC)、三酸化二アルミニウム(Al2O3)、二酸化ケイ素(SiO2)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、酸化ベリリウム(BeO)、水酸化アルミニウム(Al(OH)3)およびケイ酸アルミニウム(Aluminum Silicate)からなるグループから一つが選択され、粒度が1〜50umで、添加比率が90%以下である。溶剤7は、ジメチルホルムアミド(DMF)、酢酸メチル(DMCA)、メチルエチルケトン(MEK)およびシクロヘキサノン(Cyclohexanone) からなるグループから一つが選択される。双硬化剤化合物3は、添加量が2〜20phrで、触媒4は、0.1〜5phrで、流動調整剤5は、0.1〜5phrで、高熱伝導無機充填剤6は、15〜45phrで、溶剤7は、3〜25phrである。 The twin curing agent compound 3 is a compound formed by uniformly mixing an amine curing agent (Amine) and an acid anhydride curing agent (Acid Anhydride). The addition ratio of the amine curing agent is 10% or less. The addition ratio of the acid anhydride curing agent is 30% or less. The catalyst 4 is an imidazole catalyst, and the addition ratio is 10% or less. The flow modifier 5 is polypropylene or modified polypropylene, and the copolymer has an average molecular weight (MW) of 5,000 to 200,000 and an addition ratio of 0.05 to 10%. The high thermal conductive inorganic filler 6 includes silicon nitride (SiN), aluminum nitride (AlN), boron nitride (BN), silicon carbide (SiC), dialuminum trioxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), One selected from the group consisting of magnesium oxide (MgO), zinc oxide (ZnO), beryllium oxide (BeO), aluminum hydroxide (Al (OH) 3 ), and aluminum silicate (Aluminum Silicate), particle size 1-50um The addition ratio is 90% or less. Solvent 7 is selected from the group consisting of dimethylformamide (DMF), methyl acetate (DMCA), methyl ethyl ketone (MEK), and cyclohexanone. Twin curing agent compound 3 is added in an amount of 2 to 20 phr, catalyst 4 is 0.1 to 5 phr, flow modifier 5 is 0.1 to 5 phr, high thermal conductivity inorganic filler 6 is 15 to 45 phr, solvent 7 Is 3-25 phr.

表1に示すように、実施の際は、三官能エポキシ樹脂が10phr、ビスフェノールA型エポキシ樹脂が30phr、長鏈ノンハロゲンエポキシ樹脂が5phr、臭素化エポキシ樹脂が30phr、ゴム変性または二量体酸変性エポキシ樹脂が25phrを選択し、混合すると得られるエポキシ樹脂前駆体に、充填剤(窒化アルミニウム20phr、三酸化二アルミニウム40phr、二酸化ケイ素40phr)、双硬化剤化合物2.5phr、イミダゾール系触媒0.25phr、流動調整剤(ポリプロピレン2phr)および溶剤(ジメチルホルムアミド20phr)を均等に混合すると本発明の高熱伝導性で、低損失係数のビルドアップ材料を形成することができる。ビルドアップ材料は、粘度が14,800 cpsで、その硬化物の熱伝導係数が2.3W/m-Kで、損失係数が0.008(@1GHz)である。
表1

Figure 2011079968
As shown in Table 1, the trifunctional epoxy resin is 10 phr, the bisphenol A type epoxy resin is 30 phr, the non-halogen non-halogen epoxy resin is 5 phr, the brominated epoxy resin is 30 phr, and rubber-modified or dimer acid-modified. The epoxy resin precursor obtained by selecting and mixing 25 phr of epoxy resin, filler (20 phr aluminum nitride, 40 phr aluminum trioxide, 40 phr silicon dioxide), twin hardener compound 2.5 phr, imidazole catalyst 0.25 phr, fluid When the modifier (polypropylene 2 phr) and solvent (dimethylformamide 20 phr) are mixed evenly, the high thermal conductivity, low loss factor build-up material of the present invention can be formed. The build-up material has a viscosity of 14,800 cps, a thermal conductivity coefficient of the cured product of 2.3 W / mK, and a loss coefficient of 0.008 (@ 1 GHz).
Table 1
Figure 2011079968

粘度の高いビルドアップ材料が必要な場合は、表2に示すように、三官能エポキシ樹脂が10phr、ビスフェノールA型エポキシ樹脂が 25phr、長鏈ノンハロゲンエポキシ樹脂が5phr、ノンハロゲン・ノンリンエポキシ樹脂が40phr、ゴム変性または二量体酸変性エポキシ樹脂が20phrを選択し、混合すると得られるエポキシ樹脂前駆体に、充填剤(窒化アルミニウム20phr、三酸化二アルミニウム30phr、二酸化ケイ素30phr、ケイ酸アルミニウム20phr)、双硬化剤化合物14phr、イミダゾール系触媒1.5phr、流動調整剤(変性ポリプロピレン1phr)および溶剤(ジメチルホルムアミド20phr)を均等に混合すると本発明の高熱伝導性で、低損失係数のビルドアップ材料を形成することができる。ビルドアップ材料は、粘度が21,450 cpsで、その硬化物の熱伝導係数が2.5W/m-Kで、損失係数が0.007(@1GHz)である。
表2

Figure 2011079968
When a build-up material with a high viscosity is required, as shown in Table 2, the trifunctional epoxy resin is 10 phr, the bisphenol A type epoxy resin is 25 phr, the long bamboo non-halogen epoxy resin is 5 phr, and the non-halogen / non-phosphorus epoxy resin is 40 phr. , 20 phr of rubber-modified or dimer acid-modified epoxy resin is selected and mixed with the epoxy resin precursor obtained, filler (20 phr aluminum nitride, 30 phr aluminum trioxide, 30 phr silicon dioxide, 20 phr aluminum silicate), Evenly mixing 14 phr of the bi-curing agent compound, 1.5 phr of the imidazole catalyst, 1 phr of the flow control agent (modified polypropylene) and 20 phr of the solvent (dimethylformamide) forms the build-up material with high thermal conductivity and low loss factor of the present invention. be able to. The build-up material has a viscosity of 21,450 cps, a thermal conductivity coefficient of the cured product of 2.5 W / mK, and a loss coefficient of 0.007 (@ 1 GHz).
Table 2
Figure 2011079968

二種類のエポキシ樹脂のみを選択してエポキシ樹脂前駆体を調合することもできる。表3に示すように、三官能エポキシ樹脂が50phrおよびノンハロゲン・ノンリンエポキシ樹脂50phrを選択して調合したエポキシ樹脂前駆体に、充填剤(窒化アルミニウム50phr、三酸化二アルミニウム30phr、ケイ酸アルミニウム20phr)、双硬化剤化合物19phr、イミダゾール系触媒0.5phr、流動調整剤(変性ポリプロピレン1phr)および溶剤(ジメチルホルムアミド3phr)を均等に混合すると本発明の高熱伝導性で、低損失係数のビルドアップ材料を形成することができる。ビルドアップ材料は、粘度が22,100 cpsで、その硬化物の熱伝導係数が3.0W/m-Kで、損失係数が0.006(@1GHz)である。
表3

Figure 2011079968
It is also possible to prepare an epoxy resin precursor by selecting only two types of epoxy resins. As shown in Table 3, the epoxy resin precursor prepared by selecting 50 phr of the trifunctional epoxy resin and 50 phr of the non-halogen / non-phosphorus epoxy resin was added to the filler (50 phr of aluminum nitride, 30 phr of dialuminum trioxide, 20 phr of aluminum silicate). ), 19 phr of the twin curing agent compound, 0.5 phr of the imidazole catalyst, 1 phr of the flow modifier (modified polypropylene) and 3 phr of the solvent (dimethylformamide) are mixed evenly to obtain the build-up material with high thermal conductivity and low loss factor of the present invention. Can be formed. The build-up material has a viscosity of 22,100 cps, a thermal conductivity coefficient of the cured product of 3.0 W / mK, and a loss coefficient of 0.006 (@ 1 GHz).
Table 3
Figure 2011079968

本発明では好適な実施形態を前述の通りに開示したが、これらは決して本発明を限定するものではなく、当該技術を熟知する者は誰でも、本発明の精神と領域を脱しない範囲内で各種の変更や修正を加えることができる。従って、本発明の保護の範囲は、特許請求の範囲で指定した内容を基準とする。   Although preferred embodiments of the present invention have been disclosed as described above, they are not intended to limit the present invention in any way, and anyone skilled in the art is within the spirit and scope of the present invention. Various changes and modifications can be made. Therefore, the scope of protection of the present invention is based on the contents specified in the claims.

1 高熱伝導性で、低損失係数のビルドアップ材料
2 エポキシ樹脂前駆体
3 双硬化剤化合物
4 触媒
5 流動調整剤
6 高熱伝導無機充填剤
7 溶剤
1 Build-up material with high thermal conductivity and low loss factor 2 Epoxy resin precursor 3 Twin curing agent compound 4 Catalyst 5 Flow control agent 6 High thermal conductivity inorganic filler 7 Solvent

Claims (9)

高密度連結プリント基板または基板のパッケージングに用いられ、エポキシ樹脂前駆体、双硬化剤化合物、触媒、流動調整剤、高熱伝導無機充填剤および溶剤が均等に調合されてなる高熱伝導性で、低損失係数のビルドアップ材料であって、
前記エポキシ樹脂前駆体は、三官能エポキシ樹脂、ゴム変性または二量体酸変性エポキシ樹脂、臭素化エポキシ樹脂、ノンハロゲン/リン含有エポキシ樹脂、ノンハロゲン・ノンリンエポキシ樹脂、長鏈ノンハロゲンエポキシ樹脂、ビスフェノールA型エポキシ樹脂から少なくとも二種類のエポキシ樹脂が一定の比率で調合されてなる高熱伝導性で、低損失係数のビルドアップ材料。
Used for packaging high density interconnected printed circuit boards or boards, with high thermal conductivity and low blending of epoxy resin precursor, twin curing compound, catalyst, flow control agent, high thermal conductivity inorganic filler and solvent evenly. Loss factor build-up material,
The epoxy resin precursor is trifunctional epoxy resin, rubber-modified or dimer acid-modified epoxy resin, brominated epoxy resin, non-halogen / phosphorus-containing epoxy resin, non-halogen / non-phosphorus epoxy resin, Nagatoro non-halogen epoxy resin, bisphenol A Build-up material with high thermal conductivity and low loss factor, which is made by mixing at least two types of epoxy resin from a type epoxy resin at a certain ratio.
前記三官能エポキシ樹脂は、添加比率が50%以下で、前記ゴム変性または二量体酸変性エポキシ樹脂は添加比率が50%以下で、前記臭素化エポキシ樹脂は添加比率が80%以下で、前記ノンハロゲン/リン含有エポキシ樹脂は添加比率が90%以下で、前記ノンハロゲン・ノンリンエポキシ樹脂は添加比率が90%以下で、前記長鏈ノンハロゲンエポキシ樹脂は添加比率50%以下で、前記ビスフェノールA型エポキシ樹脂は添加比率80%以下であることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The trifunctional epoxy resin has an addition ratio of 50% or less, the rubber-modified or dimer acid-modified epoxy resin has an addition ratio of 50% or less, the brominated epoxy resin has an addition ratio of 80% or less, The non-halogen / phosphorus-containing epoxy resin has an addition ratio of 90% or less, the non-halogen / non-phosphorus epoxy resin has an addition ratio of 90% or less, and the long non-halogen epoxy resin has an addition ratio of 50% or less. The build-up material with high thermal conductivity and low loss factor according to claim 1, wherein the resin is added at a ratio of 80% or less. 前記双硬化剤化合物は、添加量が2〜20phrで、前記触媒は0.1〜5phrで、前記流動調整剤は0.1〜5phrで、前記高熱伝導無機充填剤は15〜45phrで、前記溶剤は3〜25phrであることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The bi-curing agent compound is added in an amount of 2 to 20 phr, the catalyst is 0.1 to 5 phr, the flow regulator is 0.1 to 5 phr, the high thermal conductive inorganic filler is 15 to 45 phr, and the solvent is 3 to 3 phr. The build-up material with high thermal conductivity and low loss factor according to claim 1, characterized in that it is 25phr. 前記双硬化剤化合物は、アミン系硬化剤および酸無水物系硬化剤が均等に調合されて形成された化合物であることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The high-conductivity and low-loss coefficient of claim 1, wherein the twin-curing agent compound is a compound formed by uniformly mixing an amine curing agent and an acid anhydride curing agent. Build-up material. 前記アミン系硬化剤は、添加比率が10%以下で、酸無水物系硬化剤は添加比率が30%以下であることを特徴とする請求項4に記載の高熱伝導性で、低損失係数のビルドアップ材料。   5. The high heat conductivity and low loss coefficient of claim 4, wherein the amine curing agent has an addition ratio of 10% or less and the acid anhydride curing agent has an addition ratio of 30% or less. Build-up material. 前記触媒は、イミダゾール系触媒で、添加比率が10%以下であることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The build-up material with high thermal conductivity and low loss coefficient according to claim 1, wherein the catalyst is an imidazole catalyst and the addition ratio is 10% or less. 前記流動調整剤は、ポリプロピレンまたは変性ポリプロピレンで、共重合体の平均分子量が5,000〜200,000で、添加比率が0.05〜10%であることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The heat-controlling agent according to claim 1, wherein the flow modifier is polypropylene or modified polypropylene, and has an average molecular weight of 5,000 to 200,000 and an addition ratio of 0.05 to 10%. Loss factor build-up material. 前記高熱伝導無機充填剤は、窒化シリコン、窒化アルミニウム、窒化ホウ素、炭化ケイ素、三酸化二アルミニウム、二酸化ケイ素、酸化マグネシウム、酸化亜鉛、酸化ベリリウム、水酸化アルミニウムおよびケイ酸アルミニウムからなるグループから一つが選択され、粒度が1〜50umで、添加比率が90%以下であることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The high thermal conductivity inorganic filler is one selected from the group consisting of silicon nitride, aluminum nitride, boron nitride, silicon carbide, dialuminum trioxide, silicon dioxide, magnesium oxide, zinc oxide, beryllium oxide, aluminum hydroxide and aluminum silicate. The build-up material with high thermal conductivity and low loss coefficient according to claim 1, wherein the build-up material is selected and has a particle size of 1 to 50 um and an addition ratio of 90% or less. 前記溶剤は、ジメチルホルムアミド、酢酸メチル、メチルエチルケトンおよびシクロヘキサノンからなるグループから一つが選択されることを特徴とする請求項1に記載の高熱伝導性で、低損失係数のビルドアップ材料。   The build-up material with high thermal conductivity and low loss coefficient according to claim 1, wherein the solvent is selected from the group consisting of dimethylformamide, methyl acetate, methyl ethyl ketone and cyclohexanone.
JP2009233485A 2009-10-07 2009-10-07 High thermal conductivity and low loss factor build-up material Pending JP2011079968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233485A JP2011079968A (en) 2009-10-07 2009-10-07 High thermal conductivity and low loss factor build-up material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233485A JP2011079968A (en) 2009-10-07 2009-10-07 High thermal conductivity and low loss factor build-up material

Publications (1)

Publication Number Publication Date
JP2011079968A true JP2011079968A (en) 2011-04-21

Family

ID=44074348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233485A Pending JP2011079968A (en) 2009-10-07 2009-10-07 High thermal conductivity and low loss factor build-up material

Country Status (1)

Country Link
JP (1) JP2011079968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102649867A (en) * 2011-12-26 2012-08-29 无锡宏仁电子材料科技有限公司 Burdening procedure for preparing mixed glue solution for copper foil-coated substrate
JP2014520962A (en) * 2011-07-13 2014-08-25 ポスコ RESIN COMPOSITION FOR SURFACE TREATMENT AND STEEL COATED BY THE SAME

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221172A (en) * 1987-03-11 1988-09-14 Fujikura Ltd Cover coat composition for printed-wiring board
JPH03273022A (en) * 1990-03-20 1991-12-04 Hitachi Chem Co Ltd Epoxy resin composition
JP2001313445A (en) * 2000-05-01 2001-11-09 Mitsubishi Gas Chem Co Inc High dielectric constant printed circuit board
JP2002145994A (en) * 2000-11-16 2002-05-22 Risho Kogyo Co Ltd Prepreg for printed circuit board and laminate
JP2002363386A (en) * 2001-06-13 2002-12-18 Nippon Paint Co Ltd Resin composition for filling hole of printed wiring substrate
JP2005244136A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Flexible printed-wiring board
JP2009102623A (en) * 2007-10-01 2009-05-14 Sanei Kagaku Kk Inorganic filler and organic filler-containing curable resin composition, resist film coated printed wiring board, and method for producing the same
JP2009295689A (en) * 2008-06-03 2009-12-17 Showa Highpolymer Co Ltd Adhesive film for multilayer printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221172A (en) * 1987-03-11 1988-09-14 Fujikura Ltd Cover coat composition for printed-wiring board
JPH03273022A (en) * 1990-03-20 1991-12-04 Hitachi Chem Co Ltd Epoxy resin composition
JP2001313445A (en) * 2000-05-01 2001-11-09 Mitsubishi Gas Chem Co Inc High dielectric constant printed circuit board
JP2002145994A (en) * 2000-11-16 2002-05-22 Risho Kogyo Co Ltd Prepreg for printed circuit board and laminate
JP2002363386A (en) * 2001-06-13 2002-12-18 Nippon Paint Co Ltd Resin composition for filling hole of printed wiring substrate
JP2005244136A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Flexible printed-wiring board
JP2009102623A (en) * 2007-10-01 2009-05-14 Sanei Kagaku Kk Inorganic filler and organic filler-containing curable resin composition, resist film coated printed wiring board, and method for producing the same
JP2009295689A (en) * 2008-06-03 2009-12-17 Showa Highpolymer Co Ltd Adhesive film for multilayer printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520962A (en) * 2011-07-13 2014-08-25 ポスコ RESIN COMPOSITION FOR SURFACE TREATMENT AND STEEL COATED BY THE SAME
CN102649867A (en) * 2011-12-26 2012-08-29 无锡宏仁电子材料科技有限公司 Burdening procedure for preparing mixed glue solution for copper foil-coated substrate

Similar Documents

Publication Publication Date Title
US8808862B2 (en) Resin composition for insulation film
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
JP5047024B2 (en) Thermally conductive resin composition, thermally conductive resin sheet, and power module
KR101397221B1 (en) Insulation resin composition for printed circuit board having thermal conductivity and improved electrical properties, insulating film, prepreg and printed circuit board
KR101573170B1 (en) Composite resin composition for plugging hole
WO2014204173A1 (en) Photocurable and thermosetting resin composition and dry film solder resist
CN106084654A (en) Copper-clad plate resin glue solution and method for preparing copper-clad plate by applying resin glue solution
JP2011079968A (en) High thermal conductivity and low loss factor build-up material
KR102579149B1 (en) Resin composition for dissipating heat, heat-dissipating member, and electronic device
JP5863708B2 (en) Ink for solder resist, cured product thereof, and printed wiring board using the same
JP2008106126A (en) Thermally conductive material, heat releasing substrate using this and its manufacturing method
JP2011079986A (en) Method for producing laminating adhesive having high thermal conductivity and low dissipation factor
TW202031783A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate and printed wiring board
US20110077337A1 (en) Method for preparing a high thermal conductivity and low dissipation factor adhesive varnish for build-up additional insulation layers
CN102020959B (en) High heat conductivity and low dissipation factor increased layer bonding varnish
TWI715028B (en) Resin composition, insulation film and product using the insulation film
TWI688603B (en) Resin composition and insulation film and product using the same
JP2009203262A (en) Thermally conductive material, heat dissipation substrate using it, and manufacturing method of heat dissipation substrate
US20110073798A1 (en) High thermal conductivity and low dissipation factor adhesive varnish for build-up additional insulation layers
TWI710600B (en) Low-loss insulating resin composition and insulating film and product
JP2005209489A (en) Insulation sheet
CN103192577A (en) High-thermal-conductivity copper-clad plate manufacturing method
JP2006082370A (en) Laminate and wiring board
KR101138060B1 (en) High thermal conductivity and low dissipation factor adhesive varnish for build-up additional insulation layers
KR101562647B1 (en) Epoxy adhesive composion for copper clad laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403