JP5047024B2 - Thermally conductive resin composition, thermally conductive resin sheet, and power module - Google Patents

Thermally conductive resin composition, thermally conductive resin sheet, and power module Download PDF

Info

Publication number
JP5047024B2
JP5047024B2 JP2008078715A JP2008078715A JP5047024B2 JP 5047024 B2 JP5047024 B2 JP 5047024B2 JP 2008078715 A JP2008078715 A JP 2008078715A JP 2008078715 A JP2008078715 A JP 2008078715A JP 5047024 B2 JP5047024 B2 JP 5047024B2
Authority
JP
Japan
Prior art keywords
conductive resin
heat
formula
thermally conductive
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008078715A
Other languages
Japanese (ja)
Other versions
JP2009227947A (en
Inventor
浩美 伊藤
元基 正木
圭 山本
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008078715A priority Critical patent/JP5047024B2/en
Publication of JP2009227947A publication Critical patent/JP2009227947A/en
Application granted granted Critical
Publication of JP5047024B2 publication Critical patent/JP5047024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Description

本発明は、電気・電子機器等の発熱体から放熱部材へ熱を伝達させるのに用いる熱伝導性樹脂シートを与える熱伝導性樹脂組成物に関し、特に電力半導体素子等の発熱体からの熱を放熱部材に伝達し、且つ絶縁層としても機能する熱伝導性樹脂層(特に、熱伝導性樹脂シート)を与える熱伝導性樹脂組成物に関する。さらに、本発明は、この熱伝導性樹脂組成物を用いた熱伝導性樹脂シート及びパワーモジュールに関する。   The present invention relates to a thermally conductive resin composition that provides a thermally conductive resin sheet used to transfer heat from a heating element such as an electric / electronic device to a heat radiating member, and in particular, heat from a heating element such as a power semiconductor element. The present invention relates to a heat conductive resin composition that provides a heat conductive resin layer (particularly a heat conductive resin sheet) that transmits to a heat dissipation member and also functions as an insulating layer. Furthermore, this invention relates to the heat conductive resin sheet and power module which used this heat conductive resin composition.

電気・電子機器の発熱体から放熱部材へ熱を伝達させる熱伝導性樹脂層には、高い熱伝導性、絶縁性及び接着性が要求される。このような要求を満たす熱伝導性樹脂層として、無機充填材を含む熱硬化性樹脂組成物から形成された樹脂シートや塗布膜等が広く用いられている。例えば、パワーモジュールにおいては、電力半導体素子を搭載したリードフレームの裏面と放熱部材となる金属板との間に設ける熱伝導性樹脂層として、無機充填材を含む熱伝導性樹脂組成物を用いて塗布膜を形成することが知られている(例えば、特許文献1参照)。また、CPU等の発熱性電子部品と放熱フィンとの間に、高熱伝導性の無機充填材を含む熱伝導性樹脂組成物を用いて形成した熱伝導性樹脂シートを設けることが知られている(例えば、特許文献2及び3参照)。   High heat conductivity, insulation, and adhesiveness are required for the heat conductive resin layer that transfers heat from the heating element of the electric / electronic device to the heat dissipation member. As a heat conductive resin layer satisfying such requirements, resin sheets and coating films formed from a thermosetting resin composition containing an inorganic filler are widely used. For example, in a power module, a thermally conductive resin composition containing an inorganic filler is used as a thermally conductive resin layer provided between the back surface of a lead frame on which a power semiconductor element is mounted and a metal plate serving as a heat dissipation member. It is known to form a coating film (for example, see Patent Document 1). It is also known to provide a heat conductive resin sheet formed using a heat conductive resin composition containing a highly heat conductive inorganic filler between a heat generating electronic component such as a CPU and a heat radiating fin. (For example, refer to Patent Documents 2 and 3).

上述の熱伝導性樹脂組成物に用いられる樹脂としては、プリント配線基板に用いられる樹脂と同様の樹脂が用いられることが多い。かかる樹脂としては、例えば、ビスフェノール型やビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環脂肪族エポキシ樹脂、トリグリシジルイソシアネート等の複素環式エポキシ樹脂が挙げられる。また、硬化剤としては、ジアミノジフェニルスルフォン、ジシアンジアミドが一般的に用いられている。   As the resin used in the above-described heat conductive resin composition, the same resin as that used in the printed wiring board is often used. Examples of such resins include heterocyclic epoxy resins such as bisphenol-type and biphenyl-type epoxy resins, triphenylmethane-type epoxy resins, glycidylamine-type epoxy resins, alicyclic aliphatic epoxy resins, and triglycidyl isocyanate. Further, diaminodiphenylsulfone and dicyandiamide are generally used as the curing agent.

特開2001−196495号公報(第3頁、図1)JP 2001-196495 A (page 3, FIG. 1) 特開2002−167560号公報(第3頁、図1)JP 2002-167560 A (page 3, FIG. 1) 特開2002−121393号公報JP 2002-121393 A

パワーモジュールの製造では、リード上にチップ等の電子部品を接合したり、パワーモジュール自体のリードを回路基板上に搭載する際に、高温のリフロー炉による半田付けが一般的に行われているが、この半田付け工程における熱履歴によってリード等の金属部分と熱伝導性樹脂層との界面で応力が発生する。また、熱衝撃が繰り返されるような環境条件下でパワーモジュールが用いられる場合にも、リード等の金属部分と熱伝導性樹脂層との界面で応力が発生する。かかる応力が発生した場合、熱伝導性樹脂層にクラックや剥離が生じたり、熱伝導性樹脂層自体の分解によってボイドが発生したりすることがある。その結果、熱伝導性樹脂層の電気絶縁性、機械的強度又は熱伝導性が低下するという問題があった。
特に、上述の特許文献に開示された熱伝導性樹脂層(樹脂シートや塗布膜)のマトリックス樹脂は、接着性が高く吸湿特性が良好であっても、ガラス転移温度が低くて耐熱性が悪いか、又はガラス転移温度が高くて耐熱性が良好であっても、脆弱で吸湿特性が悪く、長期信頼性が確保できないという問題があった。
In the manufacture of power modules, soldering using a high-temperature reflow furnace is generally performed when electronic components such as chips are joined on the leads or when the leads of the power module itself are mounted on the circuit board. Due to the thermal history in the soldering process, stress is generated at the interface between the metal part such as the lead and the thermally conductive resin layer. Also, when the power module is used under environmental conditions in which thermal shock is repeated, stress is generated at the interface between a metal part such as a lead and the thermally conductive resin layer. When such stress occurs, cracks or peeling may occur in the thermally conductive resin layer, or voids may occur due to decomposition of the thermally conductive resin layer itself. As a result, there has been a problem that the electrical insulation, mechanical strength, or thermal conductivity of the thermally conductive resin layer is lowered.
In particular, the matrix resin of the thermally conductive resin layer (resin sheet or coating film) disclosed in the above-mentioned patent document has a low glass transition temperature and poor heat resistance even if it has high adhesion and good moisture absorption characteristics. Even if the glass transition temperature is high and the heat resistance is good, there is a problem that it is brittle and has poor moisture absorption characteristics, and long-term reliability cannot be ensured.

本発明は、上記のような問題を解決するためになされたものであり、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下に曝されても良好な熱伝導性及び電気絶縁性を維持し得る熱伝導性樹脂層を与える熱伝導性樹脂組成物を提供することを目的とする。
また、本発明は、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下に曝されても良好な熱伝導性及び電気絶縁性を維持し得る熱伝導性樹脂シートを提供することを目的とする。
さらに、本発明は、放熱性及び電気絶縁性の長期信頼性に優れたパワーモジュールを提供することを目的とする。
The present invention has been made to solve the above-described problems, and is excellent in heat resistance, adhesiveness and moisture absorption characteristics, and has good thermal conductivity even when exposed to reflow processes and high temperature and high humidity conditions. It aims at providing the heat conductive resin composition which provides the heat conductive resin layer which can maintain electrical insulation.
The present invention also provides a heat conductive resin sheet that is excellent in heat resistance, adhesiveness and moisture absorption characteristics, and can maintain good heat conductivity and electrical insulation even when exposed to reflow processes and high temperature and high humidity conditions. The purpose is to do.
Furthermore, an object of this invention is to provide the power module excellent in long-term reliability of heat dissipation and electrical insulation.

本発明者等は上記のような問題を解決すべく鋭意研究した結果、トリアジン骨格とフェノール骨格とを有する所定の化合物からなる硬化剤をマトリックス樹脂成分として用いることで、硬化反応の際に分子内のフェノール性水酸基及びアミノ基によって高架橋密度化が達成され、また、この硬化剤を所定のナフタレン骨格を有するエポキシ樹脂を組み合わせて用いることで、嵩高いトリアジン骨格及びナフタレン骨格によって分子運動が抑制され、マトリックス樹脂の高ガラス転移温度化と低吸湿性とを両立させ得ることを見出した。さらに、無機充填材の含有量を所定の範囲とすることで、高い熱伝導性が確保されることを見出した。
すなわち、本発明は、マトリックス樹脂成分と絶縁性充填材とを含む熱伝導性樹脂組成物であって、前記マトリックス樹脂成分が、(A)トリアジン骨格とフェノール骨格とを有する所定の式で表され、且つ重量平均分子量が50,000以下の化合物からなる硬化剤、(B)所定の式で表されるナフタレン骨格を有し、且つ分子内にエポキシ基を2〜5個もつエポキシ樹脂、(C)硬化促進剤、及び(D)カップリング剤を含み、(E)所定の式で表される接着性付与剤を前記マトリックス樹脂成分中に5〜30質量%さらに含み、且つ前記絶縁性充填材の含有量が40〜90質量%であることを特徴とする熱伝導性樹脂組成物である。
As a result of diligent research to solve the above-mentioned problems, the present inventors have used a curing agent made of a predetermined compound having a triazine skeleton and a phenol skeleton as a matrix resin component. High crosslinking density is achieved by the phenolic hydroxyl group and amino group, and by using this curing agent in combination with an epoxy resin having a predetermined naphthalene skeleton, molecular motion is suppressed by the bulky triazine skeleton and naphthalene skeleton, It has been found that a high glass transition temperature and low hygroscopicity of the matrix resin can be achieved at the same time. Furthermore, it discovered that high heat conductivity was ensured by making content of an inorganic filler into a predetermined range.
Table Namely, the present invention provides a thermally conductive resin composition comprising a matrix resin component insulating filling material, wherein the matrix resin component, a predetermined formula which have a (A) a triazine skeleton and a phenol skeleton A curing agent comprising a compound having a weight average molecular weight of 50,000 or less, (B) an epoxy resin having a naphthalene skeleton represented by a predetermined formula and having 2 to 5 epoxy groups in the molecule; C) a curing accelerator and (D) a coupling agent, (E) an adhesiveness-imparting agent represented by a predetermined formula is further contained in the matrix resin component in an amount of 5 to 30% by mass, and the insulating filling Content of material is 40-90 mass%, It is a heat conductive resin composition characterized by the above-mentioned.

た、本発明は、マトリックス樹脂中に絶縁性充填材が分散された熱伝導性樹脂シートであって、前記マトリックス樹脂が、(A)トリアジン骨格とフェノール骨格とを有する所定の式で表され、且つ重量平均分子量が50,000以下の化合物からなる硬化剤、(B)所定の式で表されるナフタレン骨格を有し、且つ分子内にエポキシ基を2〜5個もつエポキシ樹脂、(C)硬化促進剤、及び(D)カップリング剤を含み、(E)所定の式で表される接着性付与剤を前記マトリックス樹脂中に5〜30質量%さらに含み、且つ前記絶縁性充填材の含有量が40〜90質量%であることを特徴とする熱伝導性樹脂シートである。 Also, the present invention provides a heat conductive resin sheet insulating filling material is dispersed in the matrix resin, the matrix resin, the table in a predetermined equation to have a (A) a triazine skeleton and a phenol skeleton A curing agent comprising a compound having a weight average molecular weight of 50,000 or less, (B) an epoxy resin having a naphthalene skeleton represented by a predetermined formula and having 2 to 5 epoxy groups in the molecule; C) a curing accelerator, and (D) a coupling agent, (E) an adhesiveness-imparting agent represented by a predetermined formula is further contained in the matrix resin in an amount of 5 to 30% by mass, and the insulating filler. Is a heat conductive resin sheet characterized by being 40-90 mass%.

らに、本発明は、一方の放熱部材に搭載された電力半導体素子と、前記電力半導体素子で発生する熱を外部に放熱する他方の放熱部材と、前記電力半導体素子で発生する熱を前記一方の放熱部材から前記他方の放熱部材に伝達する、上記熱伝導性樹脂シートとを備えることを特徴とするパワーモジュールである。 Et al is, the present invention includes a power semiconductor element mounted on one of the heat radiating member, and the other of the heat radiation member for radiating the heat generated by the power semiconductor element to the outside, the heat generated by the power semiconductor element and the A power module comprising: the heat conductive resin sheet that transmits from one heat radiating member to the other heat radiating member.

本発明によれば、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下に曝されても良好な熱伝導性及び電気絶縁性を維持し得る熱伝導性樹脂層を与える熱伝導性樹脂組成物を提供することができる。   According to the present invention, a heat conductive resin layer having excellent heat resistance, adhesiveness and moisture absorption characteristics and capable of maintaining good thermal conductivity and electrical insulation even when exposed to reflow processes and high temperature and high humidity conditions is provided. A thermally conductive resin composition can be provided.

実施の形態1.
本発明の熱伝導性樹脂組成物は、マトリックス樹脂成分と絶縁性充填材とを含む。ここで、マトリックス樹脂成分は、(A)硬化剤、(B)エポキシ樹脂(C)硬化促進剤、(D)カップリング剤及び(E)接着性付与剤を含む。
本発明で用いられる(A)硬化剤は、トリアジン骨格とフェノール骨格とを有する所定の式で表され、且つ重量平均分子量が50,000以下の化合物である。重量平均分子量が50,000を超えると、組成物の粘度が増加したり、ガラス転移温度が低下してしまうため好ましくない。
A)硬化剤に用いられる化合物は、下記の式(2)で表される。
Embodiment 1 FIG.
The heat conductive resin composition of the present invention includes a matrix resin component and an insulating filler. Here, the matrix resin component contains (A) a curing agent, (B) an epoxy resin , (C) a curing accelerator , (D) a coupling agent, and (E) an adhesion promoter.
(A) used in the present invention the curing agent is represented by the given formula which have a triazine skeleton and a phenol skeleton and a weight average molecular weight of 50,000 or less of the compound. When the weight average molecular weight exceeds 50,000, the viscosity of the composition increases and the glass transition temperature decreases, which is not preferable.
(A) compound used in the curing agent, Ru is the table by the following equation (2).

Figure 0005047024
Figure 0005047024

上記式(2)中、Zは水素又は炭素数5以下のアルキル基(例えば、CH)であり、aは1〜20であり、bは1以上である。
(A)硬化剤は、分子内にアミノ基やフェノール性水酸基を有しているので、(B)エポキシ樹脂と効果的に反応することが可能であり、これにより高架橋密度化が達成される。
(A)硬化剤は、公知の方法により製造したものを用いればよいが、市販品を用いることもできる。市販品としては、EPICRON LA−7054(大日本インキ化学工業株式会社製)等が挙げられる。
In the above formula (2), Z is hydrogen or an alkyl group having 5 or less carbon atoms (for example, CH 3 ), a is 1 to 20, and b is 1 or more.
(A) Since the curing agent has an amino group or a phenolic hydroxyl group in the molecule, it can react effectively with (B) the epoxy resin, thereby achieving high crosslink density.
(A) What is necessary is just to use what was manufactured by the well-known method as a hardening | curing agent, but a commercial item can also be used. Examples of commercially available products include EPICRON LA-7054 (Dainippon Ink Chemical Co., Ltd.).

本発明で用いられる(B)エポキシ樹脂は、下記の式(1)で表されるナフタレン骨格を有し、且つ分子内にエポキシ基を2〜5個もつ。   The (B) epoxy resin used in the present invention has a naphthalene skeleton represented by the following formula (1), and has 2 to 5 epoxy groups in the molecule.

Figure 0005047024
Figure 0005047024

分子内にエポキシ基を3〜5個有する(B)エポキシ樹脂の例としては、以下のものが挙げられる。   The following are mentioned as an example of (B) epoxy resin which has 3-5 epoxy groups in a molecule | numerator.

Figure 0005047024
Figure 0005047024

Figure 0005047024
Figure 0005047024

Figure 0005047024
Figure 0005047024

上記のような構造を有する(B)エポキシ樹脂は、公知の方法により製造したものを用いればよいが、市販品を用いることもできる。市販品としては、EPICLON HP−4032、HP−4700及びHP−4770(大日本インキ化学工業株式会社製)等が挙げられる。
かかる(B)エポキシ樹脂は、硬化反応の際に(A)硬化剤のフェノール性水酸基及びアミノ基と効率良く反応し、高ガラス転移温度化と低吸湿性とを両立したマトリックス樹脂を与える。
(B)エポキシ樹脂と(A)硬化剤との割合は、(B)エポキシ樹脂中のエポキシ基と(A)硬化剤中のフェノール性水酸基及びアミノ基との割合が1:0.8〜1:1.3の範囲であることが好ましい。上記範囲を外れる場合には、所望のガラス転移温度が得られず、マトリックス樹脂の耐熱性が低くなることがある。
As the (B) epoxy resin having the structure as described above, a resin produced by a known method may be used, but a commercially available product may be used. Examples of commercially available products include EPICLON HP-4032, HP-4700, and HP-4770 (manufactured by Dainippon Ink & Chemicals, Inc.).
The (B) epoxy resin reacts efficiently with the phenolic hydroxyl group and amino group of the (A) curing agent during the curing reaction to give a matrix resin that achieves both high glass transition temperature and low moisture absorption.
The ratio of (B) epoxy resin to (A) curing agent is such that the ratio of epoxy group in (B) epoxy resin to phenolic hydroxyl group and amino group in (A) curing agent is 1: 0.8-1 Is preferably in the range of 1.3. When outside the above range, a desired glass transition temperature cannot be obtained, and the heat resistance of the matrix resin may be lowered.

本発明で用いられる(C)硬化促進剤としては、特に限定されることはなく、当該技術分野において公知のものを用いることができる。例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ヘプタデシルイミダゾール、2−ウンデシルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン化合物;トリメチルホスファイト、トリエチルホスファイト等の有機ホスファイト化合物;エチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート等のホスホニウム塩;トリエチルアミン、トリブチルアミン等のトリアルキルアミン;4−ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)−ウンデセン−7(以下、DBUと略記する。)等のアミン化合物及びDBUとテレフタル酸や2,6−ナフタレンジカルボン酸との塩;テトラエチルアンモニウムクロリド、テトラプロピルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラヘキシルアンモニウムブロミド、ベンジルトリメチルアンモニウムクロリド等の第4級アンモニウム塩;3−フェニル−1,1−ジメチル尿素、3−(4−メチルフェニル)−1,1−ジメチル尿素、クロロフェニル尿素、3−(4−クロロフェニル)−1,1−ジメチル尿素、3−(3,4−ジクロルフェニル)−1,1−ジメチル尿素等の尿素化合物;水酸化ナトリウム、水酸化カリウム等のアルカリ;カリウムフェノキシドやカリウムアセテート等のクラウンエーテルの塩等を用いることができる。これらは、単独又は二種類以上を組み合わせて用いることができる。   The (C) curing accelerator used in the present invention is not particularly limited, and those known in the technical field can be used. For example, imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-heptadecylimidazole and 2-undecylimidazole; organics such as triphenylphosphine and tributylphosphine Phosphine compounds; organic phosphite compounds such as trimethyl phosphite and triethyl phosphite; phosphonium salts such as ethyl triphenylphosphonium bromide and tetraphenylphosphonium tetraphenylborate; trialkylamines such as triethylamine and tributylamine; 4-dimethylaminopyridine; Benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5,4,0) -undecene-7 (hereinafter referred to as DB) And a salt of DBU with terephthalic acid or 2,6-naphthalenedicarboxylic acid; tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrahexylammonium bromide, Quaternary ammonium salts such as benzyltrimethylammonium chloride; 3-phenyl-1,1-dimethylurea, 3- (4-methylphenyl) -1,1-dimethylurea, chlorophenylurea, 3- (4-chlorophenyl)- Urea compounds such as 1,1-dimethylurea and 3- (3,4-dichlorophenyl) -1,1-dimethylurea; alkalis such as sodium hydroxide and potassium hydroxide; crown ethers such as potassium phenoxide and potassium acetate It can be used salts. These can be used alone or in combination of two or more.

(C)硬化促進剤の配合量は、(B)エポキシ樹脂100質量部に対して、0.01〜5質量部であることが好ましい。硬化促進剤(C)の配合量が0.01質量部未満であると硬化反応速度が遅くなることがあり、5質量部より多いとエポキシ樹脂(B)の自己重合が生じてエポキシ樹脂(B)の硬化反応が阻害されることがある。   (C) It is preferable that the compounding quantity of a hardening accelerator is 0.01-5 mass parts with respect to 100 mass parts of (B) epoxy resins. If the blending amount of the curing accelerator (C) is less than 0.01 parts by mass, the curing reaction rate may be slow. ) May be inhibited.

マトリックス樹脂成分は、接着性を向上させる観点から、(D)カップリング剤及び(E)接着性付与剤をさらに含む。
(D)カップリング剤は、マトリックス樹脂と絶縁性充填材との界面の接着性や、熱伝導性樹脂層と接する部材との接着性を向上させる成分である。本発明で用いられる(D)カップリング剤としては、特に限定されることはなく、当該技術分野において公知のものを用いることができる。例えば、γ−グリシドキシプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることができる。これらは、単独又は二種類以上を組み合わせて用いることができる。
マトリックス樹脂成分における(D)カップリング剤の配合量は、使用する他のマトリック樹脂成分やカップリング剤等の種類にあわせて適宜調整すればよいが、(B)エポキシ樹脂100質量部に対して、一般的に0.01〜5質量%であることが好ましい。
Matrix resin component, from the viewpoint of improving the adhesion, (D) a coupling agent and (E) further including a tackifier.
(D) A coupling agent is a component which improves the adhesiveness of the interface of a matrix resin and an insulating filler, and the adhesiveness with the member which contact | connects a heat conductive resin layer. The coupling agent (D) used in the present invention is not particularly limited, and those known in the technical field can be used. For example, use of γ-glycidoxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, etc. Can do. These can be used alone or in combination of two or more.
The blending amount of the (D) coupling agent in the matrix resin component may be appropriately adjusted according to the type of other matrix resin component or coupling agent to be used, but (B) with respect to 100 parts by mass of the epoxy resin. Generally, it is preferable that it is 0.01-5 mass%.

(E)接着性付与剤もまた、熱伝導性樹脂組成物から得られる熱伝導性樹脂層の接着性を向上させる成分である。本発明で用いられる(E)接着性付与剤は、下記の式(3)で表される熱可塑性樹脂である。   (E) The adhesion imparting agent is also a component that improves the adhesion of the heat conductive resin layer obtained from the heat conductive resin composition. The (E) adhesion imparting agent used in the present invention is a thermoplastic resin represented by the following formula (3).

Figure 0005047024
Figure 0005047024

上記式(3)中、YはCH、C(CH、SO又は直接結合であり、cは30〜400である。また、この熱可塑性樹脂の重量平均分子量は、10,000〜100,000である。重量平均分子量が10,000未満であると、柔軟性が低くなり、接着対象物との界面で剥離やクラックが発生することがある。一方、重量平均分子量が100,000を超えると、所望のガラス転移温度が得られず、マトリックス樹脂の耐熱性が低くなることがある。
上記の熱可塑性樹脂は、公知の方法により製造したものを用いればよいが、市販品を用いることもできる。市販品としては、E1256B40(ジャパンエポキシレジン株式会社製)等が挙げられる。
マトリックス樹脂成分における(E)接着性付与剤の配合量は、5〜30質量%である。配合量が5質量%未満であると所望の接着性を有する熱伝導性樹脂層が得られないことがあり、30質量%より多いと熱伝導性樹脂層の耐熱性が低下することがある。
In the above formula (3), Y is CH 2, C (CH 3) 2, SO 2 or a direct bond, c is a 30 to 400. Moreover, the weight average molecular weight of this thermoplastic resin is 10,000-100,000. When the weight average molecular weight is less than 10,000, the flexibility becomes low, and peeling or cracking may occur at the interface with the object to be bonded. On the other hand, if the weight average molecular weight exceeds 100,000, the desired glass transition temperature cannot be obtained, and the heat resistance of the matrix resin may be lowered.
The thermoplastic resin may be one produced by a known method, but a commercially available product can also be used. As a commercial item, E1256B40 (made by Japan Epoxy Resin Co., Ltd.) etc. are mentioned.
The amount of (E) an adhesion promoter in the matrix resin component, Ru 5-30% by mass. When the blending amount is less than 5% by mass, a heat conductive resin layer having desired adhesion may not be obtained, and when it exceeds 30% by mass, the heat resistance of the heat conductive resin layer may be decreased.

マトリックス樹脂成分は、上記(B)エポキシ樹脂や(E)接着性付与剤以外のエポキシ樹脂をさらに含むことができ、この成分を配合することで熱伝導性樹脂層にしなやかさを付与することができる。このエポキシ樹脂としては、エピビス型のエポキシ樹脂(例えば、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂)が挙げられる。具体的には、このエポキシ樹脂は、下記の式(4)で表される。   The matrix resin component can further contain an epoxy resin other than the above (B) epoxy resin and (E) adhesion imparting agent, and blending this component can impart flexibility to the thermally conductive resin layer. it can. Examples of the epoxy resin include epibis type epoxy resins (for example, bisphenol A type epoxy resin and bisphenol F type epoxy resin). Specifically, this epoxy resin is represented by the following formula (4).

Figure 0005047024
Figure 0005047024

上記式(4)中、YはCH、C(CH、SO又は直接結合であり、cは0〜5である。また、このエポキシ樹脂の重量平均分子量は、310〜2,000である。重量平均分子量が310未満であると、架橋密度が高くなり、シート材料が脆弱でクラックが発生しやすくなることがある。一方、重量平均分子量が2,000を超えると、組成物の粘度が高くなり、シート化することが困難になることがある。
上記のエポキシ樹脂は、公知の方法により製造したものを用いればよいが、市販品を用いることもできる。市販品としては、jER−828やjER−807(ジャパンエポキシレジン株式会社製)等が挙げられる。
なお、上記のエポキシ樹脂の配合量としては、本発明の効果を損なわない範囲であれば特に限定されることはなく、各成分にあわせて適宜調整すればよい。
In the formula (4), Y is CH 2, C (CH 3) 2, SO 2 or a direct bond, c is from 0 to 5. Moreover, the weight average molecular weight of this epoxy resin is 310-2,000. When the weight average molecular weight is less than 310, the crosslinking density increases, the sheet material is brittle, and cracks are likely to occur. On the other hand, when the weight average molecular weight exceeds 2,000, the viscosity of the composition increases and it may be difficult to form a sheet.
The epoxy resin may be one produced by a known method, but a commercially available product can also be used. Examples of commercially available products include jER-828 and jER-807 (manufactured by Japan Epoxy Resin Co., Ltd.).
The amount of the epoxy resin is not particularly limited as long as the effects of the present invention are not impaired, and may be appropriately adjusted according to each component.

本発明で用いられる絶縁性充填材としては、特に限定されることはなく、当該技術分野において公知のものを用いることができる。例えば、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、窒化ケイ素、窒化アルミニウム、炭化ケイ素、窒化ホウ素等を用いることができる。これらは、単独又は二種類以上を組み合わせて用いることができる。
絶縁性充填材の粒径及び形状は、特に限定されることはなく、熱伝導性樹脂層(樹脂シートや塗布膜)に一般的に配合されている粒径及び形状のものを用いればよい。具体的には、絶縁性充填材の形状は、略球形であることが好ましいが、粉砕されたような形状で多面形状、鱗片形状であってもよい。また、絶縁性充填材は、凝集したものや、顆粒状態のものを用いることができる。
熱伝導性樹脂組成物における絶縁性充填材の配合量は、40〜90質量%である。かかる範囲の配合量であれば、熱伝導性樹脂層において絶縁性充填材同士の接触により電熱路を確保して熱伝導性を高めることができる。配合量が40質量%未満であると、所望の熱伝導性を得ることができず、90質量%より多いとマトリックス樹脂中に絶縁性充填材を混合分散させることが困難となり、作業性や成形性に支障を生じる。
The insulating filler used in the present invention is not particularly limited, and those known in the technical field can be used. For example, aluminum oxide (alumina), silicon oxide (silica), silicon nitride, aluminum nitride, silicon carbide, boron nitride, or the like can be used. These can be used alone or in combination of two or more.
The particle size and shape of the insulating filler are not particularly limited, and those having a particle size and shape generally blended in the heat conductive resin layer (resin sheet or coating film) may be used. Specifically, the shape of the insulating filler is preferably substantially spherical, but may be a crushed shape such as a multi-faced shape or a scale shape. The insulating filler can be agglomerated or granular.
The compounding quantity of the insulating filler in a heat conductive resin composition is 40-90 mass%. If it is the compounding quantity of such a range, an electrical heating path can be ensured by contact between insulating fillers in a heat conductive resin layer, and heat conductivity can be improved. If the blending amount is less than 40% by mass, the desired thermal conductivity cannot be obtained, and if it exceeds 90% by mass, it becomes difficult to mix and disperse the insulating filler in the matrix resin. Impairs sex.

熱伝導性樹脂組成物は、マトリックス樹脂成分及び絶縁性充填材を均一に混合するために溶剤をさらに含むことができる。溶剤としては、当該技術分野において公知のものであれば特に限定されることはない。例えば、メチルエチルケトン、イソプロパノール、トルエン、エチルカルビトール、ブチルカルビトール及びブチルカルビトールアセテート等を用いることができる。
熱伝導性樹脂組成物における溶剤の配合量は、使用するマトリックス樹脂成分及び絶縁性充填材の種類にあわせて適宜調整すればよいが、一般的に、マトリックス樹脂成分及び絶縁性充填材の合計100質量部に対して、40質量部〜85質量部である。なお、熱硬化性樹脂組成物の粘度が低い場合には、溶剤を加えなくてもよい。
The thermally conductive resin composition may further include a solvent for uniformly mixing the matrix resin component and the insulating filler. The solvent is not particularly limited as long as it is known in the technical field. For example, methyl ethyl ketone, isopropanol, toluene, ethyl carbitol, butyl carbitol, butyl carbitol acetate and the like can be used.
The amount of the solvent in the thermally conductive resin composition may be appropriately adjusted according to the types of the matrix resin component and the insulating filler to be used. In general, the total of the matrix resin component and the insulating filler is 100. It is 40 mass parts-85 mass parts with respect to a mass part. In addition, when the viscosity of a thermosetting resin composition is low, it is not necessary to add a solvent.

熱伝導性樹脂組成物の調製方法は、特に限定されることはなく、当該技術分野において公知の方法を用いることができる。例えば、各成分を混合した後、3本ロールやニーダ等で混練すればよい。   The preparation method of a heat conductive resin composition is not specifically limited, A method well-known in the said technical field can be used. For example, after mixing each component, what is necessary is just to knead | mix with a 3 roll, a kneader.

実施の形態2.
本発明の熱伝導性樹脂シートは、マトリックス樹脂中に絶縁性充填材が分散されたシートである。
本発明の熱伝導性樹脂シートについて、図面を参照して説明する。図1は、本実施の形態における熱伝導性樹脂シートの断面模式図である。図1において、熱伝導性樹脂シート1は、マトリックス樹脂2と、このマトリックス樹脂2中に分散された絶縁性充填材3とから構成されている。ここで、マトリックス樹脂2は、必須成分として、上述の(A)硬化剤、(B)エポキシ樹脂(C)硬化促進剤、(D)カップリング剤及び(E)接着性付与剤を含み、任意成分として、上述の(B)エポキシ樹脂及び(E)接着性付与剤以外のエポキシ樹脂を含むことができる。

Embodiment 2. FIG.
The thermally conductive resin sheet of the present invention is a sheet in which an insulating filler is dispersed in a matrix resin.
The heat conductive resin sheet of this invention is demonstrated with reference to drawings. FIG. 1 is a schematic cross-sectional view of a thermally conductive resin sheet in the present embodiment. In FIG. 1, a heat conductive resin sheet 1 is composed of a matrix resin 2 and an insulating filler 3 dispersed in the matrix resin 2. Here, the matrix resin 2 contains the above-mentioned (A) curing agent, (B) epoxy resin , (C) curing accelerator , (D) coupling agent, and (E) adhesion imparting agent as essential components, As an optional component, an epoxy resin other than the above-described ( B) epoxy resin and (E) adhesiveness-imparting agent can be included.

本発明の熱伝導性樹脂シートは、上述の熱伝導性樹脂組成物を用いて製造することができる。この熱伝導性樹脂シートの製造方法は、特に限定されることはなく、当該技術分野において公知の方法を用いることができる。例えば、離型処理がされたポリエチレンテレフタレート(PET)フィルムや金属板等の基材に、上述の熱伝導性樹脂組成物をドクターブレード法等によって塗布する。次いで、この塗布物を乾燥し、溶剤を揮発させた後、加熱することによって熱伝導性樹脂シートを得ることができる。ここで、乾燥の際には、必要に応じて80℃以上150℃以下に加熱し、溶剤の揮発を促進させてもよい。また、熱伝導性樹脂シートをパワーモジュール等に組み込む場合、発熱部材及び放熱部材との接着性等の観点から、マトリックス樹脂がBステージ化するまで加熱することが好ましい。さらに、加熱は、加圧しながら行ってもよく、加熱後に加圧処理を別途施してもよい。   The heat conductive resin sheet of this invention can be manufactured using the above-mentioned heat conductive resin composition. The manufacturing method of this heat conductive resin sheet is not specifically limited, A well-known method can be used in the said technical field. For example, the above-mentioned thermally conductive resin composition is applied to a base material such as a polyethylene terephthalate (PET) film or a metal plate that has been subjected to a release treatment by a doctor blade method or the like. Subsequently, after drying this application | coating material and volatilizing a solvent, a heat conductive resin sheet can be obtained by heating. Here, when drying, the solvent may be heated to 80 ° C. or more and 150 ° C. or less as necessary to promote the volatilization of the solvent. Moreover, when incorporating a heat conductive resin sheet in a power module etc., it is preferable to heat until matrix resin becomes B-stage from viewpoints, such as adhesiveness with a heat generating member and a heat radiating member. Furthermore, the heating may be performed while pressurizing, or a pressurizing process may be separately performed after the heating.

本発明の熱伝導性樹脂シートでは、耐熱性(ガラス転移温度)が高く、接着性及び吸湿特性に優れたマトリックス樹脂2を用いているので、リフロー工程や高温多湿の条件下に曝されても、リード等の金属部分と熱伝導性樹脂層との界面における応力の発生を防止することができる。また、絶縁性充填材3を高い充填率で配合しているので、良好な熱伝導性が確保される。よって、本発明の熱伝導性樹脂シートは、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下に曝されても良好な熱伝導性及び電気絶縁性を維持することができる。   In the heat conductive resin sheet of the present invention, since the matrix resin 2 having high heat resistance (glass transition temperature) and excellent adhesion and moisture absorption characteristics is used, even if it is exposed to a reflow process or high temperature and high humidity conditions. Further, it is possible to prevent the occurrence of stress at the interface between the metal part such as the lead and the thermally conductive resin layer. Moreover, since the insulating filler 3 is blended at a high filling rate, good thermal conductivity is ensured. Therefore, the heat conductive resin sheet of the present invention is excellent in heat resistance, adhesiveness and moisture absorption characteristics, and can maintain good heat conductivity and electrical insulation even when exposed to reflow processes and high temperature and high humidity conditions. it can.

実施の形態3.
本発明のパワーモジュールは、一方の放熱部材に搭載された電力半導体素子と、前記電力半導体素子で発生する熱を外部に放熱する他方の放熱部材と、前記電力半導体素子で発生する熱を前記一方の放熱部材から前記他方の放熱部材に伝達する上記熱伝導性樹脂シートとを備えている。
図2は、本実施の形態におけるパワーモジュールの断面模式図である。図2において、パワーモジュール10は、配線及び放熱部材の両方の機能を有するリードフレーム11に搭載された電力半導体素子12と、放熱部材であるヒートシンク部材13と、リードフレーム11とヒートシンク部材13との間に配置された上述の熱伝導性樹脂シート1とを備えている。さらに、電力半導体素子12と制御用半導体素子14との間、及び電力半導体素子12とリードフレーム11との間は、金属線15によって接続されている。また、リードフレーム11の端部、及びヒートシンク部材13の外部放熱のための部分以外はモールド樹脂16によって封止されている。
Embodiment 3 FIG.
The power module of the present invention includes a power semiconductor element mounted on one heat radiating member, the other heat radiating member that radiates heat generated in the power semiconductor element to the outside, and the heat generated in the power semiconductor element. The heat conductive resin sheet is transmitted from the heat dissipating member to the other heat dissipating member.
FIG. 2 is a schematic cross-sectional view of the power module in the present embodiment. In FIG. 2, the power module 10 includes a power semiconductor element 12 mounted on a lead frame 11 that functions as both a wiring and a heat dissipation member, a heat sink member 13 that is a heat dissipation member, and a lead frame 11 and a heat sink member 13. The above-described thermally conductive resin sheet 1 disposed therebetween is provided. Further, the power semiconductor element 12 and the control semiconductor element 14 and the power semiconductor element 12 and the lead frame 11 are connected by a metal wire 15. Further, the end portion of the lead frame 11 and the heat sink member 13 other than the portion for external heat dissipation are sealed with the mold resin 16.

パワーモジュール10の製造方法は、特に限定されることはなく、公知の方法に従って行うことができる。例えば、まず、リードフレーム11の一方の面に電力半導体素子12及び制御用半導体素子14を半田等により接合する。次に、リードフレーム11の他方の面とヒートシンク部材13との間に、上述したBステージ状態の熱伝導性樹脂シート1を配置し、加圧下で加熱して熱伝導性樹脂シート1を硬化させ、リードフレーム11及びヒートシンク部材13を熱伝導性樹脂シート1と接着させる。次に、電力半導体素子12及び制御用半導体素子14に金属線をワイヤボンド法によって接合して配線を行う。最後に、トランスファーモールド法等によってモールド樹脂16で封止することでパワーモジュール10を製造することができる。なお、本実施の形態では、リードフレーム11とヒートシンク部材13との間に熱伝導性樹脂シート1を配置しているが、この熱伝導性樹脂シート1は熱伝導性及び電気絶縁性に優れているので、ヒートシンク部材13を省略した構成とすることも可能である。
また、上述の熱伝導性樹脂組成物を発熱部材又は放熱部材上に直接塗布して熱伝導性樹脂層を形成する方法を用いることも可能である。
The manufacturing method of the power module 10 is not particularly limited, and can be performed according to a known method. For example, first, the power semiconductor element 12 and the control semiconductor element 14 are joined to one surface of the lead frame 11 by soldering or the like. Next, between the other surface of the lead frame 11 and the heat sink member 13, the above-described B-stage heat conductive resin sheet 1 is placed and heated under pressure to cure the heat conductive resin sheet 1. The lead frame 11 and the heat sink member 13 are bonded to the thermally conductive resin sheet 1. Next, wiring is performed by joining a metal wire to the power semiconductor element 12 and the control semiconductor element 14 by a wire bond method. Finally, the power module 10 can be manufactured by sealing with a molding resin 16 by a transfer molding method or the like. In the present embodiment, the thermally conductive resin sheet 1 is disposed between the lead frame 11 and the heat sink member 13, but the thermally conductive resin sheet 1 is excellent in thermal conductivity and electrical insulation. Therefore, the heat sink member 13 can be omitted.
It is also possible to use a method in which the above-mentioned heat conductive resin composition is directly applied onto a heat generating member or a heat radiating member to form a heat conductive resin layer.

パワーモジュール10では、発熱部材である電力半導体素子12を載置したリードフレーム11とヒートシンク部材13との間に、上述の熱伝導性樹脂シート1が配置されている。そして、この熱伝導性樹脂シート1は、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下に曝されても良好な熱伝導性及び電気絶縁性を維持することができるので、パワーモジュール10における放熱性及び電気絶縁性の長期信頼性が向上する。また、電力半導体素子12で発生した熱を高効率でヒートシンク部材13に伝達して放熱できるので、パワーモジュールの小型化及び高容量化を実現することも可能となる。   In the power module 10, the above-described thermally conductive resin sheet 1 is disposed between the lead frame 11 on which the power semiconductor element 12 that is a heat generating member is placed and the heat sink member 13. And this heat conductive resin sheet 1 is excellent in heat resistance, adhesiveness, and a moisture absorption characteristic, and can maintain favorable heat conductivity and electrical insulation even if it is exposed to the conditions of a reflow process or high temperature and high humidity. Therefore, the long-term reliability of heat dissipation and electrical insulation in the power module 10 is improved. In addition, since the heat generated in the power semiconductor element 12 can be transferred to the heat sink member 13 with high efficiency and dissipated, the power module can be reduced in size and capacity.

図3は、本実施の形態における別のパワーモジュールの断面模式図である。図3において、パワーモジュール20は、ケースタイプのパワーモジュールであり、放熱部材であるヒートシンク部材22と、ヒートシンク部材22の表面に形成された回路基板23と、この回路基板23に載置された電力半導体素子24と、ヒートシンク部材22の周縁部に接着されたケース25と、ケース25内に注入され、回路基板23及び電力半導体素子24等を封止する注型樹脂26と、ヒートシンク部材22の回路基板23が設けられた面に対向する反対側の面に積層された熱伝導性樹脂シート1と、熱伝導性樹脂シート1を介してヒートシンク部材に接合された放熱部材であるヒートスプレッダー21とから構成されている。
パワーモジュール20の製造方法は、特に限定されることはなく、公知の方法に従って行うことができる。例えば、Bステージ状態の熱伝導性樹脂シート1を用いて、上述と同じようにして製造すればよい。このパワーモジュール20では、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下に曝されても良好な熱伝導性及び電気絶縁性を維持し得る熱伝導性樹脂シート1を用いているので、パワーモジュール20における放熱性及び電気絶縁性の長期信頼性が向上する。
FIG. 3 is a schematic cross-sectional view of another power module in the present embodiment. In FIG. 3, the power module 20 is a case type power module, and includes a heat sink member 22 that is a heat radiating member, a circuit board 23 formed on the surface of the heat sink member 22, and electric power placed on the circuit board 23. Semiconductor element 24, case 25 bonded to the periphery of heat sink member 22, casting resin 26 injected into case 25 to seal circuit board 23, power semiconductor element 24, and the like, and circuit of heat sink member 22 From the heat conductive resin sheet 1 laminated | stacked on the surface opposite to the surface in which the board | substrate 23 was provided, and the heat spreader 21 which is a heat radiating member joined to the heat sink member via the heat conductive resin sheet 1 It is configured.
The manufacturing method of the power module 20 is not particularly limited, and can be performed according to a known method. For example, what is necessary is just to manufacture like the above-mentioned using the heat conductive resin sheet 1 of a B stage state. In this power module 20, the heat conductive resin sheet 1 which has excellent heat resistance, adhesiveness and moisture absorption characteristics and can maintain good heat conductivity and electrical insulation even when exposed to a reflow process and high temperature and high humidity conditions. Since it is used, the long-term reliability of heat dissipation and electrical insulation in the power module 20 is improved.

以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
(1)熱硬化性樹脂組成物の調製
表1に記載の配合割合で所定のマトリックス樹脂成分を配合した後、メチルエチルケトン(MEK)100質量部を添加して撹拌し、マトリックス樹脂の溶液を調製した。次に、この溶液に表1に記載の配合割合で絶縁性充填材を添加し、十分混合することにより、実施例1〜18及び比較例1〜3の熱硬化性樹脂組成物を調製した。
Hereinafter, although an Example and a comparative example demonstrate the detail of this invention, this invention is not limited by these.
(1) Preparation of thermosetting resin composition After blending predetermined matrix resin components at the blending ratio shown in Table 1, 100 parts by mass of methyl ethyl ketone (MEK) was added and stirred to prepare a matrix resin solution. . Next, the thermosetting resin compositions of Examples 1 to 18 and Comparative Examples 1 to 3 were prepared by adding an insulating filler to this solution at a blending ratio shown in Table 1 and mixing them well.

Figure 0005047024
Figure 0005047024

(2)熱伝導性樹脂シートの作製
上記熱伝導性樹脂組成物を、片面を粗化処理した厚さ100μmの銅箔上にドクターブレード法にて塗布し、90℃で20分間の加熱乾燥処理をした後、加圧プレスを行い、厚さが200μmでBステージ状態の熱伝導性樹脂シートを作製した。
次に、このBステージ状態の熱伝導性樹脂シート上に2mmの銅板を配置し、120℃で1時間加熱した後、180℃で3時間さらに加熱し、熱伝導性樹脂シートを完全に硬化させ、これを接着性の評価用サンプルとした。
ここで、接着性は、オートグラフ試験装置を用いて、上記接着性の評価用サンプルの引張りせん断強度(接着力)を測定することにより評価した。また、上記接着性の評価用サンプルを用いて、リフロー温度285℃における熱伝導性樹脂シートの膨れ発生時間も測定した。
(2) Production of heat conductive resin sheet The above heat conductive resin composition was applied by a doctor blade method onto a 100 μm thick copper foil whose one surface was roughened, and heat-dried at 90 ° C. for 20 minutes. Then, a pressure press was performed to produce a thermally conductive resin sheet having a thickness of 200 μm and a B stage state.
Next, a 2 mm copper plate is placed on the heat conductive resin sheet in the B stage state, heated at 120 ° C. for 1 hour, and further heated at 180 ° C. for 3 hours to completely cure the heat conductive resin sheet. This was used as an adhesive evaluation sample.
Here, the adhesiveness was evaluated by measuring the tensile shear strength (adhesive strength) of the adhesive evaluation sample using an autograph test apparatus. In addition, using the sample for evaluating adhesiveness, the swelling occurrence time of the thermally conductive resin sheet at a reflow temperature of 285 ° C. was also measured.

また、上記熱伝導性樹脂組成物を用い、ポリエチレンテレフタレート(PET)フィルムの離型剤処理面上にドクターブレード法にて塗布したこと以外は上記と同様にして、厚さが500μmでBステージ状態の熱伝導性樹脂シートを作製した。
次に、PETフィルム上に形成した熱伝導性樹脂シートを2枚重ねてプレスした後、120℃で1時間加熱した後、180℃で3時間さらに加熱し、熱伝導性樹脂シートを完全に硬化させ、これを吸湿特性の評価用サンプルとした。
吸湿特性は、130℃、2.7気圧の条件下でプレッシャークッカー試験を行い、試験前及び100時間後のサンプルの質量変化を測定することにより評価した。また、ガラス転移温度は、熱機械分析方法を用い、昇温速度3℃/分にて温度に対する膨張曲線を求め、ガラス転移温度以下及びガラス転移温度以上の直線部分の接線の交点から算出した。
実施例及び比較例のサンプルにおける接着性、膨れ発生時間、吸湿特性(吸湿量)及びガラス転移温度の評価結果を表2に示す。
また、実施例1及び8〜14のサンプルの結果を基に、マトリックス樹脂成分における接着性付与剤の含有量と、接着力及びガラス転移温度との関係を図4に示す。
Further, using the above heat conductive resin composition, a B-stage state with a thickness of 500 μm is the same as described above except that it is applied on a release agent-treated surface of a polyethylene terephthalate (PET) film by a doctor blade method. A heat conductive resin sheet was prepared.
Next, two heat conductive resin sheets formed on the PET film were stacked and pressed, then heated at 120 ° C. for 1 hour, and further heated at 180 ° C. for 3 hours to completely cure the heat conductive resin sheet. This was used as a sample for evaluating moisture absorption characteristics.
The hygroscopic property was evaluated by performing a pressure cooker test at 130 ° C. and 2.7 atm, and measuring the mass change of the sample before and after 100 hours. Further, the glass transition temperature was calculated from the intersection of tangents of the straight line portion below the glass transition temperature and above the glass transition temperature by obtaining an expansion curve with respect to the temperature at a heating rate of 3 ° C./min using a thermomechanical analysis method.
Table 2 shows the evaluation results of adhesiveness, swelling occurrence time, moisture absorption characteristics (moisture absorption amount) and glass transition temperature in the samples of Examples and Comparative Examples.
Moreover, based on the result of the sample of Example 1 and 8-14, the relationship between content of the adhesive imparting agent in a matrix resin component, adhesive force, and glass transition temperature is shown in FIG.

Figure 0005047024
Figure 0005047024

表2に示されているように、実施例の熱伝導性樹脂組成物から得られる熱伝導性樹脂シートでは、接着性、膨れ発生時間及び吸湿特性が良好であった。これに対して、比較例の熱伝導性樹脂組成物から得られる熱伝導性樹脂シートでは、吸湿特性が悪いと共に、膨れ発生時間が短かった。
また、図4に示されているように、接着性付与剤を配合することにより接着力が向上するものの、その配合量が30質量%を超えると接着力が低下した。
以上の結果からわかるように、本発明の熱伝導性樹脂組成物は、耐熱性、接着性及び吸湿特性に優れ、リフロー工程や高温多湿の条件下でも良好な熱伝導性及び電気絶縁性を維持し得る熱伝導性樹脂シートを与えることができる。
As shown in Table 2, the heat conductive resin sheet obtained from the heat conductive resin composition of the example had good adhesiveness, swelling time and moisture absorption characteristics. On the other hand, in the heat conductive resin sheet obtained from the heat conductive resin composition of the comparative example, the hygroscopic property was bad and the swelling occurrence time was short.
In addition, as shown in FIG. 4, although the adhesive strength was improved by blending the adhesion-imparting agent, the adhesive strength was reduced when the blending amount exceeded 30% by mass.
As can be seen from the above results, the heat conductive resin composition of the present invention is excellent in heat resistance, adhesiveness and moisture absorption characteristics, and maintains good heat conductivity and electrical insulation even under reflow process and high temperature and high humidity conditions. The heat conductive resin sheet which can do is provided.

実施の形態2における熱伝導性樹脂シートの断面模式図である。It is a cross-sectional schematic diagram of the heat conductive resin sheet in Embodiment 2. FIG. 実施の形態3におけるパワーモジュールの断面模式図である。6 is a schematic cross-sectional view of a power module according to Embodiment 3. FIG. 実施の形態3におけるパワーモジュールの断面模式図である。6 is a schematic cross-sectional view of a power module according to Embodiment 3. FIG. マトリックス樹脂成分における接着性付与剤の含有量と、接着力及びガラス転移温度との関係を示す図である。It is a figure which shows the relationship between content of the adhesiveness imparting agent in a matrix resin component, adhesive force, and glass transition temperature.

符号の説明Explanation of symbols

1 熱伝導性樹脂シート、2 マトリックス樹脂、3 絶縁性充填材、10、20 パワーモジュール、11 リードフレーム、12、24 電力半導体素子、13、22 ヒートシンク部材、14 制御用半導体素子、15 金属線、16 モールド樹脂、21 ヒートスプレッダー、23 回路基板、25 ケース、26 注型樹脂。   DESCRIPTION OF SYMBOLS 1 Thermal conductive resin sheet, 2 Matrix resin, 3 Insulation filler, 10, 20 Power module, 11 Lead frame, 12, 24 Power semiconductor element, 13, 22 Heat sink member, 14 Control semiconductor element, 15 Metal wire, 16 mold resin, 21 heat spreader, 23 circuit board, 25 case, 26 casting resin.

Claims (3)

マトリックス樹脂成分と絶縁性充填材とを含む熱伝導性樹脂組成物であって、前記マトリックス樹脂成分が、
(A)式(2):
Figure 0005047024
(式中、Zは水素又は炭素数5以下のアルキル基であり、aは1〜20であり、bは1以上である)で表され、且つ重量平均分子量が50,000以下の化合物からなる硬化剤、
(B)式(1):
Figure 0005047024
で表されるナフタレン骨格を有し、且つ分子内にエポキシ基を2〜5個もつエポキシ樹脂
(C)硬化促進剤、及び
(D)カップリング剤を含み、
(E)式(3):
Figure 0005047024
(式中、YはCH 、C(CH 、SO 又は直接結合であり、cは30〜400である)で表される接着性付与剤を前記マトリックス樹脂成分中に5〜30質量%さらに含み、且つ前記絶縁性充填材の含有量が40〜90質量%であることを特徴とする熱伝導性樹脂組成物。
A thermally conductive resin composition comprising a matrix resin component and an insulating filler, wherein the matrix resin component is
(A) Formula (2):
Figure 0005047024
(Wherein Z is hydrogen or an alkyl group having 5 or less carbon atoms, a is 1 to 20 and b is 1 or more), and is composed of a compound having a weight average molecular weight of 50,000 or less. Hardener,
(B) Formula (1):
Figure 0005047024
An epoxy resin having a naphthalene skeleton represented by the formula and having 2 to 5 epoxy groups in the molecule ,
(C) a curing accelerator , and
(D) including a coupling agent,
(E) Formula (3):
Figure 0005047024
( Wherein Y is CH 2 , C (CH 3 ) 2 , SO 2 or a direct bond, and c is 30 to 400). 5-30 in the matrix resin component A heat conductive resin composition further comprising mass% , and wherein the content of the insulating filler is 40 to 90 mass%.
マトリックス樹脂中に絶縁性充填材が分散された熱伝導性樹脂シートであって、前記マトリックス樹脂が、
(A)式(2):
Figure 0005047024
(式中、Zは水素又は炭素数5以下のアルキル基であり、aは1〜20であり、bは1以上である)で表され、且つ重量平均分子量が50,000以下の化合物からなる硬化剤、
(B)式(1):
Figure 0005047024
で表されるナフタレン骨格を有し、且つ分子内にエポキシ基を2〜5個もつエポキシ樹脂
(C)硬化促進剤、及び
(D)カップリング剤を含み、
(E)式(3):
Figure 0005047024
(式中、YはCH 、C(CH 、SO 又は直接結合であり、cは30〜400である)で表される接着性付与剤を前記マトリックス樹脂中に5〜30質量%さらに含み、且つ前記絶縁性充填材の含有量が40〜90質量%であることを特徴とする熱伝導性樹脂シート。
A thermally conductive resin sheet in which an insulating filler is dispersed in a matrix resin, wherein the matrix resin is
(A) Formula (2):
Figure 0005047024
(Wherein Z is hydrogen or an alkyl group having 5 or less carbon atoms, a is 1 to 20 and b is 1 or more), and is composed of a compound having a weight average molecular weight of 50,000 or less. Hardener,
(B) Formula (1):
Figure 0005047024
An epoxy resin having a naphthalene skeleton represented by the formula and having 2 to 5 epoxy groups in the molecule ,
(C) a curing accelerator , and
(D) including a coupling agent,
(E) Formula (3):
Figure 0005047024
( Wherein Y is CH 2 , C (CH 3 ) 2 , SO 2 or a direct bond, and c is 30 to 400), 5 to 30 mass in the matrix resin. % , And the content of the insulating filler is 40 to 90% by mass.
一方の放熱部材に搭載された電力半導体素子と、前記電力半導体素子で発生する熱を外部に放熱する他方の放熱部材と、前記電力半導体素子で発生する熱を前記一方の放熱部材から前記他方の放熱部材に伝達する、請求項に記載の熱伝導性樹脂シートとを備えることを特徴とするパワーモジュール。 A power semiconductor element mounted on one heat dissipation member; another heat dissipation member that radiates heat generated in the power semiconductor element to the outside; and heat generated in the power semiconductor element from the one heat dissipation member to the other A power module comprising: the heat conductive resin sheet according to claim 2 , which is transmitted to a heat radiating member.
JP2008078715A 2008-03-25 2008-03-25 Thermally conductive resin composition, thermally conductive resin sheet, and power module Active JP5047024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078715A JP5047024B2 (en) 2008-03-25 2008-03-25 Thermally conductive resin composition, thermally conductive resin sheet, and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078715A JP5047024B2 (en) 2008-03-25 2008-03-25 Thermally conductive resin composition, thermally conductive resin sheet, and power module

Publications (2)

Publication Number Publication Date
JP2009227947A JP2009227947A (en) 2009-10-08
JP5047024B2 true JP5047024B2 (en) 2012-10-10

Family

ID=41243703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078715A Active JP5047024B2 (en) 2008-03-25 2008-03-25 Thermally conductive resin composition, thermally conductive resin sheet, and power module

Country Status (1)

Country Link
JP (1) JP5047024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180006001A (en) * 2016-07-07 2018-01-17 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513840B2 (en) * 2009-10-22 2014-06-04 電気化学工業株式会社 Insulating sheet, circuit board, and insulating sheet manufacturing method
JP5171798B2 (en) * 2009-12-07 2013-03-27 三菱電機株式会社 Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP5340202B2 (en) 2010-02-23 2013-11-13 三菱電機株式会社 Thermosetting resin composition, B-stage heat conductive sheet and power module
JP2011249681A (en) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp Thermal conductive sheet and semiconductor device
JP2012067205A (en) * 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd High heat radiation insulating resin sheet and method of manufacturing the same
WO2012070289A1 (en) * 2010-11-26 2012-05-31 三菱電機株式会社 Thermal conductive sheet and power module
KR20120074109A (en) * 2010-12-27 2012-07-05 엘지이노텍 주식회사 Epoxy resin compound and radiant heat circuit board using the same
CN103748673B (en) * 2011-10-28 2016-12-14 积水化学工业株式会社 Laminated body and the manufacture method of power semiconductor modular parts
JP6000749B2 (en) * 2012-08-23 2016-10-05 三菱電機株式会社 Thermosetting resin composition, method for producing thermally conductive resin sheet, thermally conductive resin sheet, and power semiconductor device
CN106103531A (en) * 2014-03-20 2016-11-09 日立化成株式会社 Resin combination, resin sheet, resin sheet solidfied material, resin sheet duplexer, resin sheet duplexer solidfied material and manufacture method, semiconductor device and LED matrix
JP6879690B2 (en) 2016-08-05 2021-06-02 スリーエム イノベイティブ プロパティズ カンパニー Resin composition for heat dissipation, its cured product, and how to use them
JP2016204669A (en) * 2016-08-31 2016-12-08 三菱電機株式会社 Thermosetting resin composition, manufacturing method of heat conductive resin sheet, heat conductive resin sheet and semiconductor device for electric power
JP7202136B2 (en) * 2018-10-16 2023-01-11 旭化成株式会社 N-alkyl-substituted aminopyridine phthalate and epoxy resin composition containing the same
WO2022054874A1 (en) * 2020-09-11 2022-03-17 富士フイルム株式会社 Curable resin composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102425B2 (en) * 1999-03-30 2000-10-23 日立化成工業株式会社 Epoxy resin molding material for sealing and electronic component device
JP2002179886A (en) * 2000-12-15 2002-06-26 Nagase Chemtex Corp Highly thermally conductive epoxy resin composition, sheetlike material comprising the same composition and highly thermally conductive substrate comprising the same sheetlike material
JP2006016525A (en) * 2004-07-02 2006-01-19 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic component device
JP2007224242A (en) * 2006-02-27 2007-09-06 Tamura Kaken Co Ltd Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
JP2008037957A (en) * 2006-08-03 2008-02-21 Tamura Kaken Co Ltd Thermosetting resin composition, b-stage resin film and multilayer build-up substrate
JP2009161578A (en) * 2007-12-28 2009-07-23 Sekisui Chem Co Ltd Insulating sheet and laminated structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180006001A (en) * 2016-07-07 2018-01-17 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
KR101955762B1 (en) * 2016-07-07 2019-03-07 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same

Also Published As

Publication number Publication date
JP2009227947A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5047024B2 (en) Thermally conductive resin composition, thermally conductive resin sheet, and power module
US7602051B2 (en) Thermally conductive resin sheet and power module using the same
JP5208060B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP6320239B2 (en) Semiconductor chip sealing thermosetting resin sheet and semiconductor package manufacturing method
JP6000749B2 (en) Thermosetting resin composition, method for producing thermally conductive resin sheet, thermally conductive resin sheet, and power semiconductor device
JP2001348488A (en) Heat-conductive resin composition, prepreg, radiating circuit board and radiating heating part
JPWO2009041300A1 (en) Thermally conductive sheet, manufacturing method thereof, and power module
JP2008153430A (en) Heatsink substrate and heat conductive sheet, and power module using these
JP5171798B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP5735029B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP2008255186A (en) Heat-conductive resin sheet and power module
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP6025966B2 (en) Thermally conductive insulating sheet, power module and manufacturing method thereof
JP2015196823A (en) Thermosetting resin composition, thermally conductive resin sheet and method for producing the same, and power module
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
JP2016155946A (en) Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module
KR20150014214A (en) Molding composition for semiconductor package and semiconductor package using the same
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP5114111B2 (en) Resin composition, heat conductive sheet, high heat conductive adhesive sheet with metal foil, and high heat conductive adhesive sheet with metal plate
JP7200674B2 (en) Manufacturing method of heat dissipation structure
JP2008106126A (en) Thermally conductive material, heat releasing substrate using this and its manufacturing method
JP2001210764A (en) Heat conducting board and its manufacturing method
JP2009246026A (en) Paste-like adhesive, and method of manufacturing substrate incorporating electronic components using the same
JP6316610B2 (en) Hybrid integrated circuit board manufacturing method and hybrid integrated circuit board using the same
JP3151826B2 (en) Epoxy resin molding compound for sealing electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250