JP2011079911A - 含水燃料油とその製造方法 - Google Patents

含水燃料油とその製造方法 Download PDF

Info

Publication number
JP2011079911A
JP2011079911A JP2009231865A JP2009231865A JP2011079911A JP 2011079911 A JP2011079911 A JP 2011079911A JP 2009231865 A JP2009231865 A JP 2009231865A JP 2009231865 A JP2009231865 A JP 2009231865A JP 2011079911 A JP2011079911 A JP 2011079911A
Authority
JP
Japan
Prior art keywords
oil
water
fuel oil
particles
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009231865A
Other languages
English (en)
Inventor
Toshiyuki Takagi
敏行 高木
Toshihiko Abe
利彦 阿部
Yoshinobu Yashima
芳信 八島
Kazumi Yashima
和美 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
IFG Corp
Nippon Sozai KK
Original Assignee
Tohoku University NUC
IFG Corp
Nippon Sozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, IFG Corp, Nippon Sozai KK filed Critical Tohoku University NUC
Priority to JP2009231865A priority Critical patent/JP2011079911A/ja
Publication of JP2011079911A publication Critical patent/JP2011079911A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

【課題】高価な界面活性剤を使用せず、しかも保存中に燃料油中に細かく分散させた微細水粒子が容易に合体成長せず、従って合成直後からの撹拌の必要もなく、ある程度の時間無撹拌でも均一分散性を保つことができて容器と燃焼装置との距離を取ることが出来、加えて燃焼効率の更なる効率化も見込める画期的な含水燃料油とその製造方法を実現する。
【解決手段】燃料油1に微細水粒子が分散した含水燃料油10であって、該微細水粒子中に超微細油粒子が分散している。
【選択図】図1

Description

本発明は、重油或いは廃てんぷら油又はこれら単体或いはその混合油やこれらに高粘度の添加油を加えた高粘性燃料油と水の混合液からキャビテーションによる局部的な高圧・高温作用(ソノケミストリー効果)によって、該燃料油中に微細かつ容易に合体成長せず且つ更にその内部に大量の超微細油粒子を分散含有する微細水粒子が均一に分散した含水燃料油とその製造方法に関する。
近年の燃料費の高騰と温暖化にまつわる地球環境問題に対する意識の高まりから、優れた省エネプラス環境技術の開発が求められている。とりわけ大量の燃料油を消費するボイラ、内燃機関などは燃焼効率の更なる向上と、排気ガスの浄化による煤のようなパーティクルの排除、NOxの低減が求められている。
石油燃料の完全燃焼には理論的にその14倍の体積の空気を必要とする。現実の燃焼では燃料油と空気の混合が十分に行えないので、不完全燃焼を防ぐために理論空気量よりも30%程度多くの空気吹き込みがなされる。この過剰な空気は、燃焼熱を伴う高温排気ガスとして放出されるために理論空気量を吹き込んだ場合と比べて30%程度の燃料が無駄に消費されていることになる。
この過剰空気を減少させると不完全燃焼となって煤(パーティクル)など呼吸器や周囲環境に悪影響を与える煤塵が必然的に発生する。そこで燃焼効率を上げて煤塵のような有害な排気ガス成分を減少させる1つの方法として、燃焼装置のノズル形状を改良して燃料油を燃焼室内で微細に噴霧し、同時に吹き込まれる空気との接触面積を増すための技術開発が行われてきた。この場合にも、勿論、燃料油を完全燃焼させるために過剰空気は不可欠であるため、そのための熱損失は不可避である。
前記ノズル形状の改良の他、燃焼効率を向上するために、燃料油を燃焼室において微細分散させる多くの試みもなされてきた。中でも重油のような燃料油に水を添加してエマルジョン化すると、微細水滴が分散した燃料油が燃焼室に霧状にして吹き込まれ、燃焼時に微細水滴がマイクロ破裂を起こして周囲の燃料油を微細分散させ、同時に吹き込まれる空気との接触面積を高めて燃焼効率を高めることが古くから良く知られている。
この方法では燃料油中に水をできるだけ細かく均一に分散させる必要があるが、水と油とは互いに交じり合わないため、界面活性剤を用いて燃料油と水をエマルジョン化(乳化)し、これを燃料とするエマルジョン燃料が開発されている(特許文献1)。エマルジョンは食料、薬品、化粧品の分野で広く用いられており、それを連続的に製造する装置にはホモジナイザー、コロイドミル、フロージェットミキサーなど超高圧や高速回転を用いるものがあるが、これらはいずれも界面活性剤を使用してエマルジョンを製造している(非特許文献1)。
しかしながら、高価な界面活性剤を大量に必要とすることが、エマルジョン燃料使用による燃費節約効果の最大の障害となっている。そこで、界面活性剤を使用することなく燃料油と水を機械的な攪拌によって混合する試みがなされている(特許文献2,3)。機械的な攪拌は効率が低く水を燃料油中にある程度細かく均一分散させるためには時間がかかるという欠点がある。この欠点を解決するための方法の1つとして、超音波振動によるエマルジョン燃料の製造法が提案されている(特許文献4)。この方法は、超音波振動板の対向する側に反射板を設置し、両板の間でキャビテーション(ただし、剪断流を伴わない乱流)を起こし燃料と水の混合液をエマルジョン化するというものである。その他、燃料油と焼酎粕のアルコールと大量の水を含む絞り液との混合液を攪拌しながら、超音波浴中でエマルジョン化し、その後にマイクロバブル処理(ただし、剪断流を伴わない単なるベンチュリ作用)を施すことで均質なエマルジョン燃料を製造する方法も提案されている(特許文献5)。
乳化技術と乳化剤の開発、CMC出版(2004)、p.86 特許第3,877,078号 特開平5−157221号公報 特開平10−185183号公報 特開2006−322463号公報 特開2008−63548号公報
前述のようにエマルジョン燃料を作製するには、界面活性剤を用いる方法、機械的撹拌方法、剪断流を伴わない超音波振動エマルジョン化方法、剪断流を伴わない超音波振動・マイクロバブル処理併用方法も提案されているが、現実的には製造されたエマルジョン燃料はそのまま直ちに燃焼装置に送り込まれるというのではなくて、一度に多量の合成がなされて容器に貯えられ、それを徐々に燃焼装置に供給して燃焼する方式が取られている。この場合、界面活性剤を使用していない含水燃料油は勿論、界面活性剤を使用している含水燃料油でも油分中に分散している水粒子と油の比重の違いから粒径が比較的大きく比重の重い水粒子が短時間で容器の底部に次第に沈降してきて底部には水分リッチ、上澄み部分ではオイルリッチとなって均一分散性が損なわれる。
加えて底部で粒径が比較的大きい水粒子同士が直接接触して合体して更に大きな水粒子を形成して均一分散性を更に損なう。そしてこの均一分散性が損なわれた含水燃料油を吹き込むと燃焼温度のムラや燃焼途中での立ち消えなど燃焼装置での均一な燃焼が妨げられるという問題や、水分リッチ分の燃料油を燃やそうとすると前述の燃焼不良、甚だしい場合には着火不良というような問題も引き起こす。
このような問題に対処するために仮に容器中の含水燃料油を常時撹拌するとすることも考えられるが、一旦、水粒子同士の合体が行われて大きな水粒子(例えば、直径が1mm以上のもの)を形成してしまうと再キャビテーションティ処理を行わない限り、撹拌しても大きな水粒子が油中に散らばるだけであり、これを燃焼装置に吹き込むと大きな水粒子が小爆発(マイクロエクスプロージョン現象)して周囲の燃料油を弾き飛ばして空気との混合を助け、燃焼反応をある程度促進するものの、この時同時に水蒸気を発生して気化し、これが周囲の熱を奪って結果的に燃焼温度を大きく下げてしまうという問題もある。従って、合成された従来の含水燃料油は合成直後から常に撹拌しておく必要があること(但し、攪拌中における水粒子の直接的な接触による合体・成長の抑制は困難である。)、これが故に合成された従来の含水燃料油の容器と燃焼装置との距離が取れないこと(容器と燃焼装置との距離が長いとその間に油水分離を生じるため。)、これが原因で時として起こる前記燃焼不良や着火不良が含水燃料油の普及を妨げる大きな原因となっていた。界面活性剤を用いないものは特にこの傾向が強い。
本発明は高価な界面活性剤を使用せず、しかも保存中に燃料油中に細かく分散させた微細水粒子が容易に合体成長せず、従って合成直後からの撹拌の必要もなく、ある程度の時間無撹拌でも均一分散性を保つことができて容器と燃焼装置との距離を取ることが出来、加えて燃焼効率の更なる効率化も見込める画期的な含水燃料油とその製造方法を実現することを主たる課題とするものである。
請求項1に記載の発明は、「燃料油1に微細水粒子が分散した含水燃料油10であって、該微細水粒子中に超微細油粒子が分散している」ことを特徴とする。
請求項2は「請求項1に記載の微細水粒子の表面に更に付着物が付着している」ことを特徴とする。
請求項3は請求項1又は2に記載の含水燃料油10の限定で、「燃料油1が軽油、A重油、C重油又は廃てんぷら油の夾雑物濾過品のいずれか1又は2以上の混合油である」ことを特徴とする。
請求項4は請求項3に記載の含水燃料油10の更なる限定で、「請求項3の燃料油1に更に添加される添加用燃料油の30℃における動粘度が軽油より高い可燃性燃料油である」ことを特徴とする。
請求項5は添加される水の限定で、「添加水2は、水又は水溶性切削油の含有水或いはこれらの和である」ことを特徴とする。
請求項6は請求項1〜5に記載の含水燃料油の製造方法で、「燃料油1と添加水2とを容器3に供給した後、該容器3から圧送ポンプ4にて剪断流を含む乱流領域を形成するキャビテーション発生装置5に送り込み、超微細油粒子が分散している微細水粒子を燃料油1中に生成分散させて含水燃料油10を合成し、該含水燃料油10の一部を燃焼装置9に供給すると共に残部を容器3に回流させる」ことを特徴とする。
請求項1に記載の発明では、微細水粒子中に超微細油粒子が分散しているので、従来のような超微細油粒子を内部に含まない水粒子に比べて微細水粒子の比重が内部に分散している超微細油粒子分だけ軽量化され、水に比べて比重の軽い燃料油中での微小水粒子の沈降が抑制される。その結果、含水燃料油中の微細水粒子の均一分散が長く保たれることになる。特に、燃料油が軽油、A重油又は廃てんぷら油の夾雑物濾過品であって、これら単体の油にC重油や、30℃における動粘度が軽油より高い可燃性燃料油を更に添加する場合には、これら混合燃料油の動粘度は単体の燃料油に比べて十分高く、混合燃料油内に分散した微細水粒子は高い粘度に阻まれて沈降が阻害され、長時間の均一分散性を保つ。特に、前述のように微細水粒子中に超微細油粒子が分散しているので、微細水粒子の比重は混合燃料油の比重に近くなるから浮き易く混合燃料油中での微細水粒子の沈降は更に抑制される。それ故、ある程度の長時間の無撹拌保存下であっても微細水粒子の油中均一分散維持が実現する。
また、添加水に水溶性切削油を使用する場合は、産業廃棄物として処理する他なかったものをその中の界面活性剤が微細水粒子の更なる微細化(粒子の直径が10μm以下。)と超微細油粒子の取り込みに貢献する有用資源として働かせることが出来るようになる。
特に、微細水粒子の直径が10μm以下の場合、微小水粒子のマイクロ破裂時に煤と水とが反応する発熱性の水性ガス化反応により、水素と一酸化炭素を生成することになるので、従来例で述べたように、直径が1mmというような大型水粒子のと異なり、気化熱を周囲から奪わず、燃焼温度の大幅低下を招くようなこともない。
また、本発明の製造方法では、圧送ポンプ4にて攪拌された燃料油1と添加水2とを剪断流を含む乱流領域を形成するキャビテーション発生装置5に送り込み、攪拌によって燃料油1に分散した水滴を剪断流にて更に細かい微細水粒子(90μm〜30μm或いは10μm以下)にすると同時に剪断流にて燃料油1から微細に引き千切られた超微細油粒子が前記微細水粒子に入り込んで含水燃料油10を燃料油1(O)/微細水粒子(W)/超微細油粒子(O)の3相エマルジョンとすることが出来、しかもこのように合成された含水燃料油10の一部を燃焼装置9に供給すると共に残部を容器3に回流させるようにしているので、回流分は新たに供給された燃料油1と添加水2と共にキャビテーションされることになり、含水燃料油10は常に多量の超微細油粒子含有微細水粒子が均一に分散した3相エマルジョンになる。加えて、燃料油1中に含まれている不可知不純物質がキャビテーションによる局部的な高圧・高温作用(ソノケミストリー作用或いはメカノケミカル反応)により微細水粒子への表面付着物が発生し、この表面付着物により微細水粒子同士の直接接触が妨げられて合体・成長が抑制され、長時間の多量の超微細油粒子含有微細水粒子の均一分散が維持できるようになった。
20容量%含水A重油のキャビテーション処理を施した本発明に係る含水燃料油の顕微鏡写真。 A重油に希釈した水溶性切削油を添加してキャビテーション処理を施した本発明に係る含水燃料油の顕微鏡写真。 表面に付着物が付着していると見られる本発明に係る含水燃料油の顕微鏡写真。 膜が形成されていると見られる本発明に係る含水燃料油の顕微鏡写真。 本発明に係る含水燃料油合成装置の構成を示すフロー図。 図5の装置に使用するキャビテーション発生装置の断面図。 図6の中央断面図。 A重油に水の添加量を変えてキャビテーション処理した本発明に係る含水燃料油の燃焼炎温度と添加水量の関係を示すグラフ。 A重油に水の添加量を20容量%一定とし、C重油の添加量を変えてキャビテーション処理をした本発明に係る含水燃料油の燃焼炎温度とC重油添加量の関係を示すグラフ。
以下、本発明を実施例に従って説明する。含水燃料油の構成の一例を示すと、以下のような組み合わせとなる。
(1)軽油、A重油、C重油又は廃てんぷら油(一般的にはその夾雑物濾過品更にはグリセリン除去品がディーゼル用燃料として使用されている。)のいずれか1又は2以上の混合油が主成分で、水又は水溶性切削油のいずれか1又は両者が添加される場合。
(2)軽油、A重油、C重油又は廃てんぷら油のいずれか1又は2以上の混合油が主成分で、添加用の燃料油が30℃における動粘度が軽油より高い可燃性燃料油(例えば、廃グリス油のような潤滑廃油、廃エンジンオイル、廃ブレーキオイルなど)と、水又は水溶性切削油のいずれか1又は両者が添加される場合。
軽油及び廃てんぷら油単体を主成分とする含水燃料油の場合は、主としてディーゼル用のような軽油用途に使用される。主成分がA重油単体又はこれに軽油、C重油又は廃てんぷら油が少量添加される含水燃料油の場合は、A重油の用途に使用され、主成分がC重油単体又はこれに軽油、A重油又は廃てんぷら油が少量添加される含水燃料油の場合は、C重油の用途に使用される。なお、軽油、A重油、C重油又は廃てんぷら油は単体で含水燃料油に適用することも可能であるから、これらを2以上混合して含水燃料油とする場合、用途によって好ましい容量配合比があるが、基本的にはその容量配合比は特段限定されるものではない。後述するように含水燃料の添加水の添加量(容量比)は、主成分の単体又は混合燃料油に対して10〜30容量%であるから、主たる燃料油に対して添加される燃料油の容量%は大略20%以下となる。
軽油、A重油、C重油の性状はJIS規格に記載の通りであり、周知事項であるから詳細は割愛する。これに対して廃てんぷら油は酸敗したもので、その動粘度を始めとするその性状は一定ではないが、軽油相当品としての位置付けであるから、その動粘度(30℃)mm2/sは軽油特1号[JIS K2283で(2.7mm2/s)]よりも動粘度の高いもので、夾雑物濾過品を使用の対象とする。なお、廃てんぷら油はてんぷら油やサラダ油など動物性又は植物性のいずれでも良い。
上記(2)の主成分の単体或いは混合燃料油に混入される添加用燃料油は、30℃における動粘度が前記軽油より高い可燃性油の燃料油、例えば、発電施設、動力設備、機械装置、車両に使用される粘度の高い可燃性の廃油(例えばグリス油のような潤滑廃油、廃エンジンオイル、廃ブレーキオイル)である。比較の基準となる軽油の30℃における動粘度は前述の通りである。
水溶性切削油は、界面活性剤で機械油をコロイド状にして水に分散させたもので、A1種、A2種 及び A3種があり、A1種は、鉱油や脂肪油など、水に溶けない成分と界面活性剤からなり、水に加えて希釈すると外観が乳白色になるものであり、A2種は界面活性剤など水に溶ける成分単独、または水に溶ける成分と鉱油や脂肪油など水に溶けない成分からなり、水に加えて希釈すると外観が半透明ないし透明になるものであり、A3種は水に溶ける成分からなり、水に加えて希釈すると外観が透明になるものとされている。いずれも大量の水分を含み、前2者は界面活性剤を含む。水溶性切削油は添加水の範疇に含められ、単独又は水との併用の場合は、その含有水分量が添加水としてカウントされる。本実施例では切削粉などの夾雑物を除いた廃水溶性切削油が基本的に使用対象となる。勿論、前述のてんぷら油や添加用の可燃性燃料油、ここで述べる水溶性切削油はいずれもコスト面から廃油を対象としている。
主成分の単体又は混合燃料油に対する添加水(水溶性切削油の含有水分量も含む)の混合比率(容量比)は、基本的には合成された含水燃料油の燃焼温度や使用態様がそれぞれの用途、即ち、軽油、A重油或いはC重油として使用できる範囲内に限られ、水の添加によって燃焼状態が損なわれる場合や燃焼温度が低くなり過ぎる場合、或いは水添加量が過小で水添加の意義がないような場合は除かれる。
水の添加量と燃焼温度との関係、C重油添加の関係を示すものとして、図8,9を示す。図8はA重油に水の添加量を変えてキャビテーション処理した本発明に係る含水燃料油の燃焼炎温度と添加水量の関係を示すグラフであり、図9はA重油に水の添加量を20容量%一定とし、C重油の添加量を変えてキャビテーション処理をした本発明に係る含水燃料油の燃焼炎温度とC重油添加量の関係を示すグラフである。グラフの内容に付いては後述する。
また、添加用燃料油として粘度の高い可燃性の廃油が添加される場合、添加量が過多で燃焼温度が低すぎる範囲や安定的な燃焼が困難な範囲は除外される。概略的に言えば、前述のように主たる燃料油に対して容量比が20%程度になる。ただ、これを過多に混合することにより粘度が高くなりすぎて常温で軽油又はA重油としての使用が妨げられるような場合、例えば常温で燃焼装置への円滑な給油ができない場合には、給油可能温度まで加温することになる。C重油の場合は、単独でも粘性が高いので同様に通常は給油可能温度まで加温することになる。加温によっても給油できないような場合は本発明の範囲から除害される。
次に本発明の含水燃料油の製造方法に付いて説明する。図6、7のキャビテーション発生装置5に軽油、A重油、C重油又は廃てんぷら油単体又はこれらの少なくとも2以上を混合した燃料油1と水又は水溶性切削油単体又はこれらを混合した添加水2を所定容量比で通過させた。これにより燃料油1と添加水2の混合物は薄茶色の微細水粒子均一分散状態の含水燃料油10となった。実際は後述する図5の装置で循環させつつ合成する。
前記キャビテーション発生装置5は、内部に圧縮側出口部12に向かってその中心軸に直交する断面積を漸減する通流燃料圧縮側の第1ノズル11が形成され、該第1ノズル11の圧縮側出口部12に対向し且つ一致して第2ノズル13の膨張側入口部14が形成されており、第2ノズル13は下流方向に向かってその中心軸に直交する断面積を漸増するように穿設されている。そして、両者12,13の間に形成される間隙がこの部分を通過する流体に大きな剪断流を伴う乱流を引き起こさせる剪断流発生間隙15である。剪断流発生間隙15は図6のように圧縮側出口部12から膨張側入口部14との間の空間に対して直交して開口する室(空間)でも良いし、図示していないが、該空間全体を取り囲む円形の室(空間)でも良い。なお、通過流体の性状により、この剪断流発生間隙15の開口幅Sを捩じ込み量の変更によって調節するようにしてもよいし、圧縮側出口部12の内径をW1とし、膨張側入口部14の内径をW2とした時、内径W1とW2は同一としてもよいし、異なるようにしてもよい。このキャビテーション発生装置5は1基で使用することも可能であるし、複数組を直列に配置して使用すること(これにより微細水粒子の直径がより微細且つ均一に、例えば10μm以下になる。)、或いは量が必要な場合は複数機を並列使用することも可能である。
このように構成されたキャビテーション発生装置5に所定混合比で燃料油1と添加水2との混合液を圧送すると混合液は第1ノズル11を通過する間に高速化し、第1ノズル11の圧縮側出口部12で急激に絞られた後、剪断流発生隙間15内で急膨張し、更に続く膨張側入口部14で急に絞られる結果、剪断流発生隙間15内で激しい剪断流を伴う乱流を生じる。
そして、この激しい剪断流を伴う乱流はその状態を保ったまま細い膨張側入口部14で絞られてから第2ノズル13に突入して急膨張する。この通流混合液は第2ノズル13の中で流れの幅(換言すれば流れに直交する面積)を増すことによって生じる急膨張によって急激な圧力低下が生じる結果、剪断流発生隙間15から第2ノズル13の膨張側入口部14を越えるところまでの領域で流体中にキャビテーションが発生して瞬時に水滴が微細化され、無数の微細水粒子を発生する。同時に急激な圧縮・膨張と激しい乱流によって燃料液1も細かく引き千切られて微細水粒子内に多量の超微細油粒子となって取り込まれる。この結果、内部に多量の超微細油粒子が分散した微細水粒子を含有する含水燃料油10が合成される。更にこの間、既に述べたソノケミストリー作用又はメカノケミカル反応により燃料油内の不純物から反応性生物が生じて微細水粒子の表面に付着或いは微細水粒子の表面に膜を形成する。
なお、内径W1、W2を違えると剪断流を伴う乱流度が増加するし、剪断流発生隙間63の幅Sを選定すれば燃料油1と添加水2の混合液の流量や流速、粘度にも依るが剪断流を伴う乱流度を更に増加させることが出来る。また、図の実施例では剪断流発生間隙15は1つであるが、2以上隣接させて併設してもよく、その場合には乱流度合いを更に向上させる。また、常温で粘性の非常に高いものは加熱して粘性を落として処理する事になる。
図1は前述の方法により合成された本発明に係る含水燃料油(A重油)の顕微鏡写真(内部構造が分かり易くするため、粒径の大きいものを選択して撮影した。)で、含水燃料油中に分散している微細水粒子の粒径は大小様々であるが、含水燃料油の組成(合成条件もある程度関係する)により微細水粒子の直径の正規分布のピーク値は移動し、例えば直径が90〜30μmのものが多く含まれるものや、直径が10μm以下のものが多く含まれるものなどに様々なものが合成される。いずれの場合でもその水粒子は燃料油中に均一に分散しており、内部に燃料油の超微細油粒子が無数に分散している。即ち、本発明に係る含水燃料油はO(燃料油)/W(水粒子)/O(水粒子中の燃料油の微細粒)型の3相エマルジョンである。そして前記水粒子内の超微細油粒子の分散状況は時間と共に変化することもあり、例えば、時間の経過に連れて微細水粒子の内面側に集まり、外部から見えにくくなることもあるが、含水燃料油を攪拌すると再び微細水粒子内に分散状態を示すようになる。また、同顕微鏡写真から微細水粒子の外面に付着した微細付着物(図3)と思われるもの(或いは形成された膜;図4 本明細書では膜も含めて微細付着物と表現する。)も観察される。燃料油には無数の且つ不可知の不純物質が含まれているので、含水燃料油合成のキャビテーション過程におけるメカノケミカル反応で生成された生成物が微細水粒子の表面に付着したものと推測される。この微細付着物は次に述べるように微細水粒子の合体・成長を阻害する働きを持つと推測される。
A重油と20容量%の水の混合液を2組用意し、一方を激しく振盪攪拌し、他方を図6,7のキャビテーション装置に通した。振盪攪拌した混合液(含水燃料液)は、処理直後から上の重油層(黒褐色)と下の水を多く含む層(薄茶色)に分離が始まり、下の層では水滴が凝集して一時間後に透明な水の層が増加した。これは振盪攪拌により振盪攪拌直後では水粒子(直径30〜300μm程度)がある程度均一に分散しているものの、内部に超微細油粒子を含有していないために燃料油よりも比重の大きい微細水粒子が短時間で沈降して容器の底部に溜まり、且つ底部で互いに直接接触した微細水粒子が次第に合体して大きな水粒子に成長し、容器内の含水燃料油は短時間で透明度の高い水分リッチな底部と黒褐色のオイルリッチな上澄み部分とに分離したものと考えられる。
一方、キャビテーション装置に通した混合液(含水燃料液)は、上の重油層と下の水を多く含む層とに若干分離するものの、一時間放置後も変化は少なく、微細水粒子(直径30〜90μm程度)の合体・成長は見られなかった。これは前述のようにキャビテーション装置に通した混合液(含水燃料液)では、前述のキャビテーション過程において、微細水粒子内に多量の超微細油粒子が侵入・分散してその比重を軽くし且つ、同過程でのメカノケミカル反応或いはソノケミストリー効果で生成された生成物が微細水粒子の表面に付着し、或いは膜を形成し、これが微細水粒子の直接的な接触を阻害し合体・成長を抑制したからと推測される。
微細水粒子の粒径と燃料油の粘度との関係について言えば、主成分の燃料油の粘度が高くなるほど微細化すると言える。前記方法でA重油単体と添加水(水溶性切削油は含まず。)の含水燃料油を合成した処、直径90〜30μmの微細水粒子を多量に含むものが得られた(図1)。これに対して、C重油を添加すると微細水粒子は微細化し、10μm以下の微細水粒子を大量に含む含水燃料油が合成された(実験例では容量比でA重油70%、C重油10%、水20%である。;図2)。この結果を踏まえると、軽油や廃てんぷら油単体ではこれより粒径の大きいものを多量に含む含水燃料油が合成されると推定されるし、C重油単体の場合、或いは前記(2)のように高動粘度燃料油を添加した場合は10μm以下の微細水粒子を大量に含む含水燃料油が合成されると推測される。
また、水溶性切削油を添加した場合、特にA1、2種のように界面活性剤が含まれているような場合、微細水粒子の表面張力が低下する(換言すれば、油・水の界面エネルギを低下させる)ので、微細水粒子の微細化が容易となり、この場合も10μm以下の微細水粒子を大量に含む含水燃料油が合成される。勿論、この場合も微細水粒子の表面張力(即ち、油水間の界面エネルギー)が低下しているので、超微細油粒子の内部取り込みが行われる。
微細水粒子の粒度(直径)及び水添加量と燃焼温度との関係(図8)であるが、A重油のみを過剰給気量下で完全燃焼させた場合は1360℃程度であるが、容量比で10、15、20、25、30%の水をA重油単体に添加した場合、ほぼ理論空気供給量下で安定完全燃焼させた時の燃焼温度は、それぞれ60℃、120℃、180℃程度低下した。燃焼状態は添加水を容量比0〜30%まで変化させてもほぼ理論空気供給量下で安定完全燃焼を得、煤のようなパーティクルの発生はなかった。このものの主たる微細水粒子の直径は前述したように90〜30μmである。軽油や廃てんぷら油単体のものも前述の内容から更に直径の大きなものが出来、同条件で燃焼させた時、後述の理由により燃焼温度の低下はA重油単体の場合に比べて大きいものと推測される。
これに対して水を20容量%に固定し、C重油を5、10、15、20容量%と変化させ、残A重油としてほぼ理論空気供給量下で燃焼させると、前記同様完全燃焼を得、やはり煤のようなパーティクルの発生はなかったし、C重油が15容量%までは燃焼温度の変化は余り見られないが、20容量%以上となった時は燃焼温度の低下が見られた(図9)。この場合、かなりの量の微細水粒子の粒径は10μm以下の場合である。なお、20容量%以上となった時の燃焼温度の低下は合成した含水燃料油の粘性が過大となって、重油バーナからの噴霧状態に悪い影響を及ぼした結果と考えられ、加熱するなどして粘性を調節すれば燃焼温度の低下は避けられるものと考えられるので、常温では20容量%、加温処理を行って粘度調整を行った場合は30容量%が水の添加量の限界と考えられる。
以上から、微細水粒子の粒径が10μm以下の場合、燃焼領域で微細水粒子のマイクロ破裂と合わせて燃焼中に発生する煤と水が反応する水性ガス化反応が生じ、これにより水素と一酸化炭素が生成されて発熱し、燃焼温度の低下を防いでいると考えられる。これに対して、微細水粒子の粒径が90〜30μm或いはそれ以上の場合、水性ガス化反応が生じにくく且つ微細水粒子の破裂とその気化により周囲から気化熱が奪われ、燃焼温度を低下させると考えられる。従って、燃焼温度の低下が前述の範囲内でも問題がないのであれば、理論空気供給量下で完全燃焼させることができるのであるから、その用途においての有用性はある。しかしながら、燃焼温度の低下が好ましくない場合には、微細水粒子の粒径が10μm以下となる組み合わせが好ましい。
以上から、混合比率の一例を示せば、理論空気供給量下でパーティクルのようなものの発生がない完全燃焼を行うには、容量比で単体又は混合燃料油に対して10〜30容量%の水の添加が好ましい。常温下でC重油の添加がなされ、燃焼温度の低下がないような条件では10〜15容量%の添加が好ましい。なお、水が10容量%以下では燃料削減効果に乏しく、実験結果から単体又は混合燃料油に対して容量比で40%程度まで混入させても燃焼させることができるが、微細水粒子のマイクロ破裂による水性ガス化反応を超える大量の水分が前述の燃焼室で気化するため、これによる気化熱を周囲から奪うことになって燃焼温度が大幅に低下し、30容量%が安定燃焼の限界と考えられる。
次に本発明の含水燃料油の実際の製造装置に付いて説明する。図5の装置の容器3に燃料油1と添加水2を所定容量比で導入し、タービンポンプ4(本実施例では毎分1500回転、吐出圧力0.25MPa)を介して1基或いは直列接続した連続する複数のノズル52,53を有するキャビテーション発生装置5に通過させた。これにより燃料油1と水2の混合物は薄茶色の均一分散状態の含水燃料油となった。
合成した含水燃料油をタービンポンプ4とキャビテーション発生装置5とをつなぐ配管から分岐させ、長さ5m、内径8mmの銅パイプでボイラ9の重油用バーナに導いた。該銅パイプには分岐して容器に含水燃料油を回流させる配管が設置されており、流量制御弁7はタービンポンプ4とキャビテーション発生装置5とをつなぐ配管の銅パイプの分岐箇所より下流側に設置され、流量制御弁6はキャビテーション発生装置5と容器3とをつなぐ配管に設置され、流量制御弁8は含水燃料油の返戻用配管に設置されている。そしてこれら流量制御弁6〜8を調整することで、合成した含水燃料油の約1割を燃焼に供し、残り9割を容器3に戻した。戻された含水燃料油は容器3内で新たに供給された分と混ざり、順次ポンプ4に供給され、ポンプ4から排出された含水燃料油の一部がキャビテーション発生装置5に送られ、他が重油用バーナ側に送られる。勿論、全量を重油用バーナに供給するようにしてもよいが、重油用バーナの稼動状況は刻々と変わるのもであるから、生産された含水燃料油の一部を稼動状況に合わせて変化させるのが現実的である。
本実施例では、このように燃料油-水の混合液を繰り返しキャビテーション発生器に循環させて含水燃料油を合成しながら、その一部をボイラ9のバーナに供給し、燃焼室に空気と共に噴射すると容易に着火し、過剰空気の吹き込みなしで、黒煙を発生せずに1230℃前後の安定した燃焼を持続した(図7)。また、バーナまでの配管長(本実施例では5m)を延長しても安定した燃焼状態を保った。油水分離が生じにくいので1日以上休止したボイラの再開時も容易に着火した。また、略理論空気供給量の吹き込みでも黒煙およびNOの発生も殆ど発生しなかった。これに対して燃焼試験において、A重油のみの場合は過剰空気がなければ多量の黒煙を生じた。
本発明に係る含水燃料油をボイラを始めとする内燃機関に適用すると、燃料使用量の削減とそれに伴うCO2排出量の削減、添加水のマイクロ破裂による略理論空気供給量下での完全燃焼が可能であって、NOと煤も大幅に減少する。従ってディーゼルエンジンへの適用も好適であり環境改善に寄与できる。
1:混合燃料油
2:水
3:容器
4:ポンプ
5:キャビテーション発生装置
6:流量制御弁
7:流量制御弁
8:流量制御弁
9:ボイラ

Claims (6)

  1. 燃料油に微細水粒子が分散した含水燃料油であって、該微細水粒子中に超微細油粒子が分散していることを特徴とする含水燃料油。
  2. 請求項1に記載の微細水粒子の表面に更に付着物が付着していることを特徴とする含水燃料油。
  3. 請求項1又は2に記載の燃料油が軽油、A重油、C重油又は廃てんぷら油の夾雑物濾過品のいずれか1又は2以上の混合油であることを特徴とする含水燃料油。
  4. 請求項3に記載の燃料油に更に添加される添加用燃料油の30℃における動粘度が軽油より高い可燃性燃料油であることを特徴とする含水燃料油。
  5. 請求項1〜4のいずれかに記載の添加水2が、水又は水溶性切削油の含有水或いはこれらの和であることを特徴とする含水燃料油。
  6. 燃料油と添加水とを容器に供給した後、該容器から圧送ポンプにて剪断流を含む乱流領域を形成するキャビテーション発生装置に送り込み、超微細油粒子が分散している微細水粒子を燃料油中に生成分散させて含水燃料油を合成し、該含水燃料油の一部を燃焼装置に供給すると共に残部を容器に回流させることを特徴とする含水燃料油の製造方法。
JP2009231865A 2009-10-05 2009-10-05 含水燃料油とその製造方法 Pending JP2011079911A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231865A JP2011079911A (ja) 2009-10-05 2009-10-05 含水燃料油とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231865A JP2011079911A (ja) 2009-10-05 2009-10-05 含水燃料油とその製造方法

Publications (1)

Publication Number Publication Date
JP2011079911A true JP2011079911A (ja) 2011-04-21

Family

ID=44074300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231865A Pending JP2011079911A (ja) 2009-10-05 2009-10-05 含水燃料油とその製造方法

Country Status (1)

Country Link
JP (1) JP2011079911A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059717A1 (ja) * 2014-10-17 2016-04-21 株式会社エコプラナ 炭化水素系燃料の製造方法及びその製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059717A1 (ja) * 2014-10-17 2016-04-21 株式会社エコプラナ 炭化水素系燃料の製造方法及びその製造装置
JPWO2016059717A1 (ja) * 2014-10-17 2017-09-21 株式会社エコプラナ 炭化水素系燃料の製造方法及びその製造装置

Similar Documents

Publication Publication Date Title
Lin et al. Emulsification characteristics of three-and two-phase emulsions prepared by the ultrasonic emulsification method
JP4790066B2 (ja) 水エマルジョン製造装置
US20100218734A1 (en) Bio-diesel fuel engine system and bio-diesel fuel engine operating method
Gopidesi et al. Review on effects of performance, emission and combustion characteristics of emulsified fuel in bifuel engine
KR20090049085A (ko) 에멀전 연료의 제조 방법 및 에멀전 연료의 제조 장치
JPWO2009075317A1 (ja) 含油水を用いて乳化燃料を製造する方法
JP2010513607A (ja) 多分散混成エマルション
KR20060106331A (ko) 친환경 청정 유중수형 마이크로캡슐화 연료, 그의 제조방법 및 제조 시스템
JP2011079911A (ja) 含水燃料油とその製造方法
JP5694281B2 (ja) 乳化燃料の製造方法及びその製造装置
US6066186A (en) Method of forming and combusting water-in-fuel oil emulsion
KR20070096450A (ko) 에멀젼 연소장치
JPS60223896A (ja) 炭素質固体燃料粉末と重油との混合燃料
JP2008013633A (ja) エマルジョン燃料及びその製造装置並びに製造方法
JP2009073898A (ja) 水と可燃性油を超微粒子状態で混合してエマルジョン燃料を製造する方法及び同エマルジョン燃料の製造装置並びにエマルジョン燃料
WO2000001789A1 (fr) Emulsion de mazout de type eau dans huile
JP2006112666A (ja) エマルジョン燃料供給系を備えた燃焼装置
JP4489118B2 (ja) 乳化装置、かかる乳化装置を用いるエマルジョンの精製方法
KR20030017889A (ko) 에멀젼 연료유의 제조방법
JP2009068480A (ja) 微粒子分散エマルジョン燃料による内燃機関の稼働方法
JP2010138362A (ja) エマルジョン燃料油の生成方法
JP2011001533A (ja) エマルジョン燃料合成装置
KR960013612B1 (ko) 폐윤활유를 원료로 하는 정제연료유의 제조방법과 그 장치
KR19990085956A (ko) 벙커-씨유를 원료로 하는 정제연료유의 제조방법과 그 장치
JPS5815028B2 (ja) シアン含有廃水の処理方法