JP2011077978A - 送信機 - Google Patents

送信機 Download PDF

Info

Publication number
JP2011077978A
JP2011077978A JP2009229398A JP2009229398A JP2011077978A JP 2011077978 A JP2011077978 A JP 2011077978A JP 2009229398 A JP2009229398 A JP 2009229398A JP 2009229398 A JP2009229398 A JP 2009229398A JP 2011077978 A JP2011077978 A JP 2011077978A
Authority
JP
Japan
Prior art keywords
output
transmitter
signal
limit threshold
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009229398A
Other languages
English (en)
Inventor
Hiroki Sato
広樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2009229398A priority Critical patent/JP2011077978A/ja
Publication of JP2011077978A publication Critical patent/JP2011077978A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

【課題】カーテシアンループ方式の負帰還リニアライザ構成の送信機において、送信機の出力電力を一定に保ち、出力電力に異常が発生しているかの判定を容易に行うことが可能な送信機を提供する。
【解決手段】送信機の規定出力状態における電力検波器23の検波電圧であるAPC基準値を取得し、送信機100の規定出力と乗算係数テーブル7の下限状態に対応する乗算係数の乗算値である出力電力下限の閾値から電力検波器23の出力下限閾値を取得し、送信機100の規定出力と乗算係数テーブル7の上限状態に対応する乗算係数の乗算値である出力電力上限の閾値から電力検波器23の出力上限閾値を取得し、取得したAPC基準値、出力下限閾値、及び出力上限閾値をメモリ9に予め記憶させておき、制御部8はAPC基準値に基づいて可変減衰器22を制御することで送信機100の出力電力を一定に保ち、出力上限閾値と出力下限閾値により出力電力の異常を判定する。
【選択図】図1

Description

本発明は、出力電力を一定に保つ機能(以下、APC機能:Automatic Power Controlという)を備えたデジタル無線機であるカーテシアンループ方式の負帰還リニアライザ構成の送信機に関するものである。
カーテシアンループ方式の負帰還リニアライザ構成の送信機において、送信機の出力電力の低下や増大といった異常の発生を判定し出力電力を一定に保つためには、送信機の電力検波器の個体差により発生するばらつきの調整が必要であった。
以下、従来の実施の形態について図面を参照して説明する。
図4に、従来の実施の形態に係るカーテシアンループ方式の負帰還リニアライザ構成である送信機の機能ブロック図を示す。従来の実施の形態である送信機200は、図4に示すようにマッピング部1、ルートロールオフフィルタ2(以下、フィルタ2という)、D/A変換器(D/A)5、D/A変換器(D/A)6、制御部(CONT)8、D/A変換器(D/A)10、A/D変換器(A/D)11、加算器12、加算器13、直交変調器(MOD)14、可変減衰器(ATT)15、電力増幅器16、方向性結合器17、アンテナ18、周波数シンセサイザ(SYN)19、移相器20、直交復調器(DEMOD)21、可変減衰器(ATT)22、電力検波部(DET)23、加算器24、検波値調整部(ADJ)25、乗算器26、及び傾き調整部(ADJ)27から構成されている。また、マッピング部1、フィルタ2、及び制御部8は、DSP(Digital Signal Processor)50に含まれ、更にDSP50、D/A変換器5、D/A変換器6、D/A変換器10、及びA/D変換器11は、ベースバンド部(BB)60に含まれる。このような構成の送信機200において、方向性結合器17を設け、方向性結合器17を可変減衰器(ATT)22と電力検波部(DET)23に接続することでカーテシアンループ方式の負帰還リニアライザ構成を実現している。
次に、図4に示すカーテシアンループ方式を使用した送信機200における各機能の処理について説明する。
まず、図4に示すマッピング部1からアンテナ18までの信号ルートの各機能について説明する。マッピング部1は、送信機200が送信するベースバンド信号(以下、送信信号という)のマッピングを行い、マッピングされた同相信号(以下、I信号という)と直交信号(以下、Q信号という)をフィルタ2に出力する。フィルタ2は、マッピング部1からI信号とQ信号を入力すると帯域制限を行い、帯域制限されたI信号をD/A変換器5に出力し、帯域制限されたQ信号をD/A変換器6に出力する。D/A変換器5は、フィルタ2からI信号を入力すると、デジタル信号であるI信号をアナログ信号に変換し、加算器12に出力する。D/A変換器6は、フィルタ2からQ信号を入力すると、デジタル信号であるQ信号をアナログ信号に変換し、加算器13に出力する。加算器12は、D/A変換器5から入力したI信号と、後述する直交復調器21から出力される信号であるI信号とを加算し、直交変調器14に出力する。加算器13は、D/A変換器6から入力したQ信号と、後述する直交復調器21から出力される信号であるQ信号とを加算し、直交変調器14に出力する。直交変調器14は、加算器12からI信号を入力、加算器13からQ信号を入力、及び周波数シンセサイザ19から局部発信信号(以下、LO信号という)を入力すると、I信号とQ信号をLO信号によって変調し、変調された信号(以下、被変調波信号という)を可変減衰器15に出力する。可変減衰器15は、直交変調器14から被変調波信号を入力すると、被変調波信号を適正な値となるようにレベル調整を行い、レベル調整された被変調波信号(以下、レベル調整信号という)を電力増幅器16に出力する。電力増幅器16は、レベル調整信号を入力すると、規定の出力レベルまで増幅を行い、増幅されたレベル調整信号(以下、出力信号という)を方向性結合器17を経由してアンテナ18に出力する。
次に、送信機200におけるカーテシアンループ方式の負帰還リニアライザ構成における各機能の処理について説明する。方向性結合器17は、可変減衰器22と電力検波器23に出力信号を帰還させるために、電力増幅器16の出力信号の一部(以下、帰還信号という)を可変減衰器22と電力検波器23に出力する。
まず、図4に示す電力検波器23から制御部8を経由して可変減衰器22までの信号ルートの各機能について、図5を用いて説明する。図5は、従来の実施形態に係る電力検波器23が出力電力から出力電圧に変換するときの出力電力と出力電圧の関係を示す変換特性図である。変換特性iは電力検波器23の変換特性であり、電力検波器の個体差により特性にばらつきがある。変換特性jは目標とする規定の変換特性である。
電力検波器23は、方向性結合器17から帰還信号を入力すると、電力検波器23の変換特性iにしたがって電力信号を検波電圧kに変換し、乗算器26に出力する。乗算器26は、電力検波器23から検波電圧kを入力すると、電力検波器23の変換特性iの傾き(以下、傾きという)のばらつきを調整するため、傾き調整部27から出力される傾き調整値との乗算を行い、変換特性iの傾きを調整する。そして乗算器26は、傾きが調整された変換特性に従う検波電圧kを、加算器24に出力する。加算器24は、乗算器26から検波電圧kを入力すると、電力検波器23の規定出力状態における検波電圧kのばらつきを吸収するため、検波値調整部25から出力される調整値との加算を行い、調整した検波電圧lを取得する。そして加算器24は、乗算器26で傾きを調整した規定の変換特性jに従い検波電圧lをA/D変換器11に出力する。このように2つの調整を行うことで、図4に示すA点において、電力検波器23の規定の変換特性jと規定出力状態における検波電圧lに調整される。A/D変換器11は、加算器24から規定の変換特性jに従う規定出力状態における検波電圧lを入力すると、検波電圧lをデジタル信号に変換し、制御部8に出力する。制御部8は、A/D変換器11から変換特性jに従う検波電圧lを入力すると、この変換特性jと検波電圧lに基づいて出力下限閾値mと出力上限閾値nを生成する。制御部8は、この出力下限閾値mと出力上限閾値nによって、送信機200の出力電力に障害が発生しているかを判定する。また、制御部8は、検波電圧lに基づいて可変減衰器22の制御信号を生成し、生成した制御信号をD/A変換器10に出力する。D/A変換器10は、制御部8から可変減衰器22の制御信号を入力するとアナログ信号に変換し、可変減衰器22に出力する。
次に、図4に示す可変減衰器22から加算器12と加算器13までの信号ルートの各機能について説明する。可変減衰器22は、方向性結合器17から帰還信号を入力し、またD/A変換器10からアナログ信号である可変減衰器22の制御信号を入力すると、可変減衰器22の減衰量の調整を行い、直交復調器21に出力する。このように可変減衰器22の減衰量の調整を行うことで、送信機200の出力電力を一定にするAPC機能を実現している。直交復調器21は、可変減衰器22から調整された帰還信号を入力し、また周波数シンセサイザ19から移相器20を経由してLO信号を移相したLO'信号を入力すると、レベル調整された帰還信号をLO'信号によってI信号とQ信号に復調する。そして直交復調器21は、復調したI信号を加算器12に出力し、復調したQ信号を加算器13に出力する。移相器20は、位相調整を行う機器で、加算器12がD/A変換器5から入力するI信号と加算器13がD/A変換器6から入力するQ信号に対して、直交復調器21が出力する帰還信号のI信号とQ信号の位相を逆位相にするための機器である。このように、移相器20によって帰還信号を逆位相とすることで、カーテシアンループ方式の負帰還において系を安定させることができる。
以上のように、送信機200は、方向性結合器17で出力信号の一部を帰還信号として可変減衰器22に帰還させ、可変減衰器22が帰還信号を調整し、直交復調器21により調整した帰還信号のI信号とQ信号が取出される。そして送信信号のI信号から帰還信号のI信号が加算器12により減算され、また送信信号のQ信号から帰還信号のQ信号が加算器13により減算されることによって負帰還が行われる。このようなカーテシアンループ方式の負帰還リニアライザ構成においては、帰還信号のI信号とQ信号を調整することで、送信機200の出力電力を一定としている。つまり出力電力を一定とするためには、可変減衰器22の調整が必要であり、また可変減衰器22の調整は加算器24が出力する検波電圧lに基づいて行われる。また、送信機200の出力電力の低下や増大といった異常の発生を判定するために出力下限閾値mと出力上限閾値nの設定が行われる。このような検波電圧l、出力下限閾値m、及び出力上限閾値nを設定するためには、電力検波器23の出力電力から出力電圧への変換するときの変換特性の傾きのばらつきと、規定出力状態における電力検波器の検波電圧のばらつきの調整を行う必要があった。
尚、カーテシアンループ方式の負帰還リニアライザ構成である送信機に関する技術としては、下記がある。下記は、信号のレベル調整を行う可変減衰器と帰還信号のレベル調整を行う可変減衰器の設定を制御することで、所定の周波数帯域における雑音の増大を低減する技術が記載されている。
特開2008−236641
従来のカーテシアンループ方式の負帰還リニアライザ構成の送信機200において、APC機能を実施するためには、電力検波器23の個体差による変換特性の傾きのばらつきと、送信機の規定出力状態における検波電圧のばらつきの調整を行う必要がある。このため、これらの調整を行うための機器やこれらの機器による調整処理が必要であった。
本発明はこのような状況に鑑みてなされたものであり、上記問題点を解決できる送信機を提供することを目的とする。
発明の送信機は、カーテシアンループ方式の負帰還リニアライザ構成の送信機であって、前記送信機の電力検波器のAPC基準値、出力下限閾値、及び出力上限閾値を取得し記憶する手段と、前記APC基準値に基づき前記送信機の可変減衰器の減衰量を調整する手段と、前記出力下限閾値に出力電力下限の閾値を設定する手段と、前記出力上限閾値に出力電力上限の閾値を設定する手段と、を備えたことを特徴としている。
本発明の送信機は、個々の送信機の電力検波器の規定出力に対応する検波電圧(APC基準値)、出力上限閾値、及び出力下限閾値を予めメモリに記憶させておくことで、従来の電力検波器の個体差による変換特性の傾きのばらつきと、送信機の規定出力状態における検波電圧のばらつきの調整が不要となるので、これらの調整を行う機器にかかる費用や、またこれらの機器による調整処理の時間を削減することができる。
本発明の実施形態に係るカーテシアンループ方式の負帰還リニアライザ構成である送信機の機能ブロック図である。 本発明の実施形態に係る出力状態に対応した乗算係数が設定されている乗算係数テーブルの構成図である。 本発明の実施形態に係る電力検波器が出力電力から出力電圧への変換するときの出力電力と出力電圧の関係を示す変換特性図である。 従来の実施の形態に係るカーテシアンループ方式の負帰還リニアライザ構成である送信機の機能ブロック図である。 従来の実施形態に係る電力検波器が出力電力から出力電圧への変換するときの出力電力と出力電圧の関係を示す変換特性図である。
以下、本発明の実施の形態について図面を参照して説明する。
本発明の実施の形態である送信機100について説明する。図1に本発明の実施形態に係るカーテシアンループ方式の負帰還リニアライザ構成である送信機100の機能ブロック図を示す。本発明の実施の形態である送信機100は、図1に示すようにマッピング部1、ルートロールオフフィルタ2(以下、フィルタ2という)、乗算器3、乗算器4、D/A変換器(D/A)5、D/A変換器(D/A)6、乗算係数テーブル7、制御部(CONT)8、メモリ(MEMORY)9、D/A変換器(D/A)10、A/D変換器(A/D)11、加算器12、加算器13、直交変調器(MOD)14、可変減衰器(ATT)15、電力増幅器16、方向性結合器17、アンテナ18、周波数シンセサイザ(SYN)19、移相器20、直交復調器(DEMOD)21、可変減衰器(ATT)22、及び電力検波部(DET)23から構成されている。また、マッピング部1、フィルタ2、乗算器3、乗算器4、乗算係数テーブル7、及び制御部(CONT)8は、DSP(Digital Signal Processor)30に含まれ、更にDSP30、D/A変換器5、D/A変換器6、D/A変換器10、A/D変換器11、及びメモリ(MEMORY)9は、ベースバンド部(BB)40に含まれる。このような構成の送信機100において、方向性結合器17を設け、方向性結合器17を可変減衰器(ATT)22と電力検波部(DET)23に接続することでカーテシアンループ方式の負帰還リニアライザ構成を実現している。
本実施の形態の送信機100の機能ブロック図と従来の送信機200の機能ブロック図とを比較すると、本実施の形態の送信機100においては、従来の送信機200の加算器24、検波値調整部25、乗算器26、及び傾き調整部27は削除され、乗算器3、乗算器4、乗算係数テーブル7、メモリ9を新たに追加している。以下、新たに追加した乗算器3、乗算器4、乗算係数テーブル7、及びメモリ9の信号ルートの各機能と、本実施の形態の制御部8の処理について説明する。これ以外の機能については、従来の送信機200の処理に同じである。メモリ9は不揮発性メモリであり、APC基準値、出力下限閾値、及び出力上限閾値を送信機100の調整時に記憶させる。APC基準値、出力下限閾値、及び出力上限閾値の取得する手順については、後述する。乗算係数テーブル7は、メモリ9に記憶されているテーブルで、乗算器3と乗算器4が乗算する係数が設定されているテーブルである。乗算係数テーブル7の構成とデータ設定手順については、後述する。制御部8は、メモリ9から読み込んだ出力下限閾値と出力上限閾値に基づいて、送信機100の出力電力に障害が発生しているかを判定するとともに、制御部8は、メモリ9から読み込んだAPC基準値に基づいて可変減衰器22の制御信号を生成し、生成した制御信号をD/A変換器10に出力する。また、制御部8は、乗算係数テーブル7から出力状態に対応する乗算係数を取り出し、乗算器3と乗算器4に出力する。乗算器3は、フィルタ2からI信号を入力すると、乗算係数とI信号とを乗算しD/A変換器5に出力する。乗算器4は、フィルタ2からQ信号を入力すると、乗算係数とQ信号とを乗算しD/A変換器6に出力する。
次に、送信機100における乗算係数テーブル7の構成とデータ設定手順について、図2を用いて説明する。図2は、本発明の実施形態に係る出力状態に対応した乗算器3と乗算器4の乗算係数が設定されている乗算係数テーブル7の構成図である。図2に示す乗算係数テーブル7には「出力状態」と「乗算係数」の項目が設けられ、「出力状態」には「通常状態」、「下限状態」、及び「上限状態」が設定されている。「通常状態」においては、「乗算係数」には「1」が設定される。この設定により、乗算器3と乗算器4は入力する送信信号に対して「1」を乗算するので、DSP30において送信信号の変更は行われない。送信機100を通常稼働させるときにはこの「通常状態」が選択される。
「下限状態」は、後述する図3に示す「出力電力下限の閾値e」を取得するときに、送信機100が選択する状態である。例えば、「出力電力下限の閾値e」が「規定出力−3dB」で、「規定出力c」に対する「規定出力−3dB」が0.5倍(−50%)であれば、「0.5」の平方根である「√0.5」が「下限状態」に対応する「乗算係数」に設定される。この設定により、乗算器3と乗算器4は入力する送信信号に対して「√0.5」を乗算するので、DSP30において送信信号は下限値に変更される。
「上限状態」は、後述する図3に示す「出力電力上限の閾値g」を取得するときに、送信機100が選択する状態である。例えば、「出力電力上限の閾値g」が「規定出力+0.8dB」で、「規定出力c」に対する「規定出力+0.8dB」が1.2倍(+20%)であれば、「1.2」の平方根である「√1.2」が「上限状態」に対応する「乗算係数」に設定される。この設定により、乗算器3と乗算器4は入力する送信信号に対して「√1.2」を乗算するので、DSP30において送信信号は上限値に変更される。
次に、送信機100における電力検波器23の検波電圧に対する出力下限閾値と出力上限閾値を取得する処理手順について、図2と図3を用いて以下順番に説明する。図3は、本発明の実施形態に係る電力検波器が出力電力から出力電圧に変換するときの出力電力と出力電圧の関係を示す変換特性図である。図3には、電力検波器aの変換特性aと電力検波器bの変換特性bが示されている。このように電力検波器の個体差によって特性にばらつきがあるときは、電力検波器23の特性に対応した変換特性を取得する。以下、電力検波器23の変換特性が変換特性aであるときのAPC基準値、出力下限閾値、及び出力上限閾値を取得する手順について説明する。電力検波器23の変換特性が変換特性bであるときでも同様の処理手順で、APC基準値、出力下限閾値、及び出力上限閾値を取得することができる。
(1) まず、可変減衰器22の減衰量を調整し、送信機100の出力電力を最適な値に合わせた状態において、電力検波器23は出力電力である「規定出力c」を入力し、この「規定出力c」に対応する電圧値を「基準電圧d」(以下、「APC基準値d」という)を出力する。このとき、送信機100のAPC機能は動作させた状態である。
(2) 次に、送信機100のAPC機能を停止させ、図2に示す乗算係数テーブル7の「出力状態」において「下限状態」を選択する。「下限状態」に対応する「乗算係数」には「√0.5」が設定されているため、乗算器3と乗算器4は入力する送信信号に対して「√0.5」を乗算する。この結果、DSP30の出力値が「出力電力下限の閾値e」となる。
(3) 次に、電力検波器23は変換特性が変換特性aである「出力電力下限の閾値e」が入力されると「出力下限閾値f」を出力する。
(4) 次に、送信機100のAPC機能を停止させた状態で、図2に示す乗算係数テーブル7の「出力状態」において「上限状態」を選択する。「上限状態」に対応する「乗算係数」には「√1.2」が設定されているため、乗算器3と乗算器4は入力する送信信号に対して「√1.2」を乗算する。この結果、DSP30の出力値が「出力電力上限の閾値g」となる。
(5) 次に、電力検波器23は変換特性が変換特性aである「出力電力上限の閾値g」が入力されると「出力上限閾値h」を出力する。
以上のような本実施の形態の送信機100において、個々の送信機100の規定出力状態における電力検波器のAPC基準値、出力下限閾値、及び出力上限閾値を上記のように取得してメモリ9に記憶させておき、APC基準値に基づいて可変減衰器22の減衰量の調整を行うことで送信機100の出力電力を一定に保ち、また出力下限閾値と出力上限閾値により送信機100の出力電力の低下や増大といった異常の発生を判定する。
以上の本実施の形態によれば、本発明のカーテシアンループ方式の負帰還リニアライザ構成の送信機100において、個々の送信機100の出力電力を一定に保ち、出力電力の低下や増大といった異常が発生しているかの判定を容易に行うことが可能となる。また、本実施の形態によれば、電力検波23が変換特性a、変換特性bのようにばらついていても、メモリ9に記憶したAPC基準値、出力下限閾値、及び出力上限閾値を基に、等価的に図3に示した規定の特性aを制御部8で求めることができるので、従来のような加算器24、検波値調整部25、乗算器26、及び傾き調整部27でのめんどうな調整処理が不要となる。
以上の実施態様の特徴をまとめると次のようになる。
(1) 発明の送信機は、カーテシアンループ方式の負帰還リニアライザ構成の送信機であって、前記送信機の電力検波器のAPC基準値、出力下限閾値、及び出力上限閾値を取得し記憶する手段と、前記APC基準値に基づき前記送信機の可変減衰器の減衰量を調整する手段と、前記出力下限閾値に出力電力下限の閾値を設定する手段と、前記出力上限閾値に出力電力上限の閾値を設定する手段と、を備えたことを特徴としている。
(2) (1)の送信機は、前記送信機の出力状態に対応した乗算係数が設定されている乗算係数テーブルを記憶する手段を備えていることを特徴としている。
(3) (2)の送信機の前記乗算係数テーブルの前記出力状態は、通常状態、下限状態、及び上限状態あることを特徴としている。
(4) (3)の送信機の前記出力電力下限の閾値は、前記送信機の規定出力と前記下限状態に対応した前記乗算係数を乗算して取得することを特徴としている。
(5) (3)の送信機の前記出力電力上限の閾値は、前記送信機の規定出力と前記上限状態に対応した前記乗算係数を乗算して取得することを特徴としている。
(6) 本発明の送信機の出力電力の制御方法は、カーテシアンループ方式の負帰還リニアライザ構成の送信機であって、前記送信機の電力検波器のAPC基準値、出力下限閾値、及び出力上限閾値を取得し記憶する工程と、前記APC基準値に基づき前記送信機の可変減衰器の減衰量を調整する工程と、前記出力下限閾値に出力電力下限の閾値を設定する工程と、前記出力上限閾値に出力電力上限の閾値を設定する工程と、を備えたことを特徴としている。
本発明は、送信機に好適であるが、電力検波器を使用する装置に広く適用可能である。
1・・・・・マッピング部
2・・・・・フィルタ(ルートロールオフフィルタ)
3・・・・・乗算器
4・・・・・乗算器
5・・・・・D/A変換器(D/A)
6・・・・・D/A変換器(D/A)
7・・・・・乗算係数テーブル
8・・・・・制御部(CONT)
9・・・・・メモリ(MEMORY)
10・・・・・D/A変換器(D/A)
11・・・・・A/D変換器(A/D)
12・・・・・加算器
13・・・・・加算器
14・・・・・直交変調器(MOD)
15・・・・・可変減衰器(ATT)
16・・・・・電力増幅器
17・・・・・方向性結合器
18・・・・・アンテナ
19・・・・・周波数シンセサイザ(SYN)
20・・・・・移相器
21・・・・・直交復調器(DEMOD)
22・・・・・可変減衰器(ATT)
23・・・・・電力検波部(DET)
24・・・・・加算器
25・・・・・検波値調整部(ADJ)
26・・・・・乗算器
27・・・・・傾き調整部(ADJ)
30・・・・・DSP
40・・・・・BB
50・・・・・DSP
60・・・・・BB
100・・・・送信機
200・・・・送信機

Claims (1)

  1. カーテシアンループ方式の負帰還リニアライザ構成の送信機であって、
    前記送信機の電力検波器のAPC基準値、出力下限閾値、及び出力上限閾値を取得し記憶する手段と、
    前記APC基準値に基づき前記送信機の可変減衰器の減衰量を調整する手段と、
    前記出力下限閾値に出力電力下限の閾値を設定する手段と、
    前記出力上限閾値に出力電力上限の閾値を設定する手段と、
    を備えたことを特徴とする送信機。
JP2009229398A 2009-10-01 2009-10-01 送信機 Pending JP2011077978A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229398A JP2011077978A (ja) 2009-10-01 2009-10-01 送信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229398A JP2011077978A (ja) 2009-10-01 2009-10-01 送信機

Publications (1)

Publication Number Publication Date
JP2011077978A true JP2011077978A (ja) 2011-04-14

Family

ID=44021428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229398A Pending JP2011077978A (ja) 2009-10-01 2009-10-01 送信機

Country Status (1)

Country Link
JP (1) JP2011077978A (ja)

Similar Documents

Publication Publication Date Title
EP1048176B1 (en) Apparatus and method of linearizing a power amplifier in a mobile radio communication system
AU2007211189B2 (en) Supply voltage control for a power amplifier
JP3880329B2 (ja) ループゲイン制御方法及び電力増幅回路
US6968163B2 (en) Method and transmission circuit for generating a transmission signal
EP2238684B1 (en) Circuit with a power amplifier and amplification method
JP2000286915A (ja) 信号変調回路及び信号変調方法
JP2005101940A (ja) 増幅回路
US8391814B2 (en) Power control loop, transmitter with the power control loop and method for controlling output power of a transmitter device
JP2007288329A (ja) 信号処理回路および信号処理方法
JP2004254175A (ja) 非線形歪補償回路および非線形歪補償方法ならびに送信回路
JP2008172544A (ja) ダイオードリニアライザを用いた歪補償回路
JP5401630B2 (ja) コヒーレント光受信機における同相成分および直交成分の電力調整
JP2007221613A (ja) 歪補償方法および装置
JP2011077978A (ja) 送信機
EP1158667A2 (en) Digital demodulation apparatus
JP2008236641A (ja) 送信機
JP5206828B2 (ja) 信号処理回路および信号処理方法
JP6741946B2 (ja) 偏移制御回路および無線機
JP2011071834A (ja) 無線通信装置
JP2005525738A (ja) 送信信号の形成方法
JP2000244341A (ja) カーテシアン・フィードバック回路における飽和防止回路
JP2003142950A (ja) 電力増幅器
JP2005236715A (ja) 歪補償回路
JP3647021B2 (ja) デジタル無線機
JP2008219674A (ja) 前置歪補償装置およびその伝達関数決定方法