JP2011077331A - 検査装置及び検査方法 - Google Patents

検査装置及び検査方法 Download PDF

Info

Publication number
JP2011077331A
JP2011077331A JP2009227804A JP2009227804A JP2011077331A JP 2011077331 A JP2011077331 A JP 2011077331A JP 2009227804 A JP2009227804 A JP 2009227804A JP 2009227804 A JP2009227804 A JP 2009227804A JP 2011077331 A JP2011077331 A JP 2011077331A
Authority
JP
Japan
Prior art keywords
electron beam
secondary electrons
substrate
irradiation
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009227804A
Other languages
English (en)
Inventor
Kaoru Fujiwara
馨 藤原
Misako Saito
美佐子 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009227804A priority Critical patent/JP2011077331A/ja
Priority to TW099133058A priority patent/TW201131675A/zh
Priority to CN2010102999750A priority patent/CN102033076A/zh
Priority to KR1020100095025A priority patent/KR20110035975A/ko
Publication of JP2011077331A publication Critical patent/JP2011077331A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】絶縁部及び導電部を含む回路パターンが形成された基板に対して、導電部であるべき部位が絶縁部となっている欠陥の検査を高精度に行うこと。
【解決手段】絶縁部及び導電部を含む回路パターンがその表層部に形成された基板(ウエハW)を真空容器21内の載置台22に載置する。次いで前記ウエハWに対して電荷密度が6.7×10-3C/nm以下の電子線を照射し、前記電子線の照射により放出された2次電子を検出する。電子線の照射位置と載置台とを相対的に移動させて、ウエハWの検査対象領域全体において、放出された2次電子の検出結果と、ウエハW上の電子線の照射位置とを対応付けたデータを取得し、このデータに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査する。
【選択図】図7

Description

本発明は、絶縁部及び導電部を含む回路パターンがその表層部に形成された基板に対して、導電部であるべき部位が絶縁部となっている欠陥の検査を行う技術に関する。
半導体装置の製造工程において、半導体ウエハ(以下「ウエハ」という)上に形成されたパターンの欠陥を検査する手法については、電子線を用いたSEM(Scanning Electron Microscope)式の検査方法が知られている(例えば特許文献1参照)。
このSEM式の検査方法は、図12に示すように、真空容器10の上方側に設けられた電子線放出手段11から載置台12上のウエハWに対して電子線(1次電子)を照射し、ウエハWの表層から放出される2次電子を検出器13により検出する手法である。電子線の入射により、ウエハWからは電子線が弾性的に反射した反射電子と、ウエハWの内部で発熱や遷移などによりエネルギーが電子線よりも小さくなった2次電子とが放出される。この際加速電圧を大きくしすぎると、一次電子(反射電子)が二次電子よりも多くなるので、加速電圧をある値よりも低く設定し、2次電子を利用して欠陥検出を行っている。
ところでウエハWでは、導電部(導電体よりなる部分)である配線層が、絶縁部(絶縁体よりなる部分)である絶縁層内に埋め込まれた構造において、レジストパターン形成時の現像欠陥や配線の埋め込み不良等により、本来導電部であるべき部位に、孔や下地と電気的に接合していない領域が形成されてしまうことがある。ここで一般的に電子線の照射直後においては、絶縁部の方が導電部よりも2次電子の放出量が多い。電子線は導電部には多く吸収されるため、2次電子の放出量が少なくなるが、絶縁部においては吸収量が少なく、従って2次電子の放出量が多くなるからである。
一方電子線の照射直後に絶縁部から2次電子が多量に放出された後は、電子線を照射したときには導電部の方が絶縁部よりも2次電子の放出量が多くなる。絶縁部では電子線照射直後の2次電子の放出により正電荷がチャージされるため、それ以降は電子線を照射しても2次電子が放出されにくくなるからである。このように導電部と絶縁部とでは2次電子の放出量が異なるため、この2次電子の放出量の違いを利用して、本来導電部であるべき部位に存在する絶縁部を欠陥として検出することができる。実際には電子線を照射したときに放出される2次電子数をカウントして、このカウント数に対応する輝度を求め、ウエハWにおける電子線照射部位と前記輝度とを対応付けて表示する画像を作成し、当該画像において導電部と絶縁部の輝度の違いに基づいて欠陥の検出を行っている。
しかしながらパターンの微細化が進み、配線層の線幅がより細くなり、欠陥部位がより小さくなっていることから、画像の解像度を高くしても、従来の手法では、画像に基づいて欠陥を精度よく検出することが困難となる懸念がある。
特開2002−216698号
本発明はこのような問題を解決するためになされたものであり、絶縁部及び導電部を含む回路パターンがその表層部に形成された基板に対して、導電部であるべき部位が絶縁部となっている欠陥を高精度に検出することができる技術を提供することにある。
このため本発明の検査装置は、絶縁部及び導電部を含む回路パターンがその表層部に形成された基板を検査する検査装置において、
前記基板を載置する載置台がその内部に設けられた真空容器と、
前記真空容器内を真空排気する真空排気手段と、
前記載置台上の基板に対して電荷密度が6.7×10-3C/nm以下の電子線を照射するための電子線照射手段と、
前記基板の検査対象領域全体に電子線を走査するために、電子線の照射位置と載置台とを相対的に移動させる移動手段と、
前記電子線の照射により基板から放出される2次電子を検出するための電子検出手段と、
この電子検出手段の検出結果と、基板上の電子線の照射位置とを対応付けたデータを取得する手段と、
前記データに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査するための手段と、を備えたことを特徴とする。
この際、前記電子線照射手段は、電子線を放出する電子線放出手段と、この電子線放出手段から放出される電子線を基板上に集束させる集束レンズと、を備え、前記電子線の電荷密度は、前記集束レンズの焦点位置を調整することにより設定するようにしてもよい。
また本発明の検査方法は、絶縁部及び導電部を含む回路パターンがその表層部に形成された基板を検査する検査方法において、
前記基板を真空容器内の載置台に載置して、前記真空容器内を真空排気する工程と、
前記載置台上の基板に対して電荷密度が6.7×10-3C/nm以下の電子線を照射する工程と、
前記基板の検査対象領域全体に電子線を走査するために、電子線の照射位置と載置台とを相対的に移動させる工程と、
前記電子線の照射により放出された2次電子を検出する工程と、
この放出された2次電子の検出結果と、基板上の電子線の照射位置とを対応付けたデータを取得する工程と、
前記データに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査する工程と、を含むことを特徴とする。
本発明によれば、電荷密度が6.7×10-3C/nm以下の電子線を基板に照射しているので、電荷密度が6.7×10-3C/nmよりも大きい電子線を照射する場合に比べて、電子線照射直後に絶縁部から放出される2次電子量が多くなる。このため絶縁部では当該2次電子放出後にチャージされる正電荷量が多くなり、その後に電子線を照射したときに、導電部における絶縁部近傍では、放出される2次電子が絶縁部側に引き寄せられ、見かけ上2次電子の放出量が導電部よりも少なくなる領域が形成される。これにより前記2次電子の放出量の検出結果と、基板上の電子線の照射位置とを対応させたデータを取得すると、本来導電部であるべき部位が絶縁部となっている欠陥が存在する領域においては、欠陥のみならず欠陥周囲においても、導電部に比べて前記検出される2次電子量が少なくなるので、見かけ上欠陥が大きくなり、欠陥部分を高精度に検出できる。
本発明の実施の形態に係る検査装置の一例を示す縦断面図と、当該検査装置に設けられた制御部の構成図である。 基板上に区画された単位領域(フレーム)と単位ピクセルの一例を示す平面図と、検査時に取得される測定マップの一例を示す平面図である。 基板の表層部の一部を示す模式図である。 電子線の電荷密度調整を説明する縦断面図である。 本発明の検査方法の一例を示すフローチャートである。 測定マップの一例を示す平面図である。 基板の表層部の一部を示す縦断面図と測定マップを示す平面図である。 基板の表層部の一部を示す縦断面図と測定マップを示す平面図である。 電荷密度と、二次電子放出量の関係を示す特性図である。 二次電子放出率の時間変化を示す特性図である。 欠陥検査の他の例を示す平面図である。 従来の検査装置の一例を示す縦断面図である。
本発明に係る検査装置の一実施の形態について、図1を参照して説明する。図1中の21は真空容器であり、この真空容器21内の下部には、ウエハWを載置するための載置台22が設けられている。この載置台22は、X−Y駆動機構23によって水平方向に移動できるように構成されている。載置台22の表面には、ウエハWを保持するための静電チャック24が設けられており、また載置台22の内部には、図示しない外部の搬送アーム機構との間において、ウエハWの受け渡しを行うための図示しない昇降ピンが設けられている。この載置台22の内部には、電子線の照射により昇温するウエハWの冷却を行うための冷却機構25が設けられている。この冷却機構25は、例えば真空容器21の外部との間において冷媒が循環するように構成されており、載置台22の上面に開口する図示しないガス供給口からバックサイドガスをウエハWの裏面側に供給し、当該冷却機構25とウエハWとの間における熱交換を速やかに行うようになっている。この載置台22には、負の電圧をウエハWに対して印加するための電源26が接続されており、この電源26は、ウエハW近傍に放出されてきた電子線(EB(エレクトロビーム):1次電子)の速度を遅くする役割を果たしている。
また真空容器21の天井部には、載置台22に対向するように、ウエハWに電子線を放出する電子放出手段3が設けられている。この電子放出手段3には負の電圧を印加するための電源31が接続されており、この電源31と既述の載置台22の電源26とに印加される電圧の差は、ウエハWに照射される電子線の加速電圧となる。さらに電子放出手段3と載置台22との間には、電子放出手段3から放出された電子線を集束するための集束レンズ32と、電子線の通過範囲を規制するアパーチャ33及び電子線を走査するための複数の走査コイル34と、が設けられている。さらにまた、載置台22と走査コイル34との間には、電子線の照射によってウエハWから放出される2次電子を検出するための電子検出手段35が設けられている。
前記集束レンズ32は、例えば磁石の作用を利用した磁界レンズによりなり、電子線の通過領域を囲むようにコイル状に巻いた電線に直流の電流を流すことにより、回転対象な磁力線を生成し、電子線に対するレンズ作用が生じるように構成されている。このためコイルに流す電流値を変えることにより、レンズの強さ(焦点距離)が調整されるようになっている。当該実施の形態は、集束レンズ32における焦点位置を調整することにより、後述するように、電子線の電荷密度を6.7×10-3C/nm以下に制御している。なお、集束レンズ32の焦点位置の調整に加え、アパーチャ33により電子線の通過範囲を調整することで、電子線の電荷密度を制御してもよい。
前記電子線放出手段3と集束レンズ32とにより、前記載置台22上のウエハWに対して電荷密度が6.7×10-3C/nm以下の電子線を照射するための電子線照射手段が構成されている。また前記X−Y駆動機構23と走査コイル34とにより、ウエハWの検査対象領域全体に電子線を走査するために、電子線の照射位置と載置台とを相対的に移動させる移動手段が構成されている。
真空容器21の底部には排気ポート36が形成されており、この排気ポート36には、バルブV1を介して真空排気手段をなす真空ポンプ37が接続されている。真空容器21の側壁には搬送口38が形成されており、この搬送口38を介してウエハWが真空容器21内に搬入されることとなる。
この検査装置2は、例えばコンピュータからなる制御部4を備えている。この制御部4はCPU41、メモリ42、プログラム格納部43、表示部44等を備えており、前記プログラム格納部43には、欠陥測定プログラム45や欠陥情報作成プログラム46等が格納されている。前記プログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク(MO)及びメモリーカード等の記憶媒体である記憶部47に格納され、記憶部47から制御部4にインストールされる。
前記欠陥検出プログラム45は、検査装置2の各部を制御して、ウエハWに対して欠陥の検査を行うためのプログラムである。ここで欠陥の測定の際には、例えば図2(a)に示すように、ウエハWの表面を略四角形領域よりなる多数個の分割領域(フレーム)Fに区画して検査が行われる。つまり一つのフレームFに電子線を照射して、当該フレームFにおける2次電子の検出を行った後、電子線を照射するフレームFの位置を順次ずらしていき、結果としてウエハWの検査対象領域全面のスキャンを行う。この検査対象領域とは、ウエハW表面の回路形成領域に相当する領域である。
このフレームFは、図2(a)に示すように、単位ピクセルaを横に複数個例えばn個(nは2以上の整数)並べた単位ビーム領域bを、縦に複数個例えばm個(mは2以上の整数)並べて構成されている。この単位ピクセルaとは、電子線のビームスポットを照射する単位領域である。つまり電子線を、ある単位ピクセルaに所定時間照射した後、当該電子線を走査コイル34によりX方向に順次移動させて次の単位ピクセルaに移動する。このときの移動回数は(n−1)回例えば数百回であり、単位ビーム領域bには単位ピクセルaがn個存在することになる。1つの単位ピクセルaに電子線を照射する時間は例えば10×10−9秒程度であり、1つの単位ビーム領域b内に電子線を照射することを1スキャンとしている。このような単位ビーム領域bを、例えば複数の走査コイルから構成されるコイル34により間欠的にY方向に順次ずらしてm個形成し、これを1フレームとする。例えば1フレームの大きさは、500×6000ピクセル程度である。この際、単位ピクセルaの大きさは、後述するように、集束レンズ32による焦点位置の調整により変化する。次いで、ウエハW側をX−Y移動機構23により順次移動させ、指定した検査範囲(フレーム)を順次検査する。
前記欠陥検出プログラム45は、前記フレームFの全てについてデータを得るために、走査コイル34やX−Y移動機構23を制御すると共に、電子検出手段35からの2次電子の検出量即ち電子線の照射により放出された2次電子量に基づいてデータを作成するように構成されている。放出された2次電子は電子検出手段35においてカウントされるので、後述するように単位ピクセルa毎に2次電子のカウント数が積算され、例えば前記積算値に対応する輝度がデータとして取得される。
この例では2次電子のカウント数の積算値に対応して3種類の輝度が用意されている。つまり前記2次電子の積算値がしきい値X1より多い場合には最も明るい輝度61で、2次電子の積算値がしきい値X2より少ない場合には最も暗い輝度62、これら以外であれば中間の輝度63で表示されるように設定されている。
ここで当該検査方法が適用される基板であるウエハWは、例えば図3(a)の断面図及び図3(b)の平面図に示すように、その表層部において、例えば絶縁層(絶縁部)51内に導電部52が配線層として埋め込まれた、絶縁部51及び導電部52を含む回路パターンが形成されたものである。このようなウエハWに電子線を照射すると、「背景技術」の項でも記載したように、2次電子の放出量(放出数)は、電子線の照射直後は、絶縁部51の方が導電部52よりも多く、それ以降は電子線を照射しても絶縁部51は正電荷にチャージされるので、導電部52の方が2次電子の放出量が多くなる。
この際、後述の評価実験からも明らかなように、電子線照射直後に2次電子の放出量は急激に少なくなり、照射後1×10−9秒後にはほぼ一定となっていることから、絶縁部51では電子線照射直後に2次電子が放出されにくい状態になることが理解される。これに対し、導電部51からは電子線が照射されれば、照射直後のみならずその後も継続して2次電子が放出されるため、単位ピクセルa毎に電子線を1×10−9秒よりも長い時間照射し、これにより放出された2次電子数を積算していくと、結果として導電部52の方が絶縁部51よりも2次電子数の積算値が大きくなる。
この際、電荷密度が6.7×10-3C/nm以下の電子線を照射すると、後述の評価実験から明らかなように、電荷密度が6.7×10-3C/nmより大きい場合に比べて電子線の照射直後の2次電子の放出量が多い。ここで電子線の照射直後には絶縁部51の方が導電部52よりも2次電子の放出量が多いことを考えると、この2次電子の放出量の多さは、絶縁部51における2次電子の放出量に因るものと推察される。このように電荷密度が6.7×10-3C/nm以下の電子線を照射すると、絶縁部51から多量の2次電子が放出されるので、当該絶縁部51では正電荷のチャージ量が多くなり、より2次電子が放出されにくい状態となる。
一方導電部52では、電子線の照射により2次電子を放出し続けるため、絶縁部51に正電荷がチャージされた後においては、既述のように絶縁部51に比べて2次電子の放出量が多くなる。しかしながら絶縁部51における正電荷のチャージ量が多いことから、導電部52と絶縁部51の境界近傍においては、導電部52から放出された2次電子が絶縁部51の正電荷に引き寄せられ、トラップされる現象が発生すると推察される。
従って導電部52における絶縁部51の近傍領域では、2次電子が放出されているにも関わらず電子検出手段35により検出されず、電子検出手段35によりカウントされる2次電子数は導電部52よりも少なくなってしまい、絶縁部51に近い値になる。このため2次電子のカウント数の積算値を求めると、その積算値は、導電部52>導電部52における見かけ上2次電子の放出量が少ない領域>絶縁部51の順で多くなる。従って、2次電子の積算値に基づいて、導電部52ではしきい値X1よりも多くなり、絶縁部51ではしきい値X2よりも少なくなるようにしきい値X1、X2を予め求めておけば、導電部52と、絶縁部51と、導電部52における見かけ上2次電子の放出量が少ない領域について異なる輝度で表示することができることになる。
こうして欠陥検出プログラム45は、前記単位ピクセルa毎に得られた、電子線の照射により放出された2次電子の検出量と、電子線の照射位置とを対応付けたデータを取得するように構成され、さらにこのプログラム45により、前記データに基づいて、フレームF毎に、例えば図2(b)に示すような測定マップMが作成される。この測定マップMは、ウエハW上のある位置において、対応する単位ピクセルaの輝度を表示したものであり、既述のように2次電子のカウント数の積算値に対応する輝度61〜63で表示される。この例では、導電部52は輝度61、絶縁部51は輝度62、導電部52において見かけ上2次電子の放出量が少ない領域は輝度63で表示されることになる。
前記欠陥情報作成プログラム46は、前記得られた測定マップMに基づいて欠陥情報を作成するように構成されている。例えば作成された測定マップMから、欠陥がないウエハWについて作成された標準マップM0を差し引きしたり、この差し引きにより得られた欠陥マップM1を拡大して表示部44に表示する役割を果たしている。この欠陥マップM1は、ウエハWの表面上の位置と欠陥部分とを対応させて表示したものである。当該実施の形態では、この欠陥情報作成プログラム46が、電子線の照射により放出された2次電子の検出量と、電子線の照射位置とを対応付けたデータに基づいて、導電部52であるべき部位が絶縁部51となっている欠陥の有無を検査するための手段に相当する。
またメモリ42は、前記標準マップM0や前記測定マップ、欠陥マップM1を記憶する手段であり、これら測定マップM等は、例えばフレーム毎に記憶されている。さらに例えばメモリ42にはウエハWに照射する電子線の加速電圧や設定電荷密度、検査時の圧力、温度などの検査パラメータの値が書き込まれる領域を備えており、CPUがプログラムの各命令を実行する際、これらの検査パラメータが読み出され、そのパラメータ値に応じた制御信号がこの検査装置の各部位に送られることになる。
次に、上述の検査装置を用いた検査方法について説明する。先ずウエハWを図示しない搬送機構により検査装置2内に搬送し、載置台22に上に載置する。然る後、このウエハWを静電吸着すると共に、必要に応じて所定の温度となるように温度調整し、また真空容器21内を所定の真空度に設定する。またウエハWに供給される電子線の加速電圧が2000eV以下となるように、既述の電源26,31の電圧を調整する。なお加速電圧をあまり大きくすると、1次電子の放出量が2次電子よりも大きくなって、絶縁部が正電荷にチャージされなくなるので、加速電圧は2000eV以下に設定することが好ましい。
また電子線の電荷密度が、6.7×10-3C/nm以下となるように、集束レンズ32への供給電流を調整する。ここで電子線は、加速電圧やアパーチャ33の開口が同じであれば、図4(a)に示すように、電子線の焦点位置をウエハW表面上に合わせると最も電荷密度が大きくなり、図4(b)に示すように、ウエハW表面から焦点位置をずらすと電荷密度が小さくなる。ここで図4(b)では、ウエハWの上方側に焦点位置を設けた場合を点線により、ウエハWの下方側に焦点位置を設けた場合を一点鎖線により夫々示している。このように集束レンズ32への供給電流を調整し、電子線の焦点位置(フォーカスの度合い)を制御することにより、電子線の電荷密度の制御を行うことができる。これにより電荷密度が低いほど、ウエハWへ照射される電子線のビームスポット領域が大きくなることになる。
そして欠陥測定プログラム45により、検査対象のフレームF1にチャージ用の電子線を照射しながらスキャンし、単位ピクセルa毎に2次電子の放出量をカウントする(図5中ステップS1)。ここで電子線のビームスポット領域は例えば直径10nmのスポット領域であり、例えば最初に照射する開始点を図2に示すウエハWのX方向の左端側であって、Y方向の上端側の単位ピクセルaとし、当該単位ピクセルaを含むフレームF1に電子線が照射されるように、ウエハWを移動させる。そして当該フレームF1内において、開始点の単位ピクセルaから電子線の照射を開始し、走査コイル34により電子線をX方向に移動させて単位ビーム領域b内をスキャンした後、走査コイル34により電子線をY方向に移動させて、次の単位ビーム領域bをスキャンする。こうして当該走査コイル34によりフレームF1内の全単位ピクセルaに電子線を順次照射して、この電子線の照射により放出される2次電子数を単位ピクセルa毎にカウントする。
このようにして当該フレームF1全体に電子線を照射した後、再度同じフレームF1に電子線を照射しながらスキャンし、単位ピクセルa毎に放出された2次電子数をカウントする(ステップS2)。次いで当該フレームF1において、単位ピクセルa毎に、ステップS1及びステップS2にて得られた2次電子のカウント数の積算値を求め(ステップS3)、この積算値とウエハ上の位置とを対応付けたデータを取得する。
この後、当該フレームF1において、前記単位ピクセルa毎のデータに基づいて、2次電子のカウント値の積算値に対応する輝度と、ウエハW上の位置とを対応させた測定マップMを作成し、メモリ42に記憶する(ステップS4)。例えば図6(a)には、本来導電部52であるべき部位が絶縁部となっている欠陥53がある場合の測定マップMを示すが、当該測定マップMでは、導電部52は輝度61、絶縁部51は輝度62、導電部52において見かけ上2次電子の放射量が少ない領域は輝度63で夫々表示されている。
次いで前記測定マップMに基づいて、欠陥部分を検出する(ステップS5)。例えば欠陥情報作成プログラム46により、測定マップMから、予め欠陥がないウエハWについて同様に作成された対応するフレームの標準マップM0(図6(b)参照)を差し引きして欠陥マップM1(図6(c)参照)を得、当該欠陥マップM1を表示部44に拡大して表示する。欠陥マップM1には、図6(c)に示すように、欠陥53のある単位ピクセルaと、この欠陥53により2次電子がトラップされて、見かけ上2次電子の放出量が少なくなった単位ピクセルaがウエハW表面上の位置と対応して表示されている。
続いて同様に、載置台22によりウエハWを水平方向に順次移動させて、次の検査対象のフレームF2に電子線を照射して、放出される2次電子数をカウントして積算していき、当該フレーム2における欠陥マップM1を得る。こうしてウエハWの検査対象領域におけるフレームFの全ての欠陥マップM1を得て、全フレームFに対して欠陥の検出を行い(ステップS6)、例えばウエハWの各座標位置における欠陥の有無と対応させた検査結果マップを得る。そしてウエハWは、検査装置3から図示しない搬送機構により搬出される。
本発明は、電荷密度を6.7×10-3C/nm以下にすることにより、電子線照射直後の2次電子の放出量が多いことを見出した結果、成されたものである。ここで一般的には、電子線の電荷密度を大きくして、導電部52からの2次電子の放出量を増大させることにより、導電部52と絶縁部51との輝度のコントラストを大きくして、欠陥を発見しやすくすることが行われている。しかしながらこの手法では、欠陥部分の大きさは変わらないため、欠陥を見逃すおそれもある。
そこで本発明者らは、電荷密度を種々変えて評価実験を行った結果、電荷密度を6.7×10-3C/nm以下にすることにより、電子線照射直後の2次電子の放出量が極端に多くなり、導電部52から放出される2次電子の一部が絶縁部51の正電荷に引き寄せられる現象が発生することを見出した。
ここで図7は、ウエハWの表層部の一部の縦断面図と、当該表層部の測定マップMとを対応させて示すものであり、図7中左図は電子線照射直後、右図は電子線照射後所定時間経過した状態を夫々示している。ここで所定時間とは、電子線照射後10×10−9秒間である。図7左図には、電子線照射直後において絶縁部51からの2次電子の放出量が多いことを示し、同右図には、絶縁部51でチャージされる正電荷量が多い状態を示している。
このように絶縁部51にてチャージされる正電荷量が多いと、既述のように導電部52から放出される2次電子の一部が絶縁部51の正電荷に引き寄せられ、導電部52における絶縁部51の境界近傍では、見かけ上2次電子の放出量が導電部52よりも少ない領域が発生する。これにより2次電子の放出量と、ウエハWの電子線の照射位置とを対応させたデータを取得すると、当該欠陥53のみならず欠陥53の周囲部分においても2次電子放出量が導電部52とは異なってくるため、見かけ上欠陥53が大きくなり、欠陥の検出を高精度かつ容易に行うことができる。
この際、2次電子の放出量に対応する輝度と、ウエハWの電子線の照射位置とを対応させたデータを取得し、測定マップMを作成すると、図7右図に示すように、欠陥53が存在する領域においては、当該欠陥53のみならず欠陥53の周囲部分も輝度が異なってくるため、あたかも欠陥53が大きくなったように表示される。このため、図6(c)のように測定マップMから標準マップM0を差し引いて欠陥マップM1を取得すると、欠陥53を含む周囲部分が欠陥として残るため、欠陥が微細な場合であっても、その検出が高精度かつ容易に行なわれることになる。なお図7左図のウエハW表層部の断面図は図示の便宜上ハッチングを省略してあり、また電子線照射直後の測定マップMは、照射直後では2次電子が導電部52及び絶縁部51、欠陥53いずれの領域からも多く放出されるので、全ての領域において輝度61で表示される状態を示している。
一方、電子線の電荷密度が6.7×10-3C/nmより大きい場合には、電子線照射直後の2次電子の放出量が、電荷密度が6.7×10-3C/nm以下の場合よりも少ないため、図8に示すように、電子線照射直後の絶縁部51からの2次電子の放出量が少なくなる。この2次電子の放出により絶縁部51は正電荷がチャージされるものの、このチャージ量が少ないため、導電部52から放出される2次電子を引き寄せることができない。従って、同様に測定マップMを作成すると、図8右図に示すように、絶縁部51と導電部52とは異なる輝度62,61で表示されるものの、欠陥53の周囲について導電部52とは異なる輝度で表示することができないので、測定マップM上において欠陥53の大きさを変えることはできず、欠陥53が微細な場合には、見落としてしまうことがある。なお図8左図においても、ウエハW表層部の断面図は図示の便宜上ハッチングを省略してあり、また電子線照射直後の測定マップMでは、全ての領域において同じ輝度61で表示している。
このように上述の実施の形態によれば、電荷密度が6.7×10-3C/nm以下の電子線を照射しているので、導電部であるべき部位が絶縁部となっているパターン上の欠陥53を高精度に容易に検出することができる。また前記欠陥53としては、導電部であるべき部位が下地と電気的に接続されていない部位よりなる欠陥や、導電部中の孔よりなる欠陥等が含まれ、これら欠陥はいずれも導電部であるべき部位が絶縁部となっている欠陥であるので、高精度に検出を行うことができる。
次にウエハWに電子線を照射したときの2次電子の放出量に関する評価実験例について説明する。
(実験例1)
上述の検査装置を用いて、図3と同じように、絶縁層51内に導電部52が埋め込まれたパターンが表層部に形成されたウエハWに対して、電子線の電荷密度を変えて電子線を照射し、そのときの2次電子放出量を計測した。このとき電子線の加速電圧は2000eV以下とし、電子線の電荷密度は、集束レンズ32に供給される電流値を変えて焦点距離を変えることによって調整した。また2次電子放出量は、電子線を照射してから10×10−9秒後までの2次電子のカウント値の総数に対応する輝度の変化により求めた。
この結果を図9に示す。図中横軸は、電子線の電荷密度、縦軸は2次電子放出量をそれぞれ示しているが、既述のように2次電子放出量は輝度の変化により求めたため、任意目盛としている。図9に示すように、電荷密度が小さいほど、電子線を照射してから10×10−9秒後までの2次電子放出量が多くなり、電荷密度が6.7×10-3C/nmよりも大きくなると、2次電子放出量の変化がほとんどないことが認められた。
(実験例2)
さらに、電荷密度を6.7×10-3C/nm以下、この例では1×10-3C/nm程度に設定した場合(実験例)と、電荷密度を6.7×10-3C/nmより大きい値、この例では10×10-3C/nm程度に設定した場合(比較例)とにおいて、ウエハWに対して電子線を照射し、このときの2次電子放出量を計測した。このとき電子線の加速電圧は2000eV以下とし、電子線の電荷密度は、集束レンズ32による焦点距離を変えることによって調整した。また2次電子放出量は、電子線を照射してから10×10−9秒後までの2次電子のカウント値の総数に対応する輝度の変化により求めた。
この結果を図10に示す。図中横軸は、電子線を照射してからの時間、縦軸は2次電子放出率を夫々示し、実験例は点線、比較例は実線により夫々測定結果を示している。ここで2次電子放出率とは、ウエハWに対して照射された1次電子数に対する、ウエハW内部からの2次電子の放出数の割合をいう。図10に示すように、電荷密度が6.7×10-3C/nm以下の実験例では、電荷密度が6.7×10-3C/nmよりも大きい比較例に比べて、電子線照射直後の2次電子放出率が非常に大きいことが認められた。また実験例、比較例いずれも、電子線照射直後の2次電子放出率は大きいものの、その後電子線照射後1×10−9秒以下の極めて短い時間内で急激に小さくなり2次電子放出率がほぼ一定に落ち着くことが確認された。
これら実験例1及び実験例2の結果より、電荷密度が6.7×10-3C/nm以下の電子線を照射することにより、電荷密度が6.7×10-3C/nmよりも大きい電子線を照射する場合に比べて、電子線照射直後の2次電子放出量が非常多くなり、絶縁部にチャージされた正電荷による導電部から放出された2次電子のトラップが得られることが理解できる。
またこれらの結果より、本発明では電荷密度が6.7×10-3C/nm以下の電子線を照射する場合には、電荷密度が0よりは大きい値であって、小さい程電子線照射直後の2次電子放出量がより多くなるため、電荷密度の下限値については、0よりは大きい値であって、絶縁部による導電部から放出された2次電子のトラップが得られる値であればよく、数値を設定する技術的意義はないと思われる。但し下限を敢えて設定するとすれば、2次電子の放出数を精度よく測定できるという見地から、1×10−4C/nm以上である。
以上において上述の実施の形態では、検査対象のフレームに電子線を照射して、これにより放出された2次電子数をカウントする工程を2回行って、放出された2次電子の積算値を求めたが、前記電子線を照射して、放出された2次電子数をカウントする工程は、1回であってもよい。電子線の照射時間は既述のように単位ピクセルa毎に例えば10×10−9秒であり、この1回の照射によっても絶縁部に正電荷がチャージされ、導電部から放出された2次電子のトラップが得られることは、図10の実験例から明らかであるからである。但し実施回数が多いほど、絶縁部51と導電部52と、導電部であるが見かけ上2次電子の放出量が少ない領域における放出2次電子数の積算値の差異が大きくなるため、検査対象のフレームに電子線を照射して、これにより放出された2次電子数をカウントする工程は2回以上であることが好ましい。
さらに検査対象のフレームに電荷密度が6.7×10-3C/nm以下のチャージ用の電子線を照射するときには、電子線の照射により放出された2次電子数をカウントせず、次いで同じフレームに電子線を照射したときに、電子線の照射により放出された2次電子数をカウントする場合も本発明の技術的範囲に含まれる。
さらにまた検査対象のフレームにチャージ用の電子線を照射するときには、電荷密度が6.7×10-3C/nm以下の電子線を照射し、同じフレームに再度電子線を照射するときには、電荷密度を6.7×10-3C/nmより大きい値に変更して照射する場合も、本発明の技術的範囲に含まれる。
さらに本発明では、電子線の照射により基板から放出される2次電子の検出結果と、基板上の電子線の照射位置とを対応付けたデータは、前記2次電子の放出量に基づく輝度と基板上の電子線の照射位置とを対応付けるデータのみならず、前記2次電子数の積算値と基板上の電子線の照射位置とを対応付けたデータであってもよい。
さらに本発明では、電子線の照射により基板から放出される2次電子の検出結果と、基板上の電子線の照射位置とを対応付けたデータに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査するための手段としては、表示部44に表示されるデータや、測定マップMであってもよく、前記データに基づく前記欠陥の有無の検査はオペレータが前記表示部44に表示されるデータや測定マップMに基づいて、目視で行うようにしてもよい。
さらに例えば図11に示すように、同じ測定マップMの一部を利用して欠陥部分の有無を検出してもよい。例えば測定マップMにおいて、単位ビーム領域b毎に、絶縁部51と導電部52とが同じパターンで形成されている場合には、例えば前後に設けられた3つ以上の例えば3つの単位ビーム領域b0〜b2を比較し、他の2つの単位ビーム領域と異なる部位を欠陥53として確認するプログラムを作成してもよい。また同じ測定マップMにおいて欠陥が存在しない正常なパターンの単位ビーム領域b0を標準ビーム領域として把握しておき、検査対象の単位ビーム領域b1とこの標準ビーム領域b0とを比較して欠陥の有無を検出するプログラムを作成してもよい。これらの場合にはこれらプログラムが電子線の照射により基板から放出される2次電子の検出結果と、基板上の電子線の照射位置とを対応付けたデータに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査するための手段に相当する。なおこの例においても、側手マップに基づいてオペレータが目視で欠陥の有無を検出するようにしてもよい。
また電子線の照射により基板から放出される2次電子の検出結果と、基板上の電子線の照射位置とを対応付けたデータは、2次電子のカウント数に導電部のカウント数と、導電部であるが見かけ上2次電子の放出量が少ない領域との間を区別するしきい値を設け、このしきい値を超えているか否かにより、「1」、「0」のデータを取得するものであってもよい。この場合導電部については「1」、絶縁部及び導電部であるが見かけ上2次電子の放出量が少ない領域については「0」となるので、欠陥及び欠陥の周囲領域は「0」となり、あたかも欠陥の領域が大きくなったように捉えることができる。
また集束レンズ32による電子線の電荷密度の調整は、載置台22と電子線放出手段3との相対的距離を変えて、集束レンズ32の焦点位置を調整することにより行うようにしてもよいし、集束レンズ32への供給電流値の調整と、載置台22と電子線放出手段3との相対的距離の調整とを組み合わせて行うようにしてもよい。
また本発明は、導電部と絶縁部とが混在する構造であって、導電部であるべき部位が絶縁部となっている欠陥が電気的に絶縁部となっている欠陥であっても、物理的に絶縁部となっている欠陥であっても適用できる。さらに導電部であるべき部位が絶縁部となっている欠陥を検出する際に、同時に絶縁部であるべき部位が導電部となっている欠陥を検出する場合も本発明の技術的範囲に含まれる。
W ウエハ
2 検査装置
21 真空容器
22 載置台
23 X,Y駆動機構
3 電子放出手段
32 集束レンズ
35 電子検出手段
37 真空ポンプ
4 制御部
44 表示部
45 欠陥検出プログラム
46 欠陥情報作成プログラム
51 絶縁部(絶縁層)
52 導電部(配線層)
53 欠陥

Claims (3)

  1. 絶縁部及び導電部を含む回路パターンがその表層部に形成された基板を検査する検査装置において、
    前記基板を載置する載置台がその内部に設けられた真空容器と、
    前記真空容器内を真空排気する真空排気手段と、
    前記載置台上の基板に対して電荷密度が6.7×10-3C/nm以下の電子線を照射するための電子線照射手段と、
    前記基板の検査対象領域全体に電子線を走査するために、電子線の照射位置と載置台とを相対的に移動させる移動手段と、
    前記電子線の照射により基板から放出される2次電子を検出するための電子検出手段と、
    この電子検出手段の検出結果と、基板上の電子線の照射位置とを対応付けたデータを取得する手段と、
    前記データに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査するための手段と、を備えたことを特徴とする検査装置。
  2. 前記電子線照射手段は、電子線を放出する電子線放出手段と、この電子線放出手段から放出される電子線を基板上に集束させる集束レンズと、を備え、
    前記電子線の電荷密度は、前記集束レンズの焦点位置を調整することにより設定されることを特徴とする請求項1記載の検査装置。
  3. 絶縁部及び導電部を含む回路パターンがその表層部に形成された基板を検査する検査方法において、
    前記基板を真空容器内の載置台に載置して、前記真空容器内を真空排気する工程と、
    前記載置台上の基板に対して電荷密度が6.7×10-3C/nm以下の電子線を照射する工程と、
    前記基板の検査対象領域全体に電子線を走査するために、電子線の照射位置と載置台とを相対的に移動させる工程と、
    前記電子線の照射により放出された2次電子を検出する工程と、
    この放出された2次電子の検出結果と、基板上の電子線の照射位置とを対応付けたデータを取得する工程と、
    前記データに基づいて、導電部であるべき部位が絶縁部となっている欠陥の有無を検査する工程と、を含むことを特徴とする検査方法。
JP2009227804A 2009-09-30 2009-09-30 検査装置及び検査方法 Pending JP2011077331A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009227804A JP2011077331A (ja) 2009-09-30 2009-09-30 検査装置及び検査方法
TW099133058A TW201131675A (en) 2009-09-30 2010-09-29 Inspection device and inspection method
CN2010102999750A CN102033076A (zh) 2009-09-30 2010-09-30 检查装置和检查方法
KR1020100095025A KR20110035975A (ko) 2009-09-30 2010-09-30 검사 장치 및 검사 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227804A JP2011077331A (ja) 2009-09-30 2009-09-30 検査装置及び検査方法

Publications (1)

Publication Number Publication Date
JP2011077331A true JP2011077331A (ja) 2011-04-14

Family

ID=43886254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227804A Pending JP2011077331A (ja) 2009-09-30 2009-09-30 検査装置及び検査方法

Country Status (4)

Country Link
JP (1) JP2011077331A (ja)
KR (1) KR20110035975A (ja)
CN (1) CN102033076A (ja)
TW (1) TW201131675A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206192B2 (ja) * 2000-11-09 2009-01-07 株式会社日立製作所 パターン検査方法及び装置
JP3711244B2 (ja) * 2001-01-18 2005-11-02 株式会社東芝 ウエハの欠陥検査装置
JP4943733B2 (ja) * 2005-04-28 2012-05-30 株式会社日立ハイテクノロジーズ 荷電粒子ビームを用いた検査方法及び検査装置
JP2007265931A (ja) * 2006-03-30 2007-10-11 Hitachi High-Technologies Corp 検査装置及び検査方法

Also Published As

Publication number Publication date
CN102033076A (zh) 2011-04-27
KR20110035975A (ko) 2011-04-06
TW201131675A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP4248382B2 (ja) 荷電粒子ビームによる検査方法および検査装置
JP5164317B2 (ja) 電子線による検査・計測方法および検査・計測装置
US7521679B2 (en) Inspection method and inspection system using charged particle beam
US7532328B2 (en) Circuit-pattern inspection apparatus
JP3973372B2 (ja) 荷電粒子線を用いた基板検査装置および基板検査方法
US8421008B2 (en) Pattern check device and pattern check method
JP5174750B2 (ja) 荷電粒子線装置及び荷電粒子線画像を安定に取得する方法
JP2001313322A (ja) 荷電粒子ビームによる検査方法および検査装置
KR101685274B1 (ko) 하전 입자선 장치
JP2006228999A (ja) 荷電粒子ビームによる検査方法および検査装置
JP3823073B2 (ja) 電子線を用いた検査方法及び検査装置
JP2004340650A (ja) 回路パターンの検査装置
JP4728361B2 (ja) 荷電粒子線を用いた基板検査装置および基板検査方法
US6952105B2 (en) Inspection method and apparatus for circuit pattern of resist material
JP2011077331A (ja) 検査装置及び検査方法
JP2006024921A (ja) 荷電粒子ビームによる検査方法および検査装置
JP4147233B2 (ja) 電子線装置
JP2005203241A (ja) 荷電粒子ビーム観察方法及び荷電粒子ビーム装置
JP4625376B2 (ja) 電子ビームによる検査方法
JP2007285966A (ja) 欠陥検査装置及び欠陥検査方法
JP2009200120A (ja) 基板検査方法、基板検査装置及び記憶媒体
JP2008032742A (ja) 回路パターンの検査装置
JP2008166635A (ja) 回路パターンの検査装置、および、回路パターンの検査方法
KR20030075925A (ko) 주사전자현미경을 이용한 반도체소자의 분석방법
JP2013145183A (ja) 荷電粒子線装置および試料表面計測方法