JP2011064530A - 核種変換装置及び核種変換方法 - Google Patents

核種変換装置及び核種変換方法 Download PDF

Info

Publication number
JP2011064530A
JP2011064530A JP2009214215A JP2009214215A JP2011064530A JP 2011064530 A JP2011064530 A JP 2011064530A JP 2009214215 A JP2009214215 A JP 2009214215A JP 2009214215 A JP2009214215 A JP 2009214215A JP 2011064530 A JP2011064530 A JP 2011064530A
Authority
JP
Japan
Prior art keywords
deuterium
pressure
light
nuclide conversion
nuclide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009214215A
Other languages
English (en)
Inventor
Yasuhiro Iwamura
康弘 岩村
Takehiko Ito
岳彦 伊藤
Noriko Yamazaki
紀子 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009214215A priority Critical patent/JP2011064530A/ja
Publication of JP2011064530A publication Critical patent/JP2011064530A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】構造体中で電子密度がより高い部分を発生かつ持続させることにより、核種変換反応を促進させる核種変換装置及び核種変換方法を提供する。
【解決手段】核種変換を施される物質が添加させられた構造体20と、前記構造体20を両側から挟み込むようにして配置され、前記構造体20により密封可能な閉空間をなす重水素高圧部11及び重水素低圧部12と、前記重水素高圧部11を、相対的に重水素の圧力が高い状態とする高圧化手段14と、前記重水素低圧部12を、相対的に重水素の圧力が低い状態とする低圧化手段13と、前記構造体20の一方の表面に光を照射する光源18とを備えることを特徴とする核種変換装置10。
【選択図】図1

Description

本発明は、放射性廃棄物処理技術、自然界に豊富に存在する元素から希少な元素を生成する技術、及び凝集系核反応によるエネルギー発生技術などに係る核種変換装置、並びに、該装置を用いた核種変換方法に関する。
加速器や原子炉等の大規模な装置に比べて、相対的に小規模な装置で核種変換を行うことが可能な核種変換装置及び核種変換方法が、特許文献1に開示されている。
特許文献1に開示される核種変換装置は、パラジウム(Pd)やパラジウム合金などの水素吸蔵金属または水素吸蔵合金、及び、これらに対して相対的に仕事関数が低い物質(CaO)を積層させた構造体と、内部が気密保持可能とされた吸蔵室と、構造体を介して気密保持可能に設けられた放出室と、吸蔵室に重水素ガスを供給する重水素供給手段と、放出室を真空状態にする排気手段とを備える。構造体の一方の表面に核種変換を施される物質を添加される。吸蔵室から放出室に向かって重水素ガスが構造体を透過する際、核種変換が施される物質において核種変換が発生する。
特開2002−202392号公報(段落[0009]〜[0014]、[0037]〜[0039])
核種変換反応速度を増大させるためには、電子密度を向上させる方法と、重水素ガスの透過量を増大させる方法とがある。特許文献1では、構造体を上述のような積層体とすることで、仕事関数が低い物質から水素吸蔵金属または水素吸蔵合金に向かって電子を移動させて、水素吸蔵金属または水素吸蔵合金において電子密度を高くしている。このように、特許文献1は、静的に電子密度を向上させる方法である。高い核種変換反応速度を得るためには、特許文献1に開示される方法以外の手法により、電子密度を更に向上させる必要があった。
本発明は、構造体中で電子密度がより高い部分を発生させることにより、核種変換反応を促進させる核種変換装置及び核種変換方法を提供する。
本発明の核種変換装置は、核種変換を施される物質が添加させられた構造体と、前記構造体を両側から挟み込むようにして配置され、前記構造体により密封可能な閉空間をなす重水素高圧部及び重水素低圧部と、前記重水素高圧部を相対的に重水素の圧力が高い状態とする高圧化手段と、前記重水素低圧部を相対的に重水素の圧力が低い状態とする低圧化手段と、前記構造体の一方の表面に光を照射する光源とを備えることを特徴とする。
また、本発明の核種変換方法は、核種変換を施される物質が添加させられた構造体の一方の表面側を、相対的に重水素の圧力が高い状態とする高圧化処理と、前記構造体の他方の表面側を相対的に重水素の圧力が低い状態とする低圧化処理と、前記構造体の前記一方の表面に、光を照射する光照射処理とを含むことを特徴とする。
構造体の核種変換を施させる物質が添加させられた側の表面に光照射すると、光が侵入した領域でp波により電子疎密波(プラズモン)が誘起される。これにより、照射面内方向に電子密度の分布が生じる。プラズモンの周期は、核種変換反応が起こるために必要な時間よりも十分に長い。このため、構造体の照射面における電子密度が高い部分を核種変換反応に要する時間よりも十分に長く維持し、電子密度が高い部分で核種変換反応を促進させることができる。
上記発明では、光源から発せられた波長200nmから700nmの光が、構造体に照射されることが好ましい。例えば赤外光などの長波長の光を構造体に照射した場合は、重水素による吸収などにより、プラズモンの発生効率が低下してしまう。一方、上記波長よりも短波長の光においても、効率良くプラズモンを励起することが難しくなる。
上記発明では、光源としてレーザを用いることが好ましい。レーザ光は指向性があり高出力であるため、プラズモンを効率良く発生させることができる。
本発明によれば、核種変換を施される物質が添加させられた構造体の光照射面内で電子密度が高い領域を動的に発生させることができる。これにより、電子密度が高い部分において、核種変換反応が促進される。
本発明に係る核種変換装置の概略図である。 構造体に光照射したときの電子疎密波の発生状況及び電子密度分布を説明する概略図である。
図1に、本実施形態に係る核種変換装置の概略図を示す。核種変換装置10は、内部が気密保持可能とされた重水素低圧部12と、重水素低圧部12内に配置された構造体20と、構造体20を介して内部が気密保持可能とされた重水素高圧部11とを備える。
重水素低圧部12に、重水素低圧部内部を真空状態に保持する低圧化手段13が接続される。図1において、低圧化手段は、ターボ分子ポンプ13a及びロータリーポンプ13bとされる。
重水素高圧部11に、バルブ15を介して重水素高圧部内に重水素を供給する高圧化手段14として、重水素ボンベ14a及びレギュレータバルブ14bが接続される。バルブ15とレギュレータバルブ14bとの間に圧力計16が設置される。
重水素高圧部11の外部に、光源18が設けられる。光源18からの光は、重水素高圧部11にも受けられた窓(ガラス窓)19を通過して構造体20の重水素高圧部11側の表面に直接入射する。光源18からの光が構造体20の表面に対して垂直または斜めに入射するように、光源18の位置及び角度、窓19の設置位置が決定される。光源18が核種変換装置10から離れた位置に設置され、構造体に直接光照射できない場合には、光ファイバーを用いて光源からの光を窓19の付近まで導入しても良い。
本実施形態では、波長200nmから700nmの光が、構造体に照射される。上記波長範囲の光を照射可能な光源18としては、例えばHe−Neレーザ、Nd:YAGレーザ、水素ランプ、水銀ランプ、Heランプ、Arランプなどが使用できる。レーザを用いる場合、連続光及びパルス光のいずれも適用できる。なお、Nd:YAGレーザのように基本波が上記波長範囲よりも長い場合は、レーザ光の第2高調波または第3高調波が使用される。レーザの場合、指向性があり高出力であるため、プラズモンを効率良く発生させることができる。一方、ランプはレーザと比較してプラズモンの発生効率は劣るが、装置を小さくできるとともに、装置コストを低減できるという利点を有する。
構造体20は、パラジウム(Pd)またはPd合金、あるいは、Pd以外の水素吸蔵金属(例えばTiなど)またはこれらの合金で構成される。または、構造体は、上記水素吸蔵金属または水素吸蔵金属の合金と、これらに対して相対的に仕事関数が低い物質とで構成される。例えば、構造体20は、Pd基板の表面上に、重水素低圧部12側から重水素高圧部11側に向かって、Pdに対して相対的に仕事関数が低い物質(例えば、CaO)の層とPd層を交互に積層され、最表面がPd層とされたものとされる。
構造体20の重水素高圧部11側に、核種変換を施される物質が添加させられる。核種変換を施される物質として、セシウム(Cs)、炭素(C)、ストロンチウム(Sr)、ナトリウム(Na)などが挙げられる。
構造体20に照射された光は、波長の半分程度の深さまで内部に侵入する。そのため、核種変換を施される物質は、光照射面表面から光の侵入深さまでの範囲内に添加されると、核種変換反応効率を向上させることができる。構造体に核種変換を施される物質を添加させる方法としては、核種変換を施される物質が含まれる溶液にPd基板表面を浸漬し、電気化学的方法により構造体表面に核種変換を施される物質の層(反応膜)を形成する方法がある。他に、上述のように形成した反応膜上に例えばCaO層を形成する方法もある。この方法では、構造体内部に核種変換を施す物質が添加される。
図2に示すように、核種変換を施される物質が添加させられた構造体に、上記光源18から波長200nmから700nmの光が照射されると、反応膜21及び構造体20の内部の光が侵入した領域において、電子疎密波(プラズモン)が誘起される。これにより、構造体平面方向に、電子密度が高い領域と電子密度が低い領域とが発生する。すなわち、電子密度の分布が発生する。電子疎密波は、10−12秒程度の周期であり、局所的には上記周期で電子密度の変化が生じる。光照射面内で見ると、電子密度の高い領域が時間毎に変化することになる。
これに対し、核種変換反応が起こるために必要な時間は10−15秒オーダーであり、核種変換反応時間よりもプラズモンの周期は十分に長い。このため、核種変換反応にとって電子密度分布は変化せず、長時間に亘り電子密度が高い領域が維持される。核種変換反応は、核種変換を施される物質が添加させられた構造体全面で発生するが、構造体中の電子密度が高い場所において特に反応が促進される。
電子密度は、構造体を構成する金属または合金の種類、核種変換を施される物質の添加量、レーザの周波数などに依存する。パルス光レーザの場合、電子密度をより高くすることができるとともに、パルス周波数を変えることにより核種変換反応の程度を制御することができる。
10 核種変換装置
11 重水素高圧部
12 重水素低圧部
13 低圧化手段
13a ターボ分子ポンプ
13b ロータリーポンプ
14 高圧化手段
14a 重水素ボンベ
14b レギュレータバルブ
15 バルブ
16 圧力計
18 光源
19 窓
20 構造体
21 反応膜

Claims (5)

  1. 核種変換を施される物質が添加させられた構造体と、
    前記構造体を両側から挟み込むようにして配置され、前記構造体により密封可能な閉空間をなす重水素高圧部及び重水素低圧部と、
    前記重水素高圧部を相対的に重水素の圧力が高い状態とする高圧化手段と、
    前記重水素低圧部を相対的に重水素の圧力が低い状態とする低圧化手段と、
    前記構造体の一方の表面に光を照射する光源とを備えることを特徴とする核種変換装置。
  2. 前記光源からの光が、波長200nmから700nmの光であることを特徴とする請求項1に記載の核種変換装置。
  3. 前記光源が、レーザであることを特徴とする請求項1または請求項2に記載の核種変換装置。
  4. 核種変換を施される物質が添加させられた構造体の一方の表面側を、相対的に重水素の圧力が高い状態とする高圧化処理と、
    前記構造体の他方の表面側を相対的に重水素の圧力が低い状態とする低圧化処理と、
    前記構造体の前記一方の表面に、光を照射する光照射処理とを含むことを特徴とする核種変換方法。
  5. 前記構造体の前記一方の表面に、波長200nmから700nmの光を照射することを特徴とする請求項4に記載の核種変換方法。
JP2009214215A 2009-09-16 2009-09-16 核種変換装置及び核種変換方法 Pending JP2011064530A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214215A JP2011064530A (ja) 2009-09-16 2009-09-16 核種変換装置及び核種変換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214215A JP2011064530A (ja) 2009-09-16 2009-09-16 核種変換装置及び核種変換方法

Publications (1)

Publication Number Publication Date
JP2011064530A true JP2011064530A (ja) 2011-03-31

Family

ID=43950949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214215A Pending JP2011064530A (ja) 2009-09-16 2009-09-16 核種変換装置及び核種変換方法

Country Status (1)

Country Link
JP (1) JP2011064530A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202392A (ja) * 2000-10-31 2002-07-19 Mitsubishi Heavy Ind Ltd 核種変換装置及び核種変換方法
US20080232532A1 (en) * 2005-04-29 2008-09-25 Larsen Lewis G Apparatus and Method for Generation of Ultra Low Momentum Neutrons

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202392A (ja) * 2000-10-31 2002-07-19 Mitsubishi Heavy Ind Ltd 核種変換装置及び核種変換方法
US20080232532A1 (en) * 2005-04-29 2008-09-25 Larsen Lewis G Apparatus and Method for Generation of Ultra Low Momentum Neutrons

Similar Documents

Publication Publication Date Title
Key Status of and prospects for the fast ignition inertial fusion concept
Korzhimanov et al. Horizons of petawatt laser technology
JP6113453B2 (ja) 中性子発生装置用のターゲットとその製造方法
WO2006049886A3 (en) Euv collector debris management
WO2007135587A3 (en) A method of increasing the conversion efficiency of an euv and/or soft x-ray lamp and a corresponding apparatus
JP4446030B2 (ja) 液中プラズマ発生装置および液中プラズマ発生方法
JP2011064530A (ja) 核種変換装置及び核種変換方法
JP5388018B2 (ja) レーザー駆動の小型・高コントラスト・コヒーレントx線発生装置及びその発生方法
JP2012093303A (ja) 核種変換方法
JP5302043B2 (ja) 水素貯蔵複合材料
Norreys et al. PW lasers: matter in extreme laser fields
JP2008000818A5 (ja)
JP2006226790A (ja) 放射性同位体生成装置
Li et al. Scaling of laser produced plasma UTA emission down to 3 nm for next generation lithography and short wavelength imaging
CN101465260B (zh) 一种x光管阳极靶及其制备方法与应用的x光管
JP2000188198A (ja) レ―ザ―プラズマx線源装置
JP2009043573A (ja) 放射線源用ターゲット、その製造方法及び放射線発生装置
JP2014012626A5 (ja)
Pant et al. Enhancement of laser induced shock pressure in multilayer solid targets
Zvorykin NG Basov's role in the development of excimer lasers: a half-century history from the launch of the first Xe2 laser at the Lebedev Physical Institute to modern laser systems
Turcu et al. Borane (B m H n), Hydrogen rich, Proton Boron fusion fuel materials for high yield laser-driven Alpha sources
JP6441563B2 (ja) 中性子反射体及び原子炉
Yamaura et al. Dependence of EUV emission properties on laser wavelength
JP2616658B2 (ja) X線放電励起ガスレーザ用電極及びガスレーザ装置
Kim et al. Developing x-ray sources using petawatt laser systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Effective date: 20130917

Free format text: JAPANESE INTERMEDIATE CODE: A02