JP2011052493A - メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法 - Google Patents

メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法 Download PDF

Info

Publication number
JP2011052493A
JP2011052493A JP2009204145A JP2009204145A JP2011052493A JP 2011052493 A JP2011052493 A JP 2011052493A JP 2009204145 A JP2009204145 A JP 2009204145A JP 2009204145 A JP2009204145 A JP 2009204145A JP 2011052493 A JP2011052493 A JP 2011052493A
Authority
JP
Japan
Prior art keywords
methane
water
dissociation
chamber
methane gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204145A
Other languages
English (en)
Other versions
JP5365865B2 (ja
Inventor
Shinya Nishio
伸也 西尾
Hirokazu Sugiyama
博一 杉山
Takuro Odawara
卓郎 小田原
Eiji Ogisako
栄治 荻迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009204145A priority Critical patent/JP5365865B2/ja
Publication of JP2011052493A publication Critical patent/JP2011052493A/ja
Application granted granted Critical
Publication of JP5365865B2 publication Critical patent/JP5365865B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】より効率的に、温度や圧力の条件を変化させることなくメタンハイドレートからメタンガスを生産することを可能にするメタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法を提供する。
【解決手段】筒状に形成され、互いの軸線O1を同方向に向けて一体に並設された複数の解離チャンバー22と、筒状の側壁部23aと天板部23bとを備えて形成され、内部の集水室25が複数の解離チャンバー22の内部と連通するように設けられた集水チャンバー23と、各解離チャンバー22の周方向に配設された複数の噴射管27、28を備えるウォータージェット機構24と、複数の噴射管27、28にメタン濃度が低い水Wを供給して噴射させるための送水管3と、集水室25内の水W’を揚水するための揚水管4とを備えて構成する。
【選択図】図2

Description

本発明は、海底あるいは湖底に存在するメタンハイドレートからメタンガスを生産するための装置及びこれを用いたメタンハイドレートからのメタンガス生産方法に関する。
石油資源に替わる新資源としてメタンハイドレートが注目を集めており、我が国近海は、世界最大のメタンハイドレート埋蔵量を誇るといわれている。このメタンハイドレートは、水素結合による水分子の籠状構造の中にメタンが入り込んだ氷状の固体結晶であり、低温且つ高圧下で安定的に存在する。そして、永久凍土の地下数百〜千mの堆積物中や海底、湖底でこの低温高圧条件が満たされるため、メタンハイドレートは永久凍土や海底、湖底の地盤内に存在している。
また、海底(湖底)のメタンハイドレートは、水深数百m以深の海底(湖底)地盤の地下数百mの深層部に存在する深層型メタンハイドレートと、海底面(湖底面)に露出するなどして浅層部に存在する表層型メタンハイドレートとがある。そして、現在、我が国でも検討が進められている南海トラフなどの深層型メタンハイドレートに対し、表層型メタンハイドレートの研究例は世界的にもまだ限られており、我が国では、オホーツク海及び日本海直江津沖の表層型メタンハイドレートに関する調査研究が開始されたばかりである。資源開発の観点から、その資源量の評価と併せて諸物性の解明が急務とされている。
ここで、メタンハイドレートは、僅かに温度、圧力条件を変化させるだけで相平衡状態が崩れ、分解(解離)させることができる。そのため、深層型メタンハイドレートにおいては、メタンガスを生産する手法として、熱刺激法、減圧法、インヒビター注入法など温度や圧力の条件を変化させ、相平衡状態を変化させることによってメタンハイドレートをメタンガスと水に分解し、メタンガスを回収する手法が検討されている(例えば、特許文献1、特許文献2、特許文献3参照)。
図7は、メタンハイドレートの温度と圧力の相平衡条件を示したものである。この図において、実線は、メタンハイドレートが生成される境界を示しており、図中左上側の低温、高圧側がメタンハイドレートの安定領域である。そして、水域(海、湖)では、水深約400m以深でこの温度、圧力条件に達するが、海底(湖底)の地盤温度が地下深度とともに増加するため、メタンハイドレートの生成条件が満たされる下限の地盤深度が存在し、この地盤深度は概ね地下100m〜300m程度である。深層型メタンハイドレートは、この下限地盤深度の直上に存在し、言い換えれば、温度と圧力の相平衡条件に極めて近い状態で存在している。
また、図7に、深層型メタンハイドレートとして南海トラフの代表的なメタンハイドレート、表層型メタンハイドレートとしてのバイカル湖とオホーツク海のそれぞれの代表的なメタンハイドレートの温度、圧力条件を示している。この図示から、深層型メタンハイドレートに比べ、表層型メタンハイドレートは、温度と圧力の相平衡条件から離れた過冷却度の高い領域にあることが分かる。
特開2004−321952号公報 特開2004−204562号公報 特開平9−158662号公報
そして、このように表層型メタンハイドレートは、温度と圧力の相平衡条件から離れた過冷却度の高い領域で安定しているため、熱刺激法、減圧法、インヒビター注入法等の温度や圧力の条件を変化させてメタンガスを生産する方法を用いた場合、温度と圧力の相平衡状態を変化させるために大きなエネルギーが必要になる。
また、表層型メタンハイドレートは、深層型メタンハイドレートと異なり、バッファとなる地盤が存在しないため、熱刺激法、減圧法、インヒビター注入法等によるメタンガスの生産中に予期せぬメタンガスの漏洩が発生すると、直接水中にメタンガスが放出されるおそれがある。このため、熱刺激法、減圧法、インヒビター注入法等の温度や圧力の条件を変化させてメタンガスを生産する場合には、海底、湖底の生態系や地球環境への影響が懸念される。
これに対し、本願の出願人(本願の発明者ら)は、温度と圧力の相平衡状態を変化させることなくメタンハイドレートを分解してメタンガスを生産する方法及び装置について、既に特許出願(特願2008−176936、特願2008−312714)を行っている。
このメタンガス生産装置1は、図8及び図9に示すように、上端2aが閉塞し、下端2bに開口部2cを備えて略円筒状に形成された解離チャンバー2と、解離チャンバー2の内部にメタン濃度が低い水Wを供給するための注水管3と、解離チャンバー2の内部の水W’を揚水するための揚水管4とを備えて構成されている。また、解離チャンバー2には、注水管3から送られたメタンの度が低い水Wを噴射させるウォータージェット機構5が設けられている。さらに、ウォータージェット機構5は、解離チャンバー2の開口部2cを形成する先端部(下端2b)側から軸線O1方向外側に水W(メタン濃度が低い水)を噴射させる第1噴射管6と、解離チャンバー2の内面側から軸線O1直交方向内側に水Wを噴射させる第2噴射管7とを解離チャンバー2の外周側に設けて構成されている。
このメタンガス生産装置1を用いて海底の表層型メタンハイドレート10からメタンガスを生産する場合には、図10に示すように、フロート11に取り付けて浮遊状態にした解離チャンバー2をメタンガス回収船12で曳航し、解離チャンバー2をフロート11から降下させて海底に設置する。次に、第1噴射管6からメタン濃度が低い水Wを軸線O1方向外側に噴射させることにより、メタンハイドレート10上の地盤Gを掘削除去(切削除去)し、解離チャンバー2の先端部2bをメタンハイドレート10まで貫入させる。また、第2噴射管7から軸線O1直交方向内側に水Wを噴射させることにより、メタンハイドレート10上の地盤Gを掘削除去するとともに、解離チャンバー2の内部をウォータージェット水流で撹拌させ、メタンハイドレート10から効率的にメタンMを解離させる。そして、解離チャンバー2の内部のメタンMが溶解した水W’を揚水管4で揚水する。このとき、ある程度までメタンが溶解した水W’が上昇すると、メタンMがガス化して水W’から自動的に自噴する。これにより、温度と圧力の相平衡状態を変化させることなく、容易に水W’とメタンガスMとを分離して、メタンガスMを生産(回収)することが可能になる。
しかしながら、上記のメタンガス生産装置1においては、ガス回収効率の向上を図るために解離チャンバー2の設置面積を拡大することが考えられるが、大きな解離チャンバー(径が大きい解離チャンバー)2を用いると、ウォータージェット機構5によるウォータージェット水流が解離チャンバー2の中心部まで到達しなくなってしまう。この結果、解離チャンバー2の内部を十分に撹拌できなくなって、逆に、メタンハイドレート10からメタンMを効率よく解離させることができなくなるという問題が生じる。
本発明は、上記事情に鑑み、より効率的に、温度や圧力の条件を変化させることなくメタンハイドレートからメタンガスを生産することを可能にするメタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法を提供することを目的とする。
上記の目的を達するために、この発明は以下の手段を提供している。
本発明のメタンハイドレートからのメタンガス生産装置は、海底あるいは湖底に存在するメタンハイドレートからメタンガスを生産するための装置であって、筒状に形成され、互いの軸線を同方向に向けて一体に並設された複数の解離チャンバーと、筒状の側壁部と該側壁部の上端側の開口を閉塞する天板部とを備えて形成され、内部の集水室が前記複数の解離チャンバーの内部と連通するように前記複数の解離チャンバーの上方に一体に設けられた集水チャンバーと、各解離チャンバーの周方向に配設されるとともに前記各解離チャンバーの下端側に噴射口を配して設けられた複数の噴射管を備えるウォータージェット機構と、前記ウォータージェット機構の前記複数の噴射管にメタン濃度が低い水を供給して各噴射管の前記噴射口から噴射させるための送水管と、一端が前記集水チャンバーの集水室に繋げられ、該集水室内の水を揚水するための揚水管とを備えて構成されていることを特徴とする。
この発明においては、送水管からメタン濃度が低い水を各噴射管に供給し、複数の噴射管からメタン濃度が低い水を噴射させることによって、メタンハイドレート上の地盤やメタンハイドレートを掘削除去(切削除去)することができるとともに、複数の解離チャンバーの内部をウォータージェット水流で撹拌させて、メタンハイドレートから効率的にメタンを解離させることができる。また、揚水管によって、メタンが溶解した各解離チャンバーの内部の水を集水チャンバーの集水室から揚水すると、ある程度までメタンが溶解した水が上昇するとともにメタンがガス化して水から自動的に自噴する。これにより、温度と圧力の相平衡状態を変化させることなく、容易に水とメタンガスを分離して、メタンガスを生産(回収)することが可能になる。
また、複数の解離チャンバーを備えるとともに、各解離チャンバー周方向に配設された複数の噴射管を備えて構成されているため、ウォータージェット水流が中心部まで確実に到達する大きさの解離チャンバーの数を増減させることにより、ウォータージェット機構で掘削・撹拌する対象面積を自由に設定することが可能になる。すなわち、ガス回収効率の向上を図るために対象面積(解離チャンバーの設置面積)を拡大する場合には、従来のように大きな解離チャンバーを使用するのではなく、解離チャンバーの数を増やして対応することができるため、ウォータージェット水流が解離チャンバーの中心部に到達しなくなるようなことがない。これにより、従来と比較し、より効率的に、温度や圧力の条件を変化させることなくメタンハイドレートからメタンガスを生産することが可能になる。
また、本発明のメタンハイドレートからのメタンガス生産装置においては、前記噴射口からのウォータージェット水流で掘削可能な土体積を対象地盤の強度から求め、該掘削可能な土体積に応じて前記各解離チャンバーの径が設定されていることが望ましい。
この発明においては、掘削可能な土体積に応じて各解離チャンバーの径が設定されているため、確実にウォータージェット水流を各解離チャンバーの中心部に到達させ、所望の土体積の対象地盤(メタンハイドレート層を含む)を掘削・撹拌することが可能になる。これにより、より確実且つ効率的にメタンハイドレートからメタンガスを生産することが可能になる。
さらに、本発明のメタンハイドレートからのメタンガス生産装置においては、前記各解離チャンバーが他の解離チャンバー及び前記集水チャンバーに着脱可能に設けられていることがより望ましい。
この発明においては、解離チャンバーの数を容易に増減させることが可能になる。これにより、対象地盤の強度に応じて、容易に対象面積を設定することが可能になる。
また、本発明のメタンハイドレートからのメタンガス生産装置においては、前記ウォータージェット機構は、前記解離チャンバーの軸線方向外側に向けて前記メタン濃度が低い水を噴射させる第1噴射管と、前記解離チャンバーの軸線直交方向内側に向けて前記メタン濃度が低い水を噴射させる第2噴射管を備えて構成されていることがさらに望ましい。
この発明においては、第1噴射管から軸線方向外側に向けて水を噴射させることにより、例えばメタンハイドレート上の地盤をこのウォータージェット水流によって掘削除去することができ、各解離チャンバーの先端部(下端)をメタンハイドレートに貫入させることが可能になる。また、第2噴射管から軸線直交方向内側に向けて水を噴射させることにより、例えば各解離チャンバーの内部に配されたメタンハイドレート上の地盤をこのウォータージェット水流によって掘削除去することが可能になる。さらに、このウォータージェット水流によって、各解離チャンバーの内部を撹拌混合することができ、メタンハイドレートを確実且つ効率的に解離させることが可能になる。
さらに、本発明のメタンハイドレートからのメタンガス生産装置においては、前記各解離チャンバーの周方向に、前記第1噴射管と前記第2噴射管が交互に且つ所定の間隔をあけて均等に配設されていることがより望ましい。
この発明においては、第1噴射管からのウォータージェット水流によって、例えば各解離チャンバーの先端部(下端)周辺の地盤全体を掘削除去して、各解離チャンバーの先端部全体を均等にメタンハイドレートに貫入させることが可能になる。また、第2噴射管からのウォータージェット水流によって、各解離チャンバーの内部に配された地盤をより確実に掘削除去することが可能になるとともに、各解離チャンバーの内部をより確実に撹拌・混合することが可能になる。これにより、さらに確実且つ効率的にメタンハードレートを解離させることが可能になる。
本発明のメタンハイドレートからのメタンガス生産方法は、海底あるいは湖底に存在するメタンハイドレートからメタンガスを生産する方法であって、上記のいずれかのメタンハイドレートからのメタンガス生産装置を用いてメタンガスを生産することを特徴とする。
この発明においては、上記のメタンハイドレートからのメタンガス生産装置による作用効果を得ることが可能になる。
本発明のメタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法においては、地盤状況に応じて、各解離チャンバーの大きさや数を任意に選択することで、ウォータージェット水流により掘削・撹拌する対象面積を自由に設定することが可能になる。
また、掘削領域内で(各解離チャンバーに対して)ウォータージェット機構の噴射管を例えば等間隔に設けることが可能になるため、掘削・撹拌(混合)の効率を確実に高めることが可能になる。
さらに、各解離チャンバーの周囲にウォータージェット機構の噴射管(噴射口)が配設されていることにより、隣り合う解離チャンバーの間や各解離チャンバー周囲の周辺地盤との摩擦が低減され、各解離チャンバーの地盤貫入抵抗、引抜き抵抗を大幅に低減することも可能になる。
よって、本発明のメタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法によれば、従来と比較し、より効率的に、温度や圧力の条件を変化させることなくメタンハイドレートからメタンガスを生産することが可能になる。
本発明の一実施形態に係るメタンハイドレートからのメタンガス生産装置を用いてメタンガスを生産している状態を示す図である。 本発明の一実施形態に係るメタンハイドレートからのメタンガス生産装置(メタン解離回収装置、解離チャンバー、集水チャンバー、ウォータージェット機構)を示す図である。 図2のX1−X1線矢視図である。 図2のX2−X2線矢視図である。 本発明の一実施形態に係るメタンハイドレートからのメタンガス生産装置(メタン解離回収装置)において、解離チャンバーの数を減らした状態を示す図である。 本発明の一実施形態に係るメタンハイドレートからのメタンガス生産装置(メタン解離回収装置)において、解離チャンバーの数を増やした状態を示す図である。 メタンハイドレートの温度と圧力の相平衡条件を示す図である。 従来のメタンハイドレートからのメタンガス生産装置(解離チャンバー)を示す図である。 図8のX1−X1線矢視図である。 従来のメタンハイドレートからのメタンガス生産装置を用いてメタンガスを生産している状態を示す図である。
以下、図1から図6を参照し、本発明の実施形態に係るメタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法について説明する。本実施形態においては、海底(あるいは湖底)に存在する表層型メタンハイドレートからメタンガスを好適に生産可能なメタンガス生産装置及びこれを用いたメタンガス生産方法に関するものである。
本実施形態のメタンハイドレートからのメタンガス生産装置Aは、図1に示すように、メタンガス回収船12と、メタンハイドレート10からメタンを解離・回収するためのメタン解離回収装置20と、メタンガス回収船12によって浮遊状態でメタン解離回収装置20を曳航するためのフロート11と、送水管3と、揚水管4と、ガスセパレーター21とを備えて構成されている。
また、メタン解離回収装置20は、図2から図4に示すように、複数の解離チャンバー22と、集水チャンバー23と、ウォータージェット機構24とを備えて構成されている。
図2及び図4に示すように、複数の解離チャンバー22はそれぞれ、同形同大で形成され、本実施形態においては、各解離チャンバー22が円筒状に形成されている。そして、これら複数の解離チャンバー22は、互いの軸線O1を上下の同方向に向け、上端及び下端同士を上下方向T1の同位置に配した状態で一体に並設されている。また、各解離チャンバー22は、詳細を後述するウォータージェット機構24によるウォータージェット水流で掘削可能な土体積を対象地盤Gの強度から求め、この掘削可能な土体積に応じて、その径(解離チャンバー22の大きさ)が設定されている。さらに、本実施形態では、各解離チャンバー22が適宜手段を用いて他の解離チャンバー22及び集水チャンバー23に対し着脱可能に一体に設けられている。
集水チャンバー23は、図2及び図3に示すように、筒状の側壁部23aとこの側壁部23aの上端側の開口を閉塞する天板部23bとを備えて形成されている。そして、この集水チャンバー23は、内部が集水室25とされ、集水室25が複数の解離チャンバー22の内部と連通するように、複数の解離チャンバー22の上方に一体に配設されている。すなわち、集水チャンバー23は、側壁部23aの下端を、外側に配設された解離チャンバー22の上端に繋げて設けられ、内部の集水室25が複数の解離チャンバー22の内部にのみ連通するように形成されている。また、本実施形態では、天板部23bが中空構造で形成され、この天板部23bの内部に内空室26が形成されている。
ウォータージェット機構24は、図2から図4に示すように、複数の噴射管27、28を備えて構成されている。複数の噴射管27、28は、各解離チャンバー22の外周側に上下方向T1に配設されている。また、各噴射管27、28は、その下端側に噴射ノズルを備え、上端を集水チャンバー22の天板部23b(天板部23bの内空室26)に繋げ、下端の噴射ノズル(噴射口)を各解離チャンバー22の下端付近に配して設けられている。さらに、本実施形態のウォータージェット機構24は、解離チャンバー22の軸線O1方向外側に向けてメタン濃度が低い水を噴射させる第1噴射管27と、解離チャンバー22の軸線O1直交方向内側に向けてメタン濃度が低い水を噴射させる第2噴射管28を備えている。そして、これら第1噴射管27と第2噴射管28(複数の噴射管)は、各解離チャンバー22の周方向に、交互に且つ所定の間隔をあけて均等に配設されている。
送水管3は、例えば硬質ポリエチレン管であり、図1及び図2に示すように、一端がメタン解離回収装置20の集水チャンバー23の天板部23bに着脱可能に取り付けられている。また、天板部23bの内空室26を介してウォータージェット機構24の各噴射管27、28に繋げて設けられている。さらに、送水管3は、他端が送水ポンプ(不図示)に接続されるとともに、開閉弁が取り付けられている。
一方、揚水管4は、例えば硬質ポリエチレン管であり、一端を集水チャンバー23の集水室25に着脱可能に繋げて設けられている。また、この揚水管25は、他端がガスセパレーター21に接続され、ガスセパレーター21を介して揚水ポンプ(不図示)に接続されている。さらに、揚水管4には、開閉弁が取り付けられている。
次に、上記構成からなるメタンガス生産装置Aを用いて海底の表層型メタンハイドレート10からメタンガスMを生産(回収)する方法について説明するとともに、本実施形態のメタンハイドレートからのメタンガス生産装置A及びメタンガス生産方法の作用及び効果について説明する。
本実施形態のメタンガス生産装置Aを用いて海底の表層型メタンハイドレート10からメタンガスMを生産する際には、図1に示すように、メタンガス回収船12のワイヤドラムに巻き回されたワイヤ30の一端をメタン解離回収装置20の上端(集水チャンバー23の天板部23b)に接続し、この上端側をフロート11に着脱可能に繋げ、浮遊した状態でメタン解離回収装置20を所定位置まで曳航する。そして、メタン解離回収装置20に送水管3と揚水管4をそれぞれ接続し、メタンガス回収船12のワイヤドラムからワイヤ30を繰り出してメタン解離回収装置20を降下させ、海底の地盤G上に設置する。なお、メタンガス回収船12に設けられたGPS、方位計、トランスデューサー、送水管3あるいは揚水管4に設けられたトランスポンダーなどを用いることで、メタン解離回収装置20は、海底の所定位置に設置される。
次に、開閉弁を適宜開閉操作するとともに送水ポンプの駆動を開始すると、例えば浅水域の海水(メタン濃度が低い水W)が取水され、この浅水域の海水Wが送水管3を通じて集水チャンバー23の天板部23b内空室26に供給される。さらに、浅水域の海水Wが天板部23bの内空室26から第1噴射管27と第2噴射管28に流通し、これら第1噴射管27と第2噴射管28の噴射ノズル(噴射口)からそれぞれ噴射される。このとき、例えば噴射ノズルから浅水域の海水W(ウォータージェット水流)が10m/sec以上の流速となるように噴射させる。
そして、第1噴射管27によって、浅水域の海水Wが解離チャンバー22の先端部(下端)側から略軸線O1方向外側に向けて噴射されるため、このウォータージェット水流によってメタンハイドレート10上の地盤Gが掘削除去(切削除去)される。これにより、解離チャンバー22は、その先端部がメタンハイドレート10に徐々に貫入されてゆく。
また、これとともに、第2噴射管28によって、浅水域の海水Wが解離チャンバー22の内面側から略軸線O1直交方向内側に向けて噴射されるため、ウォータージェット水流によって解離チャンバー22の内部に配されたメタンハイドレート10上の地盤Gが掘削除去(切削除去)される。さらに、このウォータージェット水流によって、解離チャンバー22の内部の海水(泥水)W’が撹拌混合される。これにより、揚水ポンプを駆動すると、揚水管4で集水室26内の泥水W’が汲み上げられ、確実に地盤Gが除去され、メタンハイドレート10が解離チャンバー22の内部を臨むように露出される。
また、このようにメタンハイドレート10を露出させた状態で、さらに第1噴射管27や第2噴射管28から海水Wを噴射させ、メタンハイドレート10を掘削しつつ解離チャンバー22の内部の海水W’を撹拌混合することによって、メタンハイドレート10からメタンMが解離し、解離チャンバー22内の海水W’にメタンMが溶解する。
ここで、従来のメタンガス生産装置1においては、メタンハイドレート10から効率的にメタンMを解離させるために径が大きな解離チャンバー2を用いると、ウォータージェット水流が解離チャンバー2の中心部まで到達しなくなり、その結果、解離チャンバー2の内部を十分に撹拌混合できなくなって、逆にメタンハイドレート10を効率的に解離させることができなくなってしまう。
これに対し、本実施形態のメタン解離回収装置20(メタンガス生産装置A)においては、複数の解離チャンバー22を備えるとともに、各解離チャンバー22の周方向に配設された複数の噴射管27、28を備えて構成されている。すなわち、例えば図5及び図6に示すように、解離チャンバー22の数を自在に増減させてメタン解離回収装置20を構成することができる。このため、メタンハイドレート10からより効率的にメタンMを解離させるために対象面積(複数の解離チャンバー22の設置面積)を拡大する場合には、従来のように大きな解離チャンバー2を使用するのではなく、解離チャンバー22の数を増やして対応する。これにより、ウォータージェット水流が各解離チャンバー22の中心部に到達しなくなるようなことがない。また、このとき、各解離チャンバー22が他の解離チャンバー22及び集水チャンバー23に着脱可能に設けられているため、容易に対象面積の増減ひいては対象面積の増減が行える。
また、噴射ノズルからのウォータージェット水流で掘削可能な土体積を対象地盤Gの強度から求め、この掘削可能な土体積に応じて各解離チャンバー22の径が設定されているため、確実にウォータージェット水流が各解離チャンバー22の中心部に到達し、所望の土体積の対象地盤G(メタンハイドレート層10を含む)が掘削・撹拌されることになる。
また、このように複数の解離チャンバー22を備えてメタン解離回収装置20を構成した場合であっても、複数の噴射管27、28が各解離チャンバー22の周方向に配設されているため、確実に掘削・撹拌混合の効率が高まることになる。さらに、本実施形態では、各解離チャンバー22の軸線O1方向外側に向けて浅水域の海水Wを噴射させる第1噴射管27と、各解離チャンバー22の軸線O1直交方向内側に向けて浅水域の海水Wを噴射させる第2噴射管28が交互に且つ所定の間隔をあけて均等に配設されている。このため、さらに確実に掘削・撹拌混合の効率が高まる。
このように効率的にメタンハイドレートから解離したメタンMを含む海水W’は、揚水ポンプを駆動するとともに各解離チャンバー22内から集水チャンバー23の集水室25に流れ込み、この揚水管4によって集水室25から順次メタンガス回収船12に向けて揚水される。そして、集水室25内の海水W’を揚水する際に、海水W’がある深度まで上昇すると、溶解したメタンMがガス化して自噴し、海水W’から自動的に解離して海水面上のガスセパレーター21に導かれる。これにより、ガスセパレーター21のセパレータータンク内で容易に海水W’’とメタンガスMが分離され、メタンガスMが回収される。
したがって、本実施形態のメタンハイドレートからのメタンガス生産装置A及びこれを用いたメタンハイドレートからのメタンガス生産方法においては、送水管3から浅水域の海水(メタン濃度が低い水)Wを各噴射管27、28に供給し、複数の噴射管27、28から浅水域の海水Wを噴射させることによって、メタンハイドレート10上の地盤Gやメタンハイドレート10を掘削除去することができる。また、これとともに、複数の解離チャンバー22の内部をウォータージェット水流で撹拌させて、メタンハイドレート10から効率的にメタンMを解離させることができる。さらに、揚水管4によって、メタンMが溶解した各解離チャンバー22の内部の水W’を集水チャンバー23の集水室25から揚水するだけで、溶解したメタンMをガス化して海水W’から自動的に自噴させることができる。これにより、温度と圧力の相平衡状態を変化させることなく、容易に水W’’とメタンガスMを分離して、メタンガスMを生産(回収)することが可能になる。
また、複数の解離チャンバー22を備えるとともに、各解離チャンバー22の周方向に配設された複数の噴射管27、28を備えて構成されているため、ウォータージェット水流が中心部まで確実に到達する大きさの解離チャンバー22の数を増減させることにより、ウォータージェット機構24で掘削・撹拌する対象面積を自由に設定することが可能になる。すなわち、地盤状況に応じて、解離チャンバー22の大きさや数を任意に選択することで、ウォータージェット水流により掘削・撹拌する対象面積を自由に設定することが可能になる。
さらに、このとき、各解離チャンバー22が他の解離チャンバー22及び集水チャンバー23に着脱可能に設けられているため、解離チャンバー22の数を容易に増減させることが可能になる。これにより、対象地盤Gの強度に応じて、容易に対象面積を設定することが可能になる。
また、各解離チャンバー22の周囲にウォータージェット機構24の噴射管27、28が配設されていることにより、隣り合う解離チャンバー22の間や各解離チャンバー2周囲の周辺地盤Gとの摩擦が低減され、各解離チャンバー22の地盤貫入抵抗、引抜き抵抗を大幅に低減することも可能になる。
よって、本実施形態のメタンハイドレートからのメタンガス生産装置A及びこれを用いたメタンハイドレートからのメタンガス生産方法によれば、従来と比較し、より確実且つ効率的に、温度や圧力の条件を変化させることなくメタンハイドレート10からメタンガスMを生産することが可能になる。
また、本実施形態のメタンハイドレートからのメタンガス生産装置A及びこれを用いたメタンハイドレートからのメタンガス生産方法においては、掘削可能な土体積に応じて各解離チャンバー22の径が設定されているため、確実にウォータージェット水流を各解離チャンバー22の中心部に到達させ、所望の土体積の対象地盤Gを掘削・撹拌することが可能になる。これにより、より確実且つ効率的にメタンハイドレート10からメタンガスMを生産することが可能になる。
また、各解離チャンバー22の外周に第1噴射管27と第2噴射管28が設けられているため、第1噴射管27から軸線O1方向外側に向けて水Wを噴射させることにより、メタンハイドレート10上の地盤Gをこのウォータージェット水流によって掘削除去することができ、各解離チャンバー22の先端部をメタンハイドレート10に貫入させることが可能になる。さらに、第2噴射管28から軸線O1直交方向内側に向けて水Wを噴射させることにより、各解離チャンバー22の内部に配されたメタンハイドレート10上の地盤Gをこのウォータージェット水流によって掘削除去することが可能になる。また、このウォータージェット水流によって、各解離チャンバー22の内部を撹拌混合することができ、メタンハイドレート10を確実且つ効率的に解離させることが可能になる。
さらに、各解離チャンバー22の周方向に、第1噴射管27と第2噴射管28が交互に且つ所定の間隔をあけて均等に配設されているため、第1噴射管27からのウォータージェット水流によって、各解離チャンバー22の先端部周辺の地盤G全体を掘削除去して、各解離チャンバー22の先端部全体を均等にメタンハイドレート10に貫入させることが可能になる。また、第2噴射管28からのウォータージェット水流によって、より確実に、各解離チャンバー22の内部に配された地盤Gを掘削除去することが可能になるとともに、各解離チャンバー22の内部を撹拌・混合することが可能になる。これにより、さらに確実且つ効率的にメタンハードレート10を解離させることが可能になる。
以上、本発明に係るメタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、複数の解離チャンバー22がそれぞれ円筒状に形成されているものとしたが、本発明に係る解離チャンバーは、円形に限定する必要はなく、四角形などの多角形であってもよい。また、複数の解離チャンバー22がハニカム構造のように一体化されていてもよい。すなわち、解離チャンバー22やこの解離チャンバー22と一体化される集水チャンバー23の形状、数など、また、解離チャンバー22や集水チャンバー23と一体化されるウォータージェット機構24の複数の噴射管27、28の数、配置などは、本実施形態のように限定する必要はない。
また、本実施形態では、海底の表層型メタンハイドレート10からメタンガスMを生産するものとして説明を行ったが、湖底の表層型メタンハイドレートに対しても、本実施形態と同様にしてメタンガスMを生産することが可能である。さらに、適宜手段によって深層型メタンハイドレートを海水や湖水に露出させることができる場合には、深層型メタンハイドレートからメタンガスを生産するために本発明を適用してもよい。
さらに、本実施形態では、メタン濃度が低い水として浅水域の海水を用いるものとしたが、メタン濃度が低い水であれば、必ずしも浅水域の水を用いることに限定しなくてもよい。
1 従来のメタンガス生産装置
2 従来の解離チャンバー
3 送水管
4 揚水管
5 従来のウォータージェット機構
11 フロート
12 メタンガス回収船
20 メタン解離回収装置
21 ガスセパレーター
22 解離チャンバー
23 集水チャンバー
23a 側壁部
23b 天板部
24 ウォータージェット機構
25 集水室
26 内空室
27 第1噴射管(噴射管)
28 第2噴射管(噴射管)
30 ワイヤ
A メタンガス生産装置
M メタン(メタンガス)
O1 解離チャンバーの軸線
T1 上下方向
W 浅水域の海水(メタン濃度が低い水)
W’ 解離チャンバーの内部の海水(メタンが溶解した水)

Claims (6)

  1. 海底あるいは湖底に存在するメタンハイドレートからメタンガスを生産するための装置であって、
    筒状に形成され、互いの軸線を同方向に向けて一体に並設された複数の解離チャンバーと、
    筒状の側壁部と該側壁部の上端側の開口を閉塞する天板部とを備えて形成され、内部の集水室が前記複数の解離チャンバーの内部と連通するように前記複数の解離チャンバーの上方に一体に設けられた集水チャンバーと、
    各解離チャンバーの周方向に配設されるとともに前記各解離チャンバーの下端側に噴射口を配して設けられた複数の噴射管を備えるウォータージェット機構と、
    前記ウォータージェット機構の前記複数の噴射管にメタン濃度が低い水を供給して各噴射管の前記噴射口から噴射させるための送水管と、
    一端が前記集水チャンバーの集水室に繋げられ、該集水室内の水を揚水するための揚水管とを備えて構成されていることを特徴とするメタンハイドレートからのメタンガス生産装置。
  2. 請求項1記載のメタンハイドレートからのメタンガス生産装置において、
    前記噴射口からのウォータージェット水流で掘削可能な土体積を対象地盤の強度から求め、該掘削可能な土体積に応じて前記各解離チャンバーの径が設定されていることを特徴とするメタンハイドレートからのメタンガス生産装置。
  3. 請求項1または請求項2に記載のメタンハイドレートからのメタンガス生産装置において、
    前記各解離チャンバーが他の解離チャンバー及び前記集水チャンバーに着脱可能に設けられていることを特徴とするメタンハイドレートからのメタンガス生産装置。
  4. 請求項1から請求項3のいずれかに記載のメタンハイドレートからのメタンガス生産装置において、
    前記ウォータージェット機構は、前記解離チャンバーの軸線方向外側に向けて前記メタン濃度が低い水を噴射させる第1噴射管と、前記解離チャンバーの軸線直交方向内側に向けて前記メタン濃度が低い水を噴射させる第2噴射管を備えて構成されていることを特徴とするメタンハイドレートからのメタンガス生産装置。
  5. 請求項4記載のメタンハイドレートからのメタンガス生産装置において、
    前記各解離チャンバーの周方向に、前記第1噴射管と前記第2噴射管が交互に且つ所定の間隔をあけて均等に配設されていることを特徴とするメタンハイドレートからのメタンガス生産装置。
  6. 海底あるいは湖底に存在するメタンハイドレートからメタンガスを生産する方法であって、
    請求項1から請求項5のいずれかに記載のメタンハイドレートからのメタンガス生産装置を用いてメタンガスを生産することを特徴とするメタンハイドレートからのメタンガス生産方法。
JP2009204145A 2009-09-03 2009-09-03 メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法 Active JP5365865B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204145A JP5365865B2 (ja) 2009-09-03 2009-09-03 メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204145A JP5365865B2 (ja) 2009-09-03 2009-09-03 メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法

Publications (2)

Publication Number Publication Date
JP2011052493A true JP2011052493A (ja) 2011-03-17
JP5365865B2 JP5365865B2 (ja) 2013-12-11

Family

ID=43941767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204145A Active JP5365865B2 (ja) 2009-09-03 2009-09-03 メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法

Country Status (1)

Country Link
JP (1) JP5365865B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324916A (zh) * 2014-09-28 2015-02-04 中国海洋石油总公司 水合物治理橇
JP2016098597A (ja) * 2014-11-25 2016-05-30 三井造船株式会社 ハイドレート用掘削装置及びハイドレート掘削方法
JP2019148155A (ja) * 2018-02-28 2019-09-05 清水建設株式会社 資源採掘方法及び資源採掘システム
CN113932854A (zh) * 2021-10-20 2022-01-14 南方海洋科学与工程广东省实验室(广州) 一种冷泉区沉积物-水界面甲烷宏渗漏强度原位观测方法
US11370672B2 (en) 2016-01-21 2022-06-28 Chiharu Aoyama Gas collecting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158662A (ja) * 1995-12-07 1997-06-17 Power Reactor & Nuclear Fuel Dev Corp 海底ガスハイドレート分解システム
JP2000513061A (ja) * 1997-04-02 2000-10-03 シントロレウム コーポレーション ハイドレート回収のためのシステムおよび方法
JP2010037932A (ja) * 2008-07-07 2010-02-18 Shimizu Corp メタンハイドレートからのメタンガス生産方法及びメタンハイドレートからのメタンガス生産装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158662A (ja) * 1995-12-07 1997-06-17 Power Reactor & Nuclear Fuel Dev Corp 海底ガスハイドレート分解システム
JP2000513061A (ja) * 1997-04-02 2000-10-03 シントロレウム コーポレーション ハイドレート回収のためのシステムおよび方法
JP2010037932A (ja) * 2008-07-07 2010-02-18 Shimizu Corp メタンハイドレートからのメタンガス生産方法及びメタンハイドレートからのメタンガス生産装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324916A (zh) * 2014-09-28 2015-02-04 中国海洋石油总公司 水合物治理橇
JP2016098597A (ja) * 2014-11-25 2016-05-30 三井造船株式会社 ハイドレート用掘削装置及びハイドレート掘削方法
US11370672B2 (en) 2016-01-21 2022-06-28 Chiharu Aoyama Gas collecting method
JP2019148155A (ja) * 2018-02-28 2019-09-05 清水建設株式会社 資源採掘方法及び資源採掘システム
CN113932854A (zh) * 2021-10-20 2022-01-14 南方海洋科学与工程广东省实验室(广州) 一种冷泉区沉积物-水界面甲烷宏渗漏强度原位观测方法
CN113932854B (zh) * 2021-10-20 2022-07-05 南方海洋科学与工程广东省实验室(广州) 一种冷泉区沉积物-水界面甲烷宏渗漏强度原位观测方法

Also Published As

Publication number Publication date
JP5365865B2 (ja) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5294110B2 (ja) メタンハイドレートからのメタンガス生産方法及びメタンハイドレートからのメタンガス生産装置
US11053779B2 (en) Hydrate solid-state fluidization mining method and system under underbalanced reverse circulation condition
JP4871279B2 (ja) ガスハイドレートの生成方法、置換方法及び採掘方法
JP5365865B2 (ja) メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法
US8096934B2 (en) System for treating carbon dioxide, and method for storing such treated carbon dioxide underground
JP5523737B2 (ja) 二酸化炭素を利用したメタンハイドレート採掘方法
CN108756829B (zh) 欠平衡正循环条件下天然气水合物固态流开采方法及系统
JP2016138402A (ja) ハイドレート回収装置および回収方法
CN108412466B (zh) 一种海底天然气水合物开采装置及开采方法
JP2009011964A (ja) 液化炭酸ガスの地中送り込み方法及びその地中送り込み装置
JP5399436B2 (ja) 貯留物質の貯留装置および貯留方法
JP2017071959A (ja) ガス回収装置及び水底メタンハイドレートからのガス回収方法
CN102392646A (zh) 海底天然气水合物电喷泵组合开采方法及装置
JP2016098598A (ja) メタンガス採取装置
JP2015202486A (ja) 分離装置、分離方法および分離回収ガス
JP4261813B2 (ja) ガスハイドレートの海中生成方法、ガスハイドレート生成装置、および二酸化炭素の海中貯蔵システム
JP2016166487A (ja) メタンガス回収付随水の処理装置及び処理方法
JP5748985B2 (ja) ガス・ハイドレートの生成促進方法並びにガス資源の増進回収法
CN105019868B (zh) 一种海底可燃冰的开采方法
CN112709552A (zh) 基于水合物法开发海洋天然气水合物系统的装置及方法
JP5360820B2 (ja) 二酸化炭素の貯留方法
JP6072840B2 (ja) メタンハイドレートのガス化装置及び水底メタンハイドレートからのメタンガス回収方法
JP6396172B2 (ja) ハイドレート採取装置および採取方法
JP5208862B2 (ja) エマルジョンの製造・注入装置及び方法並びにメタンハイドレートの採掘方法
CN202370522U (zh) 海底天然气水合物电喷泵组合开采装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5365865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150