JP2011035476A - Imaging module, imaging apparatus and method of manufacturing imaging module - Google Patents

Imaging module, imaging apparatus and method of manufacturing imaging module Download PDF

Info

Publication number
JP2011035476A
JP2011035476A JP2009177048A JP2009177048A JP2011035476A JP 2011035476 A JP2011035476 A JP 2011035476A JP 2009177048 A JP2009177048 A JP 2009177048A JP 2009177048 A JP2009177048 A JP 2009177048A JP 2011035476 A JP2011035476 A JP 2011035476A
Authority
JP
Japan
Prior art keywords
substrate
imaging
mounting surface
recess
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177048A
Other languages
Japanese (ja)
Other versions
JP5342359B2 (en
Inventor
Takahiro Okada
貴裕 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009177048A priority Critical patent/JP5342359B2/en
Publication of JP2011035476A publication Critical patent/JP2011035476A/en
Application granted granted Critical
Publication of JP5342359B2 publication Critical patent/JP5342359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging module to which an imaging element is fixed in parallel to a substrate, an imaging apparatus, and a method of manufacturing the imaging module. <P>SOLUTION: The imaging module includes a substrate 2 on which a recessed part 24 is formed on a mounting surface 21 and an electrode for external connection is provided in the recessed part 24; the imaging element 3 mounted on the mounting surface 21 of the substrate 2; and a solder ball 4 for bonding the substrate 2 and the imaging element 3. In the state in which the substrate 2 and the imaging element 3 are bonded through the solder ball 4, a pair of end parts 33 opposing each other across the recessed part 24 at least of the substrate side surface 32 of the imaging element 3 are in surface contact with the mounting surface 22 surrounding the recessed part 24 of the substrate 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半田ボールを介して基板に撮像素子が接合された撮像モジュール及び撮像装置、並びに撮像モジュールの製造方法に関する。   The present invention relates to an imaging module and an imaging apparatus in which an imaging element is bonded to a substrate via a solder ball, and an imaging module manufacturing method.

一般に、撮像モジュールは、基板の一方の面に撮像素子が実装された構成を備える。撮像素子の受光面側には光学レンズが配置され、光学レンズから入射する光は撮像素子で結像される。基板には撮像素子の電気回路が形成されており、基板と撮像素子は構造的に且つ電気的に接続されている。
基板に撮像素子を表面実装する方法の一つとして、半田ボールを介して基板に撮像素子を接合する方法がある。これは、例えばBGA(Ball grid array)、CSP(Chip size
package)等に代表されるように、半導体パッケージに多く用いられている実装方法である。
Generally, an imaging module has a configuration in which an imaging element is mounted on one surface of a substrate. An optical lens is disposed on the light receiving surface side of the image sensor, and light incident from the optical lens is imaged by the image sensor. An electric circuit of the image sensor is formed on the substrate, and the substrate and the image sensor are structurally and electrically connected.
One method of surface mounting an image sensor on a substrate is to join the image sensor to the substrate via a solder ball. For example, BGA (Ball grid array), CSP (Chip size)
This is a mounting method often used for semiconductor packages, as represented by package).

図9(a)に示すように、この実装方法を採用した撮像モジュール101は、基板102上に半田ボール104をグリッド状に形成した後、半田ボール104を挟んで基板102上に撮像素子103を配置し、これをリフロー炉で加熱して半田ボール104を溶融させることにより、撮像素子103を固定して製造される。例えば、特許文献1(国際公開番号WO01/048821)には、半田ボールで2枚の基板を電気的に接続した集積回路装置が開示されている。これは、第1基板部と、第1基板部に実装された第2基板部との間を半田バンプによって電気的に接続した構成を備えるとともに、第1基板部と第2基板部の間に、第1基板部上で第2基板部を支持する支持部材を複数設けた構成となっている。   As shown in FIG. 9A, an imaging module 101 employing this mounting method forms solder balls 104 in a grid shape on a substrate 102, and then places an imaging element 103 on the substrate 102 with the solder balls 104 interposed therebetween. The image pickup device 103 is fixed and manufactured by disposing it and heating it in a reflow furnace to melt the solder balls 104. For example, Patent Document 1 (International Publication No. WO01 / 048821) discloses an integrated circuit device in which two substrates are electrically connected by solder balls. This includes a configuration in which the first substrate unit and the second substrate unit mounted on the first substrate unit are electrically connected by solder bumps, and between the first substrate unit and the second substrate unit. The plurality of support members for supporting the second substrate unit on the first substrate unit are provided.

国際公開番号WO01/048821International Publication Number WO01 / 048821

しかしながら、撮像素子を半田ボールにより基板上に実装する方法では、リフローによって基板に撮像素子を固定する際に、図9(b)に示すように、撮像素子103が基板102に対して平行に固定されず傾きが発生してしまうという問題があった。これは、半田ボール104の直径のばらつきの影響やリフロー条件によるものが大きいと考えられる。特許文献1等のように2枚の基板同士を接合した半導体パッケージにおいてはこの傾きは問題とならないが、撮像モジュールの場合は撮像素子に傾きが発生することにより傾き分の光軸調整が必要となり、製造において余計な作業工程が発生するという問題があった。   However, in the method of mounting the image sensor on the substrate with solder balls, when the image sensor is fixed to the substrate by reflow, the image sensor 103 is fixed in parallel to the substrate 102 as shown in FIG. There was a problem that the tilt occurred without being performed. This is considered to be largely due to the influence of the variation in the diameter of the solder balls 104 and the reflow conditions. This tilt is not a problem in a semiconductor package in which two substrates are joined as in Patent Document 1 and the like, but in the case of an imaging module, the tilt of the image sensor causes an adjustment of the optical axis corresponding to the tilt. There is a problem that an extra work process occurs in the manufacturing.

また、特許文献1に記載されるように、2枚の基板の間に支持部材を設けて基板の傾きを防止することも考えられるが、この場合、支持部材という独立した部材が必要となり製造コストが増加してしまうという問題がある。さらに、支持部材の寸法精度や実装時の基板に対する設置位置がずれると撮像素子が傾いてしまうため、これらの管理が重要となり、実装時の作業工程の増加を招いてしまう。
そのため本発明においては、基板に対して撮像素子が平行に固定された撮像モジュール及び撮像装置、並びに撮像モジュールの製造方法を提供することが課題である。
Further, as described in Patent Document 1, it is conceivable to provide a support member between two substrates to prevent the substrate from being tilted. In this case, however, an independent member called a support member is required, and the manufacturing cost is reduced. There is a problem that increases. Furthermore, if the dimensional accuracy of the support member and the installation position with respect to the substrate at the time of mounting are shifted, the image sensor is tilted. Therefore, management of these becomes important, and the work process at the time of mounting is increased.
Therefore, it is an object of the present invention to provide an imaging module and an imaging apparatus in which an imaging element is fixed in parallel to a substrate, and a method for manufacturing the imaging module.

上記課題を解決するため、本発明に係る撮像モジュールは、凹部が実装面に形成され、前記凹部に外部接続用電極が設けられた基板と、前記基板の前記実装面に実装される撮像素子と、前記基板と前記撮像素子とを接合する半田ボールとを備え、前記基板と前記撮像素子とが前記半田ボールを介して接合された状態で、前記撮像素子の基板側表面のうち少なくとも前記凹部を挟んで対向する一対の端部が、前記基板の前記凹部を囲む前記実装面と面接触していることを特徴とする。   In order to solve the above problems, an imaging module according to the present invention includes a substrate in which a recess is formed on a mounting surface and an external connection electrode is provided in the recess, and an imaging device mounted on the mounting surface of the substrate. A solder ball that joins the substrate and the image sensor, and the substrate and the image sensor are joined via the solder ball, and at least the concave portion of the substrate-side surface of the image sensor. A pair of ends opposed to each other are in surface contact with the mounting surface surrounding the recess of the substrate.

本発明に係る撮像モジュールによれば、基板に凹部を設けて、撮像素子の基板側表面と基板の凹部を囲む実装面とが面接触した状態で、基板と撮像素子が接合されているため、基板と撮像素子が確実に平行となる。特に、溶融接合前の半田ボールの大きさにばらつきがある場合であってもこれに影響されず、基板と撮像素子を平行な状態で接合することができる。これにより、基板の実装面を基準として光学系を組み込むことで、基板に平行な撮像素子に対しても光学系が適切に設定されることとなり、光軸調整が容易に行なえるようになる。
また、撮像素子と基板を平行にするための構造を基板側にもたせたため、新たに部品を用いることなく簡単な装置構成で且つ低コストとすることができる。
尚、前記基板は電気回路が形成されたものであり、必要に応じて抵抗、コンデンサ、集積回路等の撮像素子を駆動する電子部品が実装される。また、半田ボールにより接合される基板の凹部又は撮像素子の基板側表面には、電極パッド等の外部接続用電極が設けられている。
According to the imaging module according to the present invention, the substrate and the imaging element are bonded in a state in which the substrate is provided with a recess and the surface on the substrate side of the imaging element and the mounting surface surrounding the recess of the substrate are in surface contact. The substrate and the image sensor are surely parallel. In particular, even if there is a variation in the size of the solder balls before fusion bonding, the substrate and the image sensor can be bonded in parallel without being affected by this. Thus, by incorporating the optical system with the mounting surface of the substrate as a reference, the optical system is appropriately set even for an image sensor parallel to the substrate, and the optical axis can be easily adjusted.
In addition, since a structure for making the imaging element and the substrate parallel is provided on the substrate side, a simple apparatus configuration and low cost can be achieved without newly using components.
The substrate is formed with an electric circuit, and electronic components for driving an image sensor such as a resistor, a capacitor, and an integrated circuit are mounted as necessary. An external connection electrode such as an electrode pad is provided on the concave portion of the substrate joined by the solder ball or the substrate side surface of the image sensor.

また、前記凹部の深さは、前記基板と前記撮像素子を接合する前の前記半田ボールの直径の80%以上97%以下であることを特徴とする。
このように、凹部の深さを接合前の半田ボールの直径の80%以上97%以下とすることにより、基板と撮像素子とを接合した際に、基板の凹部を囲む実装面と撮像素子の基板側表面とを確実に面接触させ、且つ隣り合う半田ボール同士の距離を一定に維持できるとともに、撮像素子と基板の接合強度を保つことができる。半田ボールは溶融接合により高さ方向に10〜20%程度収縮するが、凹部の深さが接合前の半田ボールの直径に対して80%より小さいと、収縮率を考慮しても半田ボールが相対的に凹部より大きすぎて、撮像素子の面が基板の実装面から浮いてしまい、撮像素子が傾いてしまうおそれがある。これを防止するために撮像素子の基板側表面が基板の実装面に当接するまで加圧すると、半田ボールが凹部の幅方向に広がってしまい、隣り合う半田ボール同士が接触してしまうおそれがある。一方、凹部の深さが溶融接合前の半田ボールの直径に対して97%より大きいと、半田ボールと撮像素子の接触面積が小さすぎて接合強度が低下するおそれがある。
Further, the depth of the recess is 80% or more and 97% or less of the diameter of the solder ball before the substrate and the image sensor are joined.
Thus, by setting the depth of the recesses to 80% or more and 97% or less of the diameter of the solder balls before bonding, when the substrate and the image sensor are bonded, the mounting surface surrounding the recess of the substrate and the image sensor The surface of the substrate side can be reliably brought into surface contact, the distance between adjacent solder balls can be kept constant, and the bonding strength between the image sensor and the substrate can be maintained. The solder ball shrinks by about 10 to 20% in the height direction by melt bonding, but if the depth of the recess is less than 80% of the diameter of the solder ball before joining, the solder ball will be The surface of the image sensor is relatively larger than the recess, and the surface of the image sensor may float from the mounting surface of the substrate, and the image sensor may be inclined. If pressure is applied until the substrate side surface of the image sensor contacts the mounting surface of the substrate to prevent this, the solder balls spread in the width direction of the recesses, and there is a possibility that adjacent solder balls may come into contact with each other. . On the other hand, if the depth of the recess is greater than 97% of the diameter of the solder ball before melt bonding, the contact area between the solder ball and the image sensor may be too small and the bonding strength may be reduced.

さらに、前記基板の前記凹部を囲む前記実装面と前記撮像素子の基板側表面の前記端部とが、前記凹部の全周にわたって面接触していることを特徴とする。
このように、基板の凹部を囲む実装面と撮像素子の基板側表面の端部とが凹部の全周にわたって面接触することにより、基板と撮像素子の接触面積を大きくでき、基板と撮像素子の平行を安定的に保つことができる。
Furthermore, the mounting surface that surrounds the concave portion of the substrate and the end portion of the substrate-side surface of the imaging element are in surface contact over the entire circumference of the concave portion.
Thus, the mounting surface surrounding the recess of the substrate and the end of the surface on the substrate side of the image sensor are in surface contact over the entire circumference of the recess, thereby increasing the contact area between the substrate and the image sensor. Parallelism can be kept stable.

また、前記基板の前記実装面と面接触していない前記撮像素子の端部と、前記基板の前記凹部を囲む前記実装面との間に間隙を設けて、前記凹部と撮像モジュールの外部を連通する開口部を形成したことを特徴とする。
このように、凹部と外部とを連通する開口部を形成することにより、リフロー時に溶融した半田ボールを硬化させる際に、放熱効果を高めて硬化を促進することができる。また、撮像モジュールが撮像装置に組み込まれた状態においても優れた放熱効果を有し、撮像素子が駆動して発熱した場合に開口部から放熱させることができる。また、撮像素子の端部全周を基板の実装面と面接触させていないため、撮像素子のパッケージの小型化が可能となる。さらに、基板側表面に対して半田ボールの実装面積を有効にとることができる。
In addition, a gap is provided between the end of the imaging element that is not in surface contact with the mounting surface of the substrate and the mounting surface that surrounds the recess of the substrate, so that the recess and the outside of the imaging module communicate with each other. An opening is formed.
Thus, by forming the opening part which connects a recessed part and the exterior, when hardening the solder ball fuse | melted at the time of reflow, a thermal radiation effect can be improved and hardening can be accelerated | stimulated. In addition, even when the imaging module is incorporated in the imaging apparatus, it has an excellent heat dissipation effect, and when the imaging element is driven and generates heat, heat can be radiated from the opening. Further, since the entire periphery of the end of the image sensor is not in surface contact with the mounting surface of the substrate, the package of the image sensor can be reduced. Furthermore, the mounting area of the solder balls can be effectively taken with respect to the substrate side surface.

さらにまた、前記基板の前記実装面に固設された光学系保持部と、前記光学系保持部に保持された光学系と、を含むことを特徴とする。
このように、光学系が保持された光学系保持部を基板の実装面に取り付けることにより、光軸に直交する光学系の基準面を基板の実装面とすることができ、この基板の実装面に対して撮像素子を平行にすることで、撮像素子に対しても光軸を直交にすることが可能となる。
また、上記した構成を備える撮像モジュールを含む撮像装置を提案する。
Furthermore, the optical system holding part fixed to the mounting surface of the substrate and an optical system held by the optical system holding part are included.
Thus, by attaching the optical system holding part holding the optical system to the mounting surface of the substrate, the reference surface of the optical system orthogonal to the optical axis can be used as the mounting surface of the substrate. By making the image sensor parallel to the optical element, the optical axis can be orthogonal to the image sensor.
In addition, an imaging apparatus including an imaging module having the above-described configuration is proposed.

また、本発明に係る撮像モジュールの製造方法は、基板と、前記基板の実装面に実装される撮像素子とを半田ボールにより接合して撮像モジュールを製造する撮像モジュールの製造方法において、前記基板の前記実装面に凹部が形成され、前記撮像素子の基板側表面に前記凹部の深さより直径が大きい前記半田ボールが複数配設されており、前記凹部に前記半田ボールが位置するように前記基板と前記撮像素子とを対向させる工程と、前記半田ボールを加熱溶融し、前記撮像素子の基板側表面のうち少なくとも前記凹部を挟んで対向する一対の端部を、前記基板の前記凹部を囲む前記実装面と面接触させるとともに、前記半田ボールにより前記基板と前記撮像素子とを接合する工程と、前記半田ボールを硬化させる工程と、を備えることを特徴とする。   An imaging module manufacturing method according to the present invention includes: an imaging module manufacturing method in which an imaging module is manufactured by joining a substrate and an imaging element mounted on a mounting surface of the substrate with a solder ball; A concave portion is formed on the mounting surface, and a plurality of the solder balls having a diameter larger than the depth of the concave portion are disposed on the substrate-side surface of the imaging element, and the solder ball is positioned in the concave portion. A step of facing the imaging element; and the mounting of the solder ball by heating and melting, and a pair of ends opposed to each other across at least the concave portion of the substrate-side surface of the imaging element surrounding the concave portion of the substrate A step of bringing the substrate into contact with a surface, a step of bonding the substrate and the imaging device with the solder ball, and a step of curing the solder ball. To.

本発明に係る撮像モジュールの製造方法によれば、撮像素子に配設された半田ボールが、基板に形成された凹部に位置するように基板と撮像素子とを対向させた後半田ボールを加熱溶融し、撮像素子の基板側表面の端部と基板の凹部を囲む実装面とを面接触させた状態で基板と撮像素子を接合しているため、基板と撮像素子を平行な状態で接合することができる。特に、溶融接合前の半田ボールの大きさにばらつきがある場合であってもこれに影響されず、基板と撮像素子を平行な状態で接合可能である。これにより、基板の実装面を基準として光学系を組み込むことで、基板に平行な撮像素子に対しても光学系が適切に設定されることとなり、光軸調整が容易に行なえるようになる。また、撮像素子と基板を平行にするための構造を基板側にもたせたため、新たに部品を用いることなく簡単な装置構成で且つ低コストとすることができる。   According to the method for manufacturing an imaging module according to the present invention, the solder ball disposed on the imaging device is placed in a recess formed on the substrate, and the solder ball is heated and melted after the substrate and the imaging device are opposed to each other. In addition, since the substrate and the image sensor are bonded in a state where the end portion of the substrate side surface of the image sensor and the mounting surface surrounding the recess of the substrate are in surface contact, the substrate and the image sensor are bonded in parallel. Can do. In particular, even if there is a variation in the size of the solder balls before fusion bonding, the substrate and the image sensor can be bonded in parallel without being affected by this. Thus, by incorporating the optical system with the mounting surface of the substrate as a reference, the optical system is appropriately set even for an image sensor parallel to the substrate, and the optical axis can be easily adjusted. In addition, since a structure for making the imaging element and the substrate parallel is provided on the substrate side, a simple apparatus configuration and low cost can be achieved without newly using components.

また、前記撮像素子に配設される前記半田ボールは、前記基板の前記凹部の深さより3%以上25%以下の長さだけ直径が大きいことを特徴とする。
このように、半田ボールは、凹部の深さより3%以上25%以下の長さだけ直径が大きい半田ボールとすることにより、基板と撮像素子とを接合した際に、基板の凹部を囲む実装面と撮像素子の基板側表面とを確実に面接触させ、且つ隣り合う半田ボール同士の距離を一定に維持できるとともに、撮像素子と基板の接合強度を保つことができる。
In addition, the solder ball disposed in the imaging element has a diameter that is greater than or equal to 3% and less than or equal to 25% than the depth of the concave portion of the substrate.
As described above, the solder ball is a solder ball having a diameter that is 3% or more and 25% or less than the depth of the concave portion, so that the mounting surface that surrounds the concave portion of the substrate when the substrate and the image sensor are joined. And the substrate-side surface of the image sensor can be reliably brought into surface contact, the distance between adjacent solder balls can be kept constant, and the bonding strength between the image sensor and the substrate can be maintained.

さらに、前記基板が多層基板であり、前記基板を構成する層のうち前記凹部に対応する層に予め貫通穴を形成しておき、前記貫通穴が形成された層を含む複数の層を積層することにより前記凹部を形成して前記基板を作製する工程を含むことを特徴とする。
このように、多層基板を積層する前に、凹部に対応する層に予め貫通穴を形成しておき、この層を含む複数の層を積層して基板を作製することにより、簡単に凹部を形成することが可能となる。
Further, the substrate is a multilayer substrate, and a through hole is formed in advance in a layer corresponding to the recess among the layers constituting the substrate, and a plurality of layers including the layer in which the through hole is formed are stacked. A step of forming the concave portion to produce the substrate.
Thus, before laminating a multilayer substrate, a through hole is formed in a layer corresponding to the recess in advance, and a plurality of layers including this layer are laminated to produce a substrate, thereby easily forming the recess. It becomes possible to do.

以上記載のごとく本発明によれば、基板に凹部を設けて、撮像素子の基板側表面と基板の凹部を囲む実装面とが面接触した状態で、半田ボールにより基板と撮像素子が接合されているため、基板と撮像素子が確実に平行となる。特に、溶融接合前の半田ボールの大きさにばらつきがある場合であってもこれに影響されず、基板と撮像素子を平行な状態で接合することができる。これにより、基板の実装面を基準として光学系を組み込むことで、基板に平行な撮像素子に対しても光学系が適切に設定されることとなり、光軸調整が容易に行なえるようになる。   As described above, according to the present invention, the substrate and the image sensor are joined by the solder balls in a state where the recess is provided in the substrate and the substrate side surface of the image sensor and the mounting surface surrounding the recess of the substrate are in surface contact. Therefore, the substrate and the image sensor are surely parallel. In particular, even if there is a variation in the size of the solder balls before fusion bonding, the substrate and the image sensor can be bonded in parallel without being affected by this. Thus, by incorporating the optical system with the mounting surface of the substrate as a reference, the optical system is appropriately set even for an image sensor parallel to the substrate, and the optical axis can be easily adjusted.

さらに、凹部の深さを接合前の半田ボール直径の80%以上97%以下とするか、又は、半田ボール直径が基板の凹部深さより3%以上25%以下の長さだけ大きくなるようにすることで、基板と撮像素子とを接合した際に、基板の凹部を囲む実装面と撮像素子の基板側表面とを確実に面接触させ、且つ隣り合う半田ボール同士の距離を一定に維持できるとともに、撮像素子と基板の接合強度を保つことができる。   Further, the depth of the concave portion is set to 80% or more and 97% or less of the solder ball diameter before bonding, or the solder ball diameter is set to be larger than the depth of the concave portion of the substrate by 3% or more and 25% or less. Thus, when the substrate and the image sensor are joined, the mounting surface surrounding the recess of the substrate and the substrate side surface of the image sensor can be reliably brought into surface contact, and the distance between adjacent solder balls can be maintained constant. The bonding strength between the image sensor and the substrate can be maintained.

さらにまた、基板の凹部を囲む実装面と撮像素子の基板側表面の端部とが凹部の全周にわたって面接触することにより、基板と撮像素子の接触面積を大きくでき、基板と撮像素子の平行を安定的に保つことができる。
また、基板の凹部と外部とを連通する開口部を形成することにより、リフロー時に溶融した半田ボールを硬化させる際に、放熱効果を高めて硬化を促進することができる。また、撮像モジュールが撮像装置に組み込まれた状態においても優れた放熱効果を有し、撮像素子が駆動して発熱した場合に開口部から放熱させることができる。また、撮像素子の端部全周を基板の実装面と面接触させていないため、撮像素子のパッケージの小型化が可能となる。さらに、基板側表面に対して半田ボールの実装面積を有効にとることができる。
Furthermore, since the mounting surface surrounding the concave portion of the substrate and the end of the surface on the substrate side of the imaging device are in surface contact over the entire circumference of the concave portion, the contact area between the substrate and the imaging device can be increased, and the substrate and the imaging device are parallel. Can be kept stable.
In addition, by forming an opening that communicates the concave portion of the substrate with the outside, it is possible to enhance the heat dissipation effect and accelerate the curing when the solder ball melted during reflow is cured. In addition, even when the imaging module is incorporated in the imaging apparatus, it has an excellent heat dissipation effect, and when the imaging element is driven and generates heat, heat can be radiated from the opening. In addition, since the entire periphery of the edge of the image sensor is not in surface contact with the mounting surface of the substrate, the package of the image sensor can be reduced. Furthermore, the mounting area of the solder balls can be effectively taken with respect to the substrate side surface.

また、光学系が保持された光学系保持部を基板の実装面に取り付けることにより、光軸に直交する光学系の基準面を基板の実装面とすることができ、この基板の実装面に対して撮像素子を平行にすることで、撮像素子に対しても光軸を直交にすることが可能となる。
さらに、多層基板を積層する前に、凹部に対応する層に予め貫通穴を形成しておき、この層を含む複数の層を積層して基板を作製することにより、簡単に凹部を形成することが可能となる。
In addition, by attaching the optical system holding part holding the optical system to the mounting surface of the substrate, the reference surface of the optical system orthogonal to the optical axis can be used as the mounting surface of the substrate. By making the image sensor parallel, the optical axis can be orthogonal to the image sensor.
Furthermore, before laminating a multilayer substrate, a through hole is formed in advance in a layer corresponding to the recess, and a plurality of layers including this layer are laminated to produce a substrate, thereby easily forming the recess. Is possible.

本発明の実施形態に係る撮像モジュールの側断面図で、(a)は溶融接合前の状態を示す図、(b)は溶融接合後の状態を示す図である。It is a sectional side view of the image pick-up module concerning the embodiment of the present invention, (a) is a figure showing the state before fusion joining, and (b) is the figure showing the state after fusion joining. 図1(a)の拡大図である。It is an enlarged view of Fig.1 (a). 撮像モジュールを撮像素子側から見た平面図(第1例)である。It is the top view which looked at the image pick-up module from the image pick-up element side (the 1st example). 撮像モジュールを撮像素子側から見た平面図(第2例)である。It is the top view (2nd example) which looked at the image pick-up module from the image sensor side. 撮像モジュールを撮像素子側から見た平面図(第3例)である。It is the top view (3rd example) which looked at the imaging module from the image sensor side. 撮像モジュールを撮像素子側から見た平面図で、(a)は第4例、(b)は第5例である。It is the top view which looked at the image pick-up module from the image sensor side, (a) is the 4th example and (b) is the 5th example. 光学系を備えた撮像モジュールの側断面図である。It is a sectional side view of an imaging module provided with an optical system. 多層基板の側断面図である。It is a sectional side view of a multilayer substrate. 従来例に係る撮像モジュールの側断面図で、(a)は溶融接合前の状態を示す図、(b)は溶融接合後の状態を示す図である。It is a sectional side view of the imaging module which concerns on a prior art example, (a) is a figure which shows the state before melt-bonding, (b) is a figure which shows the state after melt-bonding.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実例に記載されている構成部品の形状等は、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本発明の撮像モジュール及び撮像装置、並びに撮像モジュールの製造方法は、デジタルスチルカメラ、携帯端末用小型カメラ、車載カメラ等の民生機器、及び監視カメラ、画像検査装置等の産業機器などを含めた電子画像機器システム及びその製造に用いられる。また、本発明の撮像モジュール及び撮像装置、並びに撮像モジュールの製造方法は、半田ボールにより撮像素子を基板に実装した装置及び製造方法に関するものであり、好適には、BGA(Ball grid array)実装、CSP(Chip size package)実装が用いられる。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the shape of the component described in this example is not intended to limit the scope of the present invention, but is merely an illustrative example.
The imaging module and imaging apparatus of the present invention, and the manufacturing method of the imaging module are electronic devices including digital still cameras, small cameras for portable terminals, consumer equipment such as in-vehicle cameras, and industrial equipment such as surveillance cameras and image inspection apparatuses. Used for image equipment system and its manufacture. Further, the imaging module and imaging apparatus of the present invention, and the manufacturing method of the imaging module relate to an apparatus and manufacturing method in which an imaging element is mounted on a substrate with solder balls, and preferably BGA (Ball grid array) mounting, A CSP (Chip size package) implementation is used.

図1(a)を参照して、本発明の実施形態に係る撮像モジュールの構成を説明する。
撮像モジュール1は、基板2と、基板2上に表面実装される撮像素子3と、基板2と撮像素子3の間に配置され、基板2と撮像素子3を溶融接合する半田ボール4と、を備える。
撮像素子3は、光学系からの光が受光面31に結像され、これを電気信号に変換するものである。具体的に撮像素子3は、半導体基板を備え、半導体基板の受光面31側にはCCD(電荷結合素子)やCMOS(金属酸化膜半導体素子)、フォトダイオード、フォトトランジスタ等の素子を含む光電変換デバイスが設けられ、基板側表面32には外部接続用電極である複数の電極パッド(図示略)が設けられている。電極パッドはアルミニウムや銅等の金属材料で形成される。
With reference to Fig.1 (a), the structure of the imaging module which concerns on embodiment of this invention is demonstrated.
The imaging module 1 includes a substrate 2, an imaging device 3 that is surface-mounted on the substrate 2, and a solder ball 4 that is disposed between the substrate 2 and the imaging device 3 and that melt-bonds the substrate 2 and the imaging device 3. Prepare.
The image pickup device 3 is a device in which light from the optical system is imaged on the light receiving surface 31 and converted into an electric signal. Specifically, the imaging device 3 includes a semiconductor substrate, and photoelectric conversion including elements such as a CCD (charge coupled device), a CMOS (metal oxide semiconductor device), a photodiode, and a phototransistor on the light receiving surface 31 side of the semiconductor substrate. A device is provided, and a plurality of electrode pads (not shown) as external connection electrodes are provided on the substrate side surface 32. The electrode pad is formed of a metal material such as aluminum or copper.

基板2は、電気回路が形成されたものであり、実装面21に撮像素子3が実装される。必要に応じて実装面21とは反対側の面23に、抵抗、コンデンサ、集積回路等の撮像素子3を駆動する電子部品が実装される。基板2の実装面21及びこれと反対側の面23には、絶縁膜(ソルダレジスト等)又は図8に示すような絶縁層20a、20eが設けられている。好適に基板2は、図8に示すように絶縁層20a、20c、20eと導電層(配線層)20b、20dとが交互に積層された多層基板を用いる。絶縁層20a、20c、20eは樹脂や複合材料等で形成され、導電層20b、20dは銅やアルミニウム等で形成される。導電層20b、20dには電気回路が夫々形成されており、多層基板の層方向に形成されたスルーホール等により層と層の間が電気的に接続されている周知の多層基板である。   The substrate 2 is formed with an electric circuit, and the imaging element 3 is mounted on the mounting surface 21. If necessary, an electronic component for driving the imaging device 3 such as a resistor, a capacitor, and an integrated circuit is mounted on the surface 23 opposite to the mounting surface 21. An insulating film (solder resist or the like) or insulating layers 20a and 20e as shown in FIG. 8 are provided on the mounting surface 21 and the surface 23 opposite to the mounting surface 21 of the substrate 2. The substrate 2 is preferably a multilayer substrate in which insulating layers 20a, 20c, and 20e and conductive layers (wiring layers) 20b and 20d are alternately stacked as shown in FIG. The insulating layers 20a, 20c, and 20e are formed of a resin or a composite material, and the conductive layers 20b and 20d are formed of copper, aluminum, or the like. The conductive layers 20b and 20d are each a well-known multilayer substrate in which an electric circuit is formed, and the layers are electrically connected by a through hole or the like formed in the layer direction of the multilayer substrate.

基板2の実装面21には凹部24が形成されている。凹部24の底面には、外部接続用電極である複数の電極パッド又は引出電極(図示略)が設けられている。電極パッド又は引出電極はアルミニウムや銅等の金属材料で形成される。
半田ボール4は、撮像素子3の基板側表面32にグリッド状に配列される。尚、半田ボールの材料には、PbとSnを主成分とした半田材料又は鉛フリーの半田材料が用いられる。半田ボール4は撮像素子3の基板側表面32に設けられた電極パッド又は引出電極の上の形成される。また、半田ボール4は、基板2上に撮像素子3を実装した時、基板2の凹部24内に位置するように配置される。
A recess 24 is formed in the mounting surface 21 of the substrate 2. A plurality of electrode pads or lead electrodes (not shown), which are external connection electrodes, are provided on the bottom surface of the recess 24. The electrode pad or the extraction electrode is formed of a metal material such as aluminum or copper.
The solder balls 4 are arranged in a grid on the substrate-side surface 32 of the image sensor 3. Note that a solder material composed mainly of Pb and Sn or a lead-free solder material is used as the material of the solder ball. The solder ball 4 is formed on the electrode pad or the extraction electrode provided on the substrate side surface 32 of the image pickup device 3. The solder balls 4 are arranged so as to be located in the recesses 24 of the substrate 2 when the imaging device 3 is mounted on the substrate 2.

半田ボール4は、リフロー炉により溶融されて図1(b)に示すように略柱状となり基板2と撮像素子3を接合する。基板2上に撮像素子3を実装した時に、基板2の凹部24を囲む少なくとも一部の実装面22が、撮像素子3の基板側表面32のうち少なくとも凹部24を挟んで対向する一対の端部33と面接触する。即ち、基板2の凹部24を囲む実装面のうち少なくとも凹部24を挟んで対向した2つの部位22が、撮像素子3の基板側表面32の端部33と面接触するようになっている。   The solder balls 4 are melted by a reflow furnace to become substantially columnar as shown in FIG. 1B, and join the substrate 2 and the image pickup device 3 together. When the imaging device 3 is mounted on the substrate 2, at least a part of the mounting surface 22 surrounding the recess 24 of the substrate 2 is opposed to the substrate-side surface 32 of the imaging device 3 with at least the recess 24 interposed therebetween. 33 makes surface contact. That is, at least two portions 22 of the mounting surface surrounding the recess 24 of the substrate 2 that face each other with at least the recess 24 interposed therebetween are in surface contact with the end portion 33 of the substrate-side surface 32 of the imaging device 3.

本発明の実施形態に係る撮像モジュール1によれば、基板2に凹部24を設けて、撮像素子3の基板側表面32と基板2の凹部24を囲む実装面22とが面接触した状態で、凹部24に位置する半田ボール4により基板2と撮像素子3が接合されているため、基板2と撮像素子3が確実に平行となる。特に、溶融接合前の半田ボール4の大きさにばらつきがある場合であってもこれに影響されず、基板2と撮像素子3を平行な状態で接合することができる。これにより、基板2の実装面21を基準として光学系を組み込むことで、基板2に平行な撮像素子3に対しても光学系が適切に設定されることとなり、光軸調整が容易に行なえるようになる。
基板2と撮像素子3を平行にするための構造を基板2側にもたせたため、新たに部品を用いることなく簡単な装置構成で且つ低コストとすることができる。
According to the imaging module 1 according to the embodiment of the present invention, the substrate 2 is provided with the recess 24, and the substrate-side surface 32 of the imaging device 3 and the mounting surface 22 surrounding the recess 24 of the substrate 2 are in surface contact, Since the substrate 2 and the image sensor 3 are joined by the solder balls 4 located in the recess 24, the substrate 2 and the image sensor 3 are surely parallel. In particular, even if there is a variation in the size of the solder balls 4 before fusion bonding, the substrate 2 and the image sensor 3 can be bonded in parallel without being affected by this. Thus, by incorporating the optical system with the mounting surface 21 of the substrate 2 as a reference, the optical system is appropriately set even for the image pickup device 3 parallel to the substrate 2, and the optical axis can be easily adjusted. It becomes like this.
Since a structure for making the substrate 2 and the image sensor 3 parallel is also provided on the substrate 2 side, a simple apparatus configuration and low cost can be achieved without newly using components.

また、図2の拡大図を参照して、凹部24の深さHが、溶融接合前の半田ボール4の直径Dの80%以上97%以下であることが好ましい。
半田ボール4は溶融接合により高さ方向に10〜20%程度収縮するが、凹部24の深さHが溶融接合前の半田ボール4の直径Dに対して80%より小さいと、収縮率を考慮しても半田ボール4が相対的に凹部より大きすぎて、撮像素子3の基板側表面32の端部33が基板2の凹部24を囲む実装面22から浮いてしまい、撮像素子3が傾いてしまうおそれがある。これを防止するために撮像素子3の基板側表面32の端部33が基板2の凹部24を囲む実装面22に当接するまで加圧すると、半田ボール4が凹部24の幅方向に広がってしまい、隣り合う半田ボール同士が接触してしまうおそれがある。一方、凹部24の深さHが溶融接合前の半田ボール4の直径Dに対して97%より大きいと、半田ボール4と撮像素子3の接触面積が小さすぎて接合強度が低下するおそれがある。従って、凹部24の深さHを上記範囲内とすることで、溶融接合後に基板2の凹部24を囲む実装面22と撮像素子3の基板側表面32の端部33とを確実に当接させ、且つ隣り合う半田ボール同士の距離を一定に維持できるとともに、基板2と撮像素子3の接合強度を保つことができる。
In addition, referring to the enlarged view of FIG. 2, the depth H of the recess 24 is preferably 80% or more and 97% or less of the diameter D of the solder ball 4 before fusion bonding.
The solder ball 4 shrinks by about 10 to 20% in the height direction by fusion bonding, but if the depth H of the recess 24 is smaller than 80% with respect to the diameter D of the solder ball 4 before fusion bonding, the shrinkage factor is considered. Even so, the solder ball 4 is relatively larger than the recess, and the end 33 of the substrate side surface 32 of the image sensor 3 floats from the mounting surface 22 surrounding the recess 24 of the substrate 2, and the image sensor 3 tilts. There is a risk that. In order to prevent this, if the end 33 of the substrate side surface 32 of the image sensor 3 is pressed until it contacts the mounting surface 22 surrounding the recess 24 of the substrate 2, the solder balls 4 spread in the width direction of the recess 24. Adjacent solder balls may come into contact with each other. On the other hand, if the depth H of the recess 24 is larger than 97% with respect to the diameter D of the solder ball 4 before fusion bonding, the contact area between the solder ball 4 and the image sensor 3 may be too small and the bonding strength may be reduced. . Therefore, by setting the depth H of the concave portion 24 within the above range, the mounting surface 22 surrounding the concave portion 24 of the substrate 2 and the end portion 33 of the substrate-side surface 32 of the image sensor 3 are surely brought into contact with each other after fusion bonding. In addition, the distance between adjacent solder balls can be kept constant, and the bonding strength between the substrate 2 and the image sensor 3 can be kept.

図3乃至図6は、撮像モジュール1を撮像素子3側から見た平面図である。
凹部24の形状は特に限定されないが、実装面21側から見た時に、図3又は図5に示すような方形状、図4に示すような十字状、図6(a)、(b)に示すような円形状等が用いられる。
図3に示す第1例では、凹部24は実装面21側から見て撮像素子3よりもひと回り小さい正方形状に形成されている。凹部24の底面には、半田ボール4がグリッド状に並んでいる。基板2の凹部24を囲む実装面22がその全周にわたって、撮像素子3の基板側表面32の端部33と当接するようになっている。即ち、撮像素子3の基板側表面32の端部33のうち、対向した端部33aと端部33cが夫々基板2の実装面22と面接触するとともに、対向した端部33bと端部33dが夫々基板2の実装面22と面接触しており、撮像素子3の端部33の全周にわたって基板2の実装面22と面接触するようになっている。このように、基板2の端部33が凹部24の全周にわたって基板2の実装面22と面接触することにより、撮像素子3と基板2の接触面積を大きくでき、基板2と撮像素子3の平行を安定的に保つことができる。
3 to 6 are plan views of the imaging module 1 as seen from the imaging element 3 side.
The shape of the recess 24 is not particularly limited, but when viewed from the mounting surface 21 side, a square shape as shown in FIG. 3 or 5, a cross shape as shown in FIG. 4, and FIGS. 6 (a) and 6 (b). A circular shape as shown is used.
In the first example shown in FIG. 3, the recess 24 is formed in a square shape that is slightly smaller than the image sensor 3 when viewed from the mounting surface 21 side. On the bottom surface of the recess 24, the solder balls 4 are arranged in a grid. The mounting surface 22 surrounding the concave portion 24 of the substrate 2 is in contact with the end portion 33 of the substrate side surface 32 of the image pickup device 3 over the entire circumference. That is, among the end portions 33 of the substrate-side surface 32 of the image sensor 3, the opposed end portions 33a and 33c are in surface contact with the mounting surface 22 of the substrate 2, and the opposed end portions 33b and 33d are in contact with each other. Each is in surface contact with the mounting surface 22 of the substrate 2, and is in surface contact with the mounting surface 22 of the substrate 2 over the entire circumference of the end portion 33 of the image sensor 3. As described above, when the end portion 33 of the substrate 2 is in surface contact with the mounting surface 22 of the substrate 2 over the entire circumference of the recess 24, the contact area between the imaging element 3 and the substrate 2 can be increased. Parallelism can be kept stable.

図4に示す第2例では、凹部24は実装面21側から見て十字状に形成されている。基板2の凹部24を囲む実装面のうち、十字の中心に向かって突出した部位の実装面22が撮像素子3の端部33e〜端部33hと面接触している。面接触する部位は4箇所存在し、撮像素子3の端部33eと端部33gが対向して位置し、端部33fと端部33hが対向して位置している。凹部24の底面には、半田ボール4がグリッド状に並んでいる。さらに、基板2の実装面22と当接していない撮像素子3の端部34と、基板2の凹部24を囲む実装面21との間に間隙が設けられ、凹部24と外部とを連通する開口部40が形成されている。   In the second example shown in FIG. 4, the recess 24 is formed in a cross shape when viewed from the mounting surface 21 side. Of the mounting surface that surrounds the recess 24 of the substrate 2, the mounting surface 22 that protrudes toward the center of the cross is in surface contact with the end portions 33 e to 33 h of the image sensor 3. There are four parts in surface contact, the end 33e and the end 33g of the image sensor 3 are located facing each other, and the end 33f and the end 33h are located facing each other. On the bottom surface of the recess 24, the solder balls 4 are arranged in a grid. Further, a gap is provided between the end portion 34 of the image sensor 3 that is not in contact with the mounting surface 22 of the substrate 2 and the mounting surface 21 surrounding the recess 24 of the substrate 2, and an opening that communicates the recess 24 with the outside. A portion 40 is formed.

このように、凹部24を十字状に形成して撮像素子3の四隅に位置する端部33e〜33hと基板2の凹部24を囲む実装面22とを面接触させることにより、基板2と撮像素子3とを平行にできる。さらに、基板2の凹部24と外部とを連通する開口部40を形成することにより、リフロー時に溶融した半田ボール4を硬化させる際に、放熱効果を高めて硬化を促進することができる。また、撮像モジュール1が撮像装置に組み込まれた状態においても優れた放熱効果を有し、撮像素子3が駆動して発熱した場合に開口部40から放熱させることができる。また、撮像素子3の端部全周を基板2の実装面21と面接触させていないため、撮像素子3のパッケージの小型化が可能となる。さらに、撮像素子3の基板側表面32に対して半田ボール4の実装面積を有効にとることができる。   In this way, the recesses 24 are formed in a cross shape, and the end portions 33e to 33h located at the four corners of the image sensor 3 and the mounting surface 22 surrounding the recess 24 of the substrate 2 are brought into surface contact with each other. 3 can be parallel. Furthermore, by forming the opening 40 that communicates the concave portion 24 of the substrate 2 with the outside, when the solder ball 4 melted at the time of reflow is cured, the heat dissipation effect can be enhanced and the curing can be promoted. In addition, even when the imaging module 1 is incorporated in the imaging apparatus, the imaging module 1 has an excellent heat dissipation effect, and when the imaging element 3 is driven to generate heat, heat can be radiated from the opening 40. Further, since the entire periphery of the end of the image sensor 3 is not in surface contact with the mounting surface 21 of the substrate 2, the package of the image sensor 3 can be reduced in size. Furthermore, the mounting area of the solder balls 4 can be effectively taken with respect to the substrate-side surface 32 of the image sensor 3.

図5に示す第3例では、凹部24は実装面21側から見て長方形状に形成されている。基板2の凹部24を囲む実装面22のうち凹部24を挟んで対向する2辺が撮像素子3の端部33i、端部33jと面接触している。面接触する部位は2箇所存在する。凹部24の底面には、半田ボール4がグリッド状に並んでいる。さらに、第2例と同様に、基板2の実装面22と当接していない撮像素子3の端部34と、基板2の凹部24を囲む実装面21との間に間隙が設けられ、凹部24と外部とを連通する開口部40が形成されている。   In the third example shown in FIG. 5, the recess 24 is formed in a rectangular shape when viewed from the mounting surface 21 side. Of the mounting surface 22 surrounding the recess 24 of the substrate 2, two sides facing each other across the recess 24 are in surface contact with the end 33 i and the end 33 j of the image sensor 3. There are two parts that make surface contact. On the bottom surface of the recess 24, the solder balls 4 are arranged in a grid. Further, similarly to the second example, a gap is provided between the end portion 34 of the imaging element 3 that is not in contact with the mounting surface 22 of the substrate 2 and the mounting surface 21 surrounding the recess 24 of the substrate 2, so that the recess 24 An opening 40 that communicates with the outside is formed.

このように、凹部24を長方形状に形成して、撮像素子3の対向する2辺の端部33i、端部33jと基板2の凹部24を囲む実装面22とを夫々当接させることにより、基板2と撮像素子3とを平行にできる。さらに、基板2の凹部24と外部とを連通する開口部40を形成することにより、第2例と同様に、リフロー時に放熱効果を高めて硬化を促進することができ、撮像モジュール1が撮像装置に組み込まれた状態においても優れた放熱効果を有する。また、撮像素子3のパッケージの小型化が可能となるとともに、撮像素子3の基板側表面32に対して半田ボール4の実装面積を有効にとることができる。
尚、開口部40を有する第2例、第3例とを比較すると、放熱効果は第2例の方が高くなり、基板2と撮像素子3の平行安定性は第3例の方が高くなる。
In this way, the concave portion 24 is formed in a rectangular shape, and the two opposite end portions 33i and 33j of the image sensor 3 are brought into contact with the mounting surface 22 surrounding the concave portion 24 of the substrate 2, respectively. The board | substrate 2 and the image pick-up element 3 can be made parallel. Furthermore, by forming the opening 40 that allows the recess 24 of the substrate 2 to communicate with the outside, as in the second example, it is possible to enhance the heat dissipation effect during reflow and promote curing, and the imaging module 1 can be used as an imaging device. Even in the state where it is incorporated in, it has an excellent heat dissipation effect. In addition, the package of the image pickup device 3 can be reduced in size, and the mounting area of the solder balls 4 can be effectively taken with respect to the substrate-side surface 32 of the image pickup device 3.
When comparing the second example and the third example having the opening 40, the heat dissipation effect is higher in the second example, and the parallel stability of the substrate 2 and the imaging element 3 is higher in the third example. .

図6(a)に示す第4例は、撮像素子パッケージをより一層小型化できる例で、(b)に示す第5例は、撮像素子パッケージの実装面積をより有効に確保できる例である。
第4例及び第5例では、凹部24は実装面21から見て円形状に形成されている。一方、撮像素子3は方形状に形成されている。撮像素子3の基板側表面のうち角部に位置する4つの端部33k〜端部33nが、基板2の凹部24を囲む実装面22に夫々面接触している。面接触する部位は4箇所存在し、撮像素子3の端部33kと端部33mが対向して位置し、端部33lと端部33nが対向して位置している。凹部24の底面には、半田ボール4がグリッド状に並んでいる。さらに、基板2の実装面22と当接していない撮像素子3の端部34と、基板2の凹部24を囲む実装面21との間に間隙が設けられ、凹部24と外部とを連通する開口部40が形成されている。開口部40は4箇所存在する。
The fourth example shown in FIG. 6A is an example in which the image sensor package can be further reduced, and the fifth example shown in FIG. 6B is an example in which the mounting area of the image sensor package can be more effectively secured.
In the fourth example and the fifth example, the recess 24 is formed in a circular shape when viewed from the mounting surface 21. On the other hand, the image sensor 3 is formed in a square shape. Of the surface of the image pickup device 3 on the substrate side, the four end portions 33k to 33n located at the corners are in surface contact with the mounting surface 22 surrounding the recess 24 of the substrate 2, respectively. There are four parts that are in surface contact, the end 33k and the end 33m of the image sensor 3 are located facing each other, and the end 33l and the end 33n are located facing each other. On the bottom surface of the recess 24, the solder balls 4 are arranged in a grid. Further, a gap is provided between the end portion 34 of the image sensor 3 that is not in contact with the mounting surface 22 of the substrate 2 and the mounting surface 21 surrounding the recess 24 of the substrate 2, and an opening that communicates the recess 24 with the outside. A portion 40 is formed. There are four openings 40.

このように、凹部24を円形状に形成して撮像素子3の四隅に位置する端部33k〜33nと基板2の凹部24を囲む実装面22とを面接触させることにより、基板2と撮像素子3とを平行にできる。さらに、基板2の凹部24と外部とを連通する開口部40を形成することにより、リフロー時に溶融した半田ボール4を硬化させる際に、放熱効果を高めて硬化を促進することができる。また、撮像モジュール1が撮像装置に組み込まれた状態においても優れた放熱効果を有し、撮像素子3が駆動して発熱した場合に開口部40から放熱させることができる。また、撮像素子3の端部全周を基板2の実装面21と面接触させていないため、撮像素子3のパッケージの小型化が可能となる。さらに、撮像素子3の基板側表面32に対して半田ボール4の実装面積を有効にとることができる。   In this manner, the recesses 24 are formed in a circular shape, and the end portions 33k to 33n positioned at the four corners of the image sensor 3 and the mounting surface 22 surrounding the recess 24 of the substrate 2 are brought into surface contact with each other. 3 can be parallel. Furthermore, by forming the opening 40 that communicates the concave portion 24 of the substrate 2 with the outside, when the solder ball 4 melted at the time of reflow is cured, the heat dissipation effect can be enhanced and the curing can be promoted. In addition, even when the imaging module 1 is incorporated in the imaging apparatus, the imaging module 1 has an excellent heat dissipation effect, and when the imaging element 3 is driven to generate heat, heat can be radiated from the opening 40. Further, since the entire periphery of the end of the image sensor 3 is not in surface contact with the mounting surface 21 of the substrate 2, the package of the image sensor 3 can be reduced in size. Furthermore, the mounting area of the solder balls 4 can be effectively taken with respect to the substrate-side surface 32 of the image sensor 3.

特に、上記した第4例においては、凹部24を円形状に形成し、方形状の撮像素子3の角部に位置する端部33k〜33nを基板2の実装面22に面接触させる構成としたため、第1例に比べて撮像素子パッケージをより一層小型化できる。また、第5例においては、凹部24を円形状にし、方形状の撮像素子3の角部に位置する端部33k〜33nを基板2の実装面22に面接触させるとともに、凹部24と撮像素子3の面積を第4例より大きくとっているため、第1例に比べて、より半田ボール4の実装面積を有効にとることができる。   In particular, in the above-described fourth example, the concave portion 24 is formed in a circular shape, and the end portions 33k to 33n positioned at the corners of the rectangular imaging element 3 are in surface contact with the mounting surface 22 of the substrate 2. As compared with the first example, the image pickup device package can be further reduced in size. In the fifth example, the concave portion 24 is circular, and the end portions 33k to 33n located at the corners of the rectangular imaging element 3 are brought into surface contact with the mounting surface 22 of the substrate 2, and the concave portion 24 and the imaging element are also in contact with each other. Since the area of 3 is larger than that of the fourth example, the mounting area of the solder balls 4 can be made more effective than that of the first example.

図7は光学系を備えた撮像モジュールの側断面図である。同図に示すように、撮像モジュール1は、半田ボール4を介して撮像素子3が実装された基板2上に、光学系6を保持した光学系保持部5が設けられていてもよい。この場合、光学系保持部5は、基板2の凹部24周囲の実装面21に設けられる。
光学系6は、光学レンズ、光学フィルタ又はプリズム等の光学素子が一又は複数組み合わされて構成される。光学系保持部5は、筒状に形成されて内周面に光学系6を保持している。
FIG. 7 is a side cross-sectional view of an imaging module having an optical system. As shown in the figure, the imaging module 1 may be provided with an optical system holding unit 5 that holds an optical system 6 on a substrate 2 on which the imaging device 3 is mounted via a solder ball 4. In this case, the optical system holding unit 5 is provided on the mounting surface 21 around the recess 24 of the substrate 2.
The optical system 6 is configured by combining one or more optical elements such as an optical lens, an optical filter, or a prism. The optical system holding part 5 is formed in a cylindrical shape and holds the optical system 6 on the inner peripheral surface.

このように、光学系6が保持された光学系保持部5を基板2の凹部24周囲の実装面21に取り付けることにより、光軸に直交する光学系6の基準面を基板2の実装面21とすることができ、この基板2の実装面21に対して撮像素子3を平行にすることで、撮像素子3に対して光学系6の光軸を直交にすることが可能となる。
尚、図1乃至図8の少なくとも何れかに示した撮像モジュール1を備える撮像装置を構成することが好ましい。撮像装置は、例えばデジタルスチルカメラ、携帯端末用小型カメラ、車載カメラ、監視カメラ、画像検査装置の撮像手段等である。
In this way, by attaching the optical system holding unit 5 holding the optical system 6 to the mounting surface 21 around the recess 24 of the substrate 2, the reference surface of the optical system 6 orthogonal to the optical axis is used as the mounting surface 21 of the substrate 2. It is possible to make the optical axis of the optical system 6 orthogonal to the image pickup device 3 by making the image pickup device 3 parallel to the mounting surface 21 of the substrate 2.
Note that it is preferable to configure an imaging apparatus including the imaging module 1 shown in at least one of FIGS. The imaging device is, for example, a digital still camera, a portable camera, a vehicle-mounted camera, a surveillance camera, an imaging means of an image inspection device, or the like.

次に、本発明の実施形態に係る撮像モジュール1の製造方法につき以下に説明する。
まず、基板2の実装面21に凹部24を形成する。図8に示すような多層基板2の場合、好適には、基板2を構成する層のうち凹部24に対応する絶縁層20aに予め貫通穴を形成しておき、貫通穴が形成された絶縁層20a、導電層20b、他の絶縁層20c、他の導電層20d、他の絶縁層20eを順次積層していく。このとき、表面に露出する実装面21とその反対側の面23は、絶縁層を配置するか又は絶縁膜を設ける。さらに、凹部24の底面に該当する層が導電層となる場合は、表面に絶縁膜(図示略)を設ける。尚、図面では1層のみに貫通穴を設けた構成としているが、凹部24の深さに応じて貫通穴を設ける層数を設定するとよい。このようにして凹部24を有する基板2を作製することにより、簡単に凹部24を形成することが可能となる。好適には、凹部24の深さは、溶融接合前の半田ボール4の直径の80%以上97%以下とする。
Next, a manufacturing method of the imaging module 1 according to the embodiment of the present invention will be described below.
First, the recess 24 is formed in the mounting surface 21 of the substrate 2. In the case of the multilayer substrate 2 as shown in FIG. 8, preferably, through holes are formed in advance in the insulating layer 20a corresponding to the recesses 24 among the layers constituting the substrate 2, and the insulating layer in which the through holes are formed. 20a, a conductive layer 20b, another insulating layer 20c, another conductive layer 20d, and another insulating layer 20e are sequentially stacked. At this time, the mounting surface 21 exposed on the surface and the opposite surface 23 are provided with an insulating layer or provided with an insulating film. Further, when the layer corresponding to the bottom surface of the recess 24 is a conductive layer, an insulating film (not shown) is provided on the surface. In addition, although it is set as the structure which provided the through-hole only in one layer in drawing, it is good to set the number of layers which provide a through-hole according to the depth of the recessed part 24. FIG. By manufacturing the substrate 2 having the recess 24 in this manner, the recess 24 can be easily formed. Preferably, the depth of the recess 24 is 80% or more and 97% or less of the diameter of the solder ball 4 before fusion bonding.

撮像素子3上に、凹部24の深さより大きい直径を有する半田ボール4をグリッド状に配列する。好適には、半田ボール4は、凹部24の深さより3%以上25%以下の長さだけ直径が大きくなるように形成する。半田ボール4は撮像素子3に設けられた電極パッド又は引出電極の上に形成する。
次いで、半田ボール4が基板2の凹部24内に位置するように基板2と撮像素子3とを対面させて位置合わせし、固定する。このとき、基板2の電極パッド又は引出電極に半田ボール4が当接する位置に固定する。
On the image sensor 3, solder balls 4 having a diameter larger than the depth of the recess 24 are arranged in a grid. Preferably, the solder ball 4 is formed so that its diameter is larger than the depth of the recess 24 by a length of 3% to 25%. The solder balls 4 are formed on electrode pads or extraction electrodes provided on the image sensor 3.
Next, the substrate 2 and the image sensor 3 are faced to be aligned and fixed so that the solder ball 4 is positioned in the recess 24 of the substrate 2. At this time, the solder ball 4 is fixed to a position where the solder ball 4 contacts the electrode pad or the extraction electrode of the substrate 2.

そして、半田ボール4を挟んで対面した基板2と撮像素子3をリフロー炉に導入し、これを半田ボール4が溶融する温度まで加熱する。加熱時は、基板2又は撮像素子3に半田ボール4側への圧力を加えてもよい。半田ボール4は溶融することにより撮像素子3の基板側表面32に融着するとともに高さ方向に収縮するが、基板2の凹部24を囲む実装面22と、撮像素子3の基板側表面32の端部33とが当接した時点で半田ボール4はそれ以上収縮することがなくなる。
半田ボール4を溶融した後、基板2、撮像素子3、半田ボール4を冷却し、半田ボール4を硬化させる。基板2又は撮像素子3に圧力を加えた場合には、半田ボール4が硬化したら圧力を解除する。半田ボール4が硬化することにより基板2の実装面22と、撮像素子3の基板側表面32とが面接触した状態は維持され、凹部24の半田ボール4により基板2と撮像素子3が接合された撮像モジュール1が製造される。
Then, the substrate 2 and the image sensor 3 facing each other with the solder ball 4 interposed therebetween are introduced into a reflow furnace, and this is heated to a temperature at which the solder ball 4 melts. During heating, a pressure toward the solder ball 4 may be applied to the substrate 2 or the image sensor 3. The solder ball 4 is melted and fused to the substrate-side surface 32 of the image pickup device 3 and contracts in the height direction, but the mounting surface 22 that surrounds the recess 24 of the substrate 2 and the substrate-side surface 32 of the image pickup device 3. When the end portion 33 abuts, the solder ball 4 will not shrink any further.
After the solder ball 4 is melted, the substrate 2, the image sensor 3 and the solder ball 4 are cooled, and the solder ball 4 is cured. When pressure is applied to the substrate 2 or the image sensor 3, the pressure is released when the solder ball 4 is cured. When the solder balls 4 are cured, the mounting surface 22 of the substrate 2 and the substrate-side surface 32 of the image sensor 3 are kept in surface contact with each other, and the substrate 2 and the image sensor 3 are joined by the solder balls 4 in the recesses 24. The imaging module 1 is manufactured.

本発明に係る撮像モジュール1の製造方法によれば、撮像素子3に配設された半田ボール4が、基板2に形成された凹部24に位置するように基板2と撮像素子3とを対向させた後半田ボール4を加熱溶融し、撮像素子3の基板側表面32の端部33と基板2の凹部24を囲む実装面22とを面接触させた状態で基板2と撮像素子3を接合しているため、基板2と撮像素子3を平行な状態で接合することができる。特に、溶融接合前の半田ボール4の大きさにばらつきがある場合であってもこれに影響されず、基板2と撮像素子3を平行な状態で接合可能である。これにより、基板2の実装面21を基準として光学系を組み込むことで、基板2に平行な撮像素子3に対しても光学系が適切に設定されることとなり、光軸調整が容易に行なえるようになる。また、撮像素子2と基板3を平行にするための構造を基板2側にもたせたため、新たに部品を用いることなく簡単な装置構成で且つ低コストとすることができる。   According to the method for manufacturing the image pickup module 1 according to the present invention, the substrate 2 and the image pickup device 3 are made to face each other so that the solder balls 4 disposed on the image pickup device 3 are located in the recesses 24 formed on the substrate 2. After that, the solder ball 4 is heated and melted, and the substrate 2 and the image pickup device 3 are joined in a state where the end portion 33 of the substrate side surface 32 of the image pickup device 3 and the mounting surface 22 surrounding the concave portion 24 of the substrate 2 are in surface contact. Therefore, the substrate 2 and the image sensor 3 can be joined in a parallel state. In particular, even if there is a variation in the size of the solder balls 4 before fusion bonding, the substrate 2 and the image sensor 3 can be bonded in parallel without being affected by this. Thus, by incorporating the optical system with the mounting surface 21 of the substrate 2 as a reference, the optical system is appropriately set even for the image pickup device 3 parallel to the substrate 2, and the optical axis can be easily adjusted. It becomes like this. In addition, since the structure for making the image pickup device 2 and the substrate 3 parallel is provided on the substrate 2 side, a simple apparatus configuration and low cost can be achieved without newly using components.

1 撮像モジュール
2 基板
21 実装面
22 凹部を囲む実装面
24 凹部
3 撮像素子
31 受光面
32 基板側表面
33、33a〜33j 端部
4 半田ボール
5 光学系保持部
6 光学系
40 開口部
DESCRIPTION OF SYMBOLS 1 Imaging module 2 Board | substrate 21 Mounting surface 22 Mounting surface 24 surrounding a recessed part Recessed part 3 Image pick-up element 31 Light receiving surface 32 Board | substrate side surface 33, 33a-33j End part 4 Solder ball 5 Optical system holding | maintenance part 6 Optical system 40 Opening part

Claims (9)

凹部が実装面に形成され、前記凹部に外部接続用電極が設けられた基板と、
前記基板の前記実装面に実装される撮像素子と、
前記基板と前記撮像素子とを接合する半田ボールとを備え、
前記基板と前記撮像素子とが前記半田ボールを介して接合された状態で、前記撮像素子の基板側表面のうち少なくとも前記凹部を挟んで対向する一対の端部が、前記基板の前記凹部を囲む前記実装面と面接触していることを特徴とする撮像モジュール。
A substrate in which a recess is formed on the mounting surface, and an external connection electrode is provided in the recess;
An image sensor mounted on the mounting surface of the substrate;
A solder ball for joining the substrate and the image sensor;
In a state where the substrate and the image sensor are joined via the solder ball, a pair of end portions facing each other with at least the recess between the substrate-side surfaces of the image sensor surround the recess of the substrate. An imaging module, wherein the imaging module is in surface contact with the mounting surface.
前記凹部の深さは、前記基板と前記撮像素子を接合する前の前記半田ボールの直径の80%以上97%以下であることを特徴とする請求項1記載の撮像モジュール。   The imaging module according to claim 1, wherein a depth of the concave portion is 80% or more and 97% or less of a diameter of the solder ball before the substrate and the imaging device are joined. 前記基板の前記凹部を囲む前記実装面と前記撮像素子の基板側表面の前記端部とが、前記凹部の全周にわたって面接触していることを特徴とする請求項1又は2記載の撮像モジュール。   3. The imaging module according to claim 1, wherein the mounting surface surrounding the concave portion of the substrate and the end portion of the substrate-side surface of the imaging element are in surface contact over the entire circumference of the concave portion. . 前記基板の前記実装面と面接触していない前記撮像素子の端部と、前記基板の前記凹部を囲む前記実装面との間に間隙を設けて、前記凹部と撮像モジュールの外部を連通する開口部を形成したことを特徴とする請求項1乃至3の何れかに記載の撮像モジュール。   An opening is provided between the end of the imaging element that is not in surface contact with the mounting surface of the substrate and the mounting surface that surrounds the recess of the substrate, and communicates the recess with the outside of the imaging module. The imaging module according to claim 1, wherein a part is formed. 前記基板の前記実装面に固設された光学系保持部と、
前記光学系保持部に保持された光学系と、を含むことを特徴とする請求項1乃至4の何れかに記載の撮像モジュール。
An optical system holder fixed to the mounting surface of the substrate;
The imaging module according to claim 1, further comprising an optical system held by the optical system holding unit.
請求項1乃至5の何れか1項に記載の撮像モジュールを含むことを特徴とする撮像装置。   An imaging apparatus comprising the imaging module according to claim 1. 基板と、前記基板の実装面に実装される撮像素子とを半田ボールにより接合して撮像モジュールを製造する撮像モジュールの製造方法において、
前記基板の前記実装面に凹部が形成され、前記撮像素子の基板側表面に前記凹部の深さより直径が大きい前記半田ボールが複数配設されており、
前記凹部に前記半田ボールが位置するように前記基板と前記撮像素子とを対向させる工程と、
前記半田ボールを加熱溶融し、前記撮像素子の基板側表面のうち少なくとも前記凹部を挟んで対向する一対の端部を、前記基板の前記凹部を囲む前記実装面と面接触させるとともに、前記半田ボールにより前記基板と前記撮像素子とを接合する工程と、
前記半田ボールを硬化させる工程と、を備えることを特徴とする撮像モジュールの製造方法。
In an imaging module manufacturing method for manufacturing an imaging module by joining a substrate and an imaging element mounted on a mounting surface of the substrate with a solder ball,
A concave portion is formed on the mounting surface of the substrate, and a plurality of the solder balls having a diameter larger than the depth of the concave portion are disposed on the substrate side surface of the imaging element,
Making the substrate and the imaging element face each other so that the solder ball is located in the recess;
The solder ball is heated and melted, and at least a pair of opposite end portions of the substrate-side surface of the imaging element facing the concave portion are brought into surface contact with the mounting surface surrounding the concave portion of the substrate. Bonding the substrate and the imaging device by:
And a step of curing the solder ball. An imaging module manufacturing method comprising:
前記撮像素子に配設される前記半田ボールは、前記基板の前記凹部の深さより3%以上25%以下の長さだけ直径が大きいことを特徴とする請求項7記載の撮像モジュールの製造方法。   The method of manufacturing an imaging module according to claim 7, wherein the solder ball disposed on the imaging element has a diameter that is greater than or equal to 3% and less than or equal to 25% than a depth of the concave portion of the substrate. 前記基板が多層基板であり、
前記基板を構成する層のうち前記凹部に対応する層に予め貫通穴を形成しておき、前記貫通穴が形成された層を含む複数の層を積層することにより前記凹部を形成して前記基板を作製する工程を含むことを特徴とする請求項7又は8記載の撮像モジュールの製造方法。
The substrate is a multilayer substrate;
A through hole is previously formed in a layer corresponding to the concave portion among the layers constituting the substrate, and the concave portion is formed by stacking a plurality of layers including the layer in which the through hole is formed. The method for manufacturing an imaging module according to claim 7, further comprising a step of manufacturing the imaging module.
JP2009177048A 2009-07-29 2009-07-29 Imaging module, imaging apparatus, and manufacturing method of imaging module Expired - Fee Related JP5342359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177048A JP5342359B2 (en) 2009-07-29 2009-07-29 Imaging module, imaging apparatus, and manufacturing method of imaging module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177048A JP5342359B2 (en) 2009-07-29 2009-07-29 Imaging module, imaging apparatus, and manufacturing method of imaging module

Publications (2)

Publication Number Publication Date
JP2011035476A true JP2011035476A (en) 2011-02-17
JP5342359B2 JP5342359B2 (en) 2013-11-13

Family

ID=43764146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177048A Expired - Fee Related JP5342359B2 (en) 2009-07-29 2009-07-29 Imaging module, imaging apparatus, and manufacturing method of imaging module

Country Status (1)

Country Link
JP (1) JP5342359B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186248A (en) * 2012-03-07 2013-09-19 Nidec Sankyo Corp Lens drive device
JP2014165397A (en) * 2013-02-26 2014-09-08 Kyocera Corp Image pickup device and imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897319A (en) * 1994-09-29 1996-04-12 Toshiba Corp Electronic-part package
JPH08298296A (en) * 1995-04-27 1996-11-12 Matsushita Electric Works Ltd Pbga package and pbga package mounting substrate
JPH1041426A (en) * 1996-07-19 1998-02-13 Nec Corp Ball grid array package mounting structure and ball grid array package
JP2004336632A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Camera module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897319A (en) * 1994-09-29 1996-04-12 Toshiba Corp Electronic-part package
JPH08298296A (en) * 1995-04-27 1996-11-12 Matsushita Electric Works Ltd Pbga package and pbga package mounting substrate
JPH1041426A (en) * 1996-07-19 1998-02-13 Nec Corp Ball grid array package mounting structure and ball grid array package
JP2004336632A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Camera module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186248A (en) * 2012-03-07 2013-09-19 Nidec Sankyo Corp Lens drive device
JP2014165397A (en) * 2013-02-26 2014-09-08 Kyocera Corp Image pickup device and imaging apparatus

Also Published As

Publication number Publication date
JP5342359B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
US9253922B2 (en) Electronic component and electronic apparatus
JP4304163B2 (en) Imaging module and manufacturing method thereof
US9220172B2 (en) Electronic component, electronic module, their manufacturing methods, mounting member, and electronic apparatus
US8698887B2 (en) Image pickup apparatus, endoscope and manufacturing method for image pickup apparatus
US9155212B2 (en) Electronic component, mounting member, electronic apparatus, and their manufacturing methods
JP5913284B2 (en) Device with optical module and support plate
CN110993578B (en) Printed circuit board and electronic device
JP2015026822A (en) Printed circuit board, semiconductor device bonded structure and printed circuit board manufacturing method
JP6939561B2 (en) Manufacturing method of image sensor package, image sensor and image sensor package
JPWO2012017507A1 (en) Circuit board and manufacturing method thereof
JP2016092033A (en) Printed circuit board and electronic apparatus
WO2013146098A1 (en) Image pickup module and method for manufacturing image pickup module
JP5342359B2 (en) Imaging module, imaging apparatus, and manufacturing method of imaging module
JP2010252307A (en) Image capturing apparatus and imaging module
JP2010232396A (en) Solid-state image pickup device and module using the same
JP2005242242A (en) Image sensor package and camera module
JP2005051535A (en) Imaging apparatus and manufacturing method therefor
JP7155214B2 (en) Printed circuit boards and electronics
JP2009086465A (en) Camera module
JP2008166521A (en) Solid-state imaging device
JP2009088650A (en) Image sensor module and method of manufacturing the same
JP2023087886A (en) Electronic module, electronic device, intermediate connection unit, intermediate connection unit manufacturing method, and electronic module manufacturing method
JP2002299651A (en) Semiconductor device and its manufacturing method
TWI427779B (en) Image sensor package, manufacturing method thereof and camera module
JP2023102815A (en) Electronic module, intermediate connection member, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees