JP2011030177A - 復号装置、復号制御装置、復号方法およびそのプログラム - Google Patents

復号装置、復号制御装置、復号方法およびそのプログラム Download PDF

Info

Publication number
JP2011030177A
JP2011030177A JP2009257603A JP2009257603A JP2011030177A JP 2011030177 A JP2011030177 A JP 2011030177A JP 2009257603 A JP2009257603 A JP 2009257603A JP 2009257603 A JP2009257603 A JP 2009257603A JP 2011030177 A JP2011030177 A JP 2011030177A
Authority
JP
Japan
Prior art keywords
decoding
quantization noise
generation
macroblock
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009257603A
Other languages
English (en)
Inventor
Junichi Minamimoto
淳一 南本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009257603A priority Critical patent/JP2011030177A/ja
Priority to CN2010102122471A priority patent/CN101938649B/zh
Priority to US12/821,232 priority patent/US8681877B2/en
Publication of JP2011030177A publication Critical patent/JP2011030177A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】モスキートノイズのような量子化ノイズをフィルタにより低減する際に、マクロブロック内のブロック毎の符号化の状態を考慮してフィルタのパラメータを設定する。
【解決手段】モスキートノイズフィルタモジュール200は、加算器175から出力されるマクロブロック毎の画像データに対して、モスキートノイズを低減するための平滑化処理を行う。モスキートノイズ発生指標生成部180は、可変長復号部110によって生成された復号情報に基づいて、マクロブロック内のブロック毎の符号化の状態に応じてモスキートノイズの発生指標を生成する。ブロック毎の符号化の状態を判断するために、MPEG−2のcoded_block_patternが参照される。パラメータ設定部190は、生成されたモスキートノイズの発生指標に基づいて、モスキートノイズフィルタモジュール200のパラメータを設定する。
【選択図】図1

Description

本発明は、符号化データを復号する復号装置に関し、特に復号に際してノイズ低減処理を行う復号装置、復号制御装置、および、これらにおける処理方法ならびに当該方法をコンピュータに実行させるプログラムに関する。
映像信号をデジタル圧縮する際の圧縮符号化方式として、符号化対象の映像信号の水平方向および垂直方向に隣接する複数の画素を1つの矩形ブロックとして扱い、このブロック単位で圧縮符号化を行う画像圧縮符号化方式が知られている。このような画像圧縮符号化方式として、例えばMPEG−2やH.264/AVCといった規格が標準化されている。このような圧縮符号化方式により圧縮符号化処理された映像信号は、復号処理の際においても、矩形ブロック単位で行われることで、元の映像信号が復号され、復元される。例えば、MPEG−2では、映像信号である画像データは縦8ライン×横8画素の64画素のマクロブロックに分割される。そして、このマクロブロック毎に離散コサイン変換(DCT)などの直交変換が行われて、周波数成分(DCT係数)に変換され、このDCT係数を符号化することにより画像データの圧縮が行われる。
このような圧縮符号化および復号方式においては、直交変換後の係数値を量子化する際に高周波成分を大きく省略することにより符号量を削減して、これにより符号化効率(圧縮率)を高めている。しかしながら、この量子化ステップを大きくし過ぎると、省略された高周波成分の量子化誤差によって、復号後の画像データにおいて画質の劣化を招いてしまう。
量子化誤差による画質劣化に関し、特に画像のエッジ部周辺においては、モスキートノイズまたはリンギングノイズとよばれる、エッジ周辺に散在するノイズが発生することが知られている。これは、量子化処理において高周波成分を削減したことに起因して、エッジ周辺の情報が欠落したために発生するものである。このようなモスキートノイズを除去するために、例えば、復号器の後段にデジタル画像処理用のポストフィルタを設けた電子情報機器が提案されている(例えば、特許文献1参照。)。
特開2007−13398号公報(図1)
上述の従来技術では、マクロブロック毎に量子化パラメータが取得され、この量子化パラメータが量子化閾値以上であるマクロブロックに対してのみモスキートノイズの除去処理が行われるようになっている。しかしながら、この従来技術のようにマクロブロックを単位としてノイズ除去の必要性を判断してしまうと、マクロブロック内の一部のブロックにノイズが集中しているような場合などにはモスキートノイズが検出されないという問題が生じる。一方、この問題を解消するために、モスキートノイズが検出され易いように閾値を設定してしまうと、過剰にモスキートノイズを検出してしまうという問題が生じる。
また、従来技術のように復号器の後段にポストフィルタを設けた場合には、両者間にバッファを設ける必要が生じる。すなわち、復号処理はマクロブロック単位で行われるが、表示処理はライン単位でスキャンされるため、両者間で必要な画素情報を保持するためのバッファが余計に必要となる。
本発明はこのような状況に鑑みてなされたものであり、モスキートノイズのような量子化ノイズをフィルタにより低減する際に、マクロブロック内のブロック毎の符号化の状態を考慮してフィルタのパラメータを設定することを目的とする。
本発明は、上記課題を解決するためになされたものであり、その第1の側面は、符号化データから復号に必要な復号情報をマクロブロック毎に取得する復号情報取得部と、上記復号情報に基づいて上記符号化データを復号して復号データとして生成する復号部と、上記復号データに対して所定の量子化ノイズの低減処理を上記マクロブロック毎に施す量子化ノイズフィルタ部と、上記復号情報に基づき上記マクロブロック内のブロック毎の符号化の状態に応じて上記所定の量子化ノイズの発生指標を生成する量子化ノイズ発生指標生成部と、上記発生指標に基づき上記量子化ノイズフィルタ部に対してパラメータを設定するパラメータ設定部とを具備する復号装置、その復号方法またはプログラムである。これにより、マクロブロック内のブロック毎の符号化の状態に応じて量子化ノイズの低減処理を行うという作用をもたらす。
また、この第1の側面において、上記量子化ノイズ発生指標生成部は、上記復号情報における上記ブロック毎の符号化の有無を示す符号化ブロックパターン情報(coded_block_pattern())を利用して上記発生指標を生成するようにしてもよい。
また、この第1の側面において、上記量子化ノイズ発生指標生成部は、上記マクロブロック内の符号化されたブロックの数を上記符号化ブロックパターン情報から求めて、上記符号化されたブロックの数に基づいて上記発生指標を生成するようにしてもよい。また、上記量子化ノイズ発生指標生成部は、上記マクロブロック内の符号化されたブロックの数を上記符号化ブロックパターン情報から輝度および色差毎に求めて、上記輝度および色差毎の上記符号化されたブロックの数に基づいて上記発生指標を生成するようにしてもよい。ブロックの数を輝度および色差毎に求めた場合には、これらの比率を変化させることにより柔軟に発生指標を生成することができる。一方、輝度および色差を区別せずに求めた場合には、処理を簡略化することができる。
また、この第1の側面において、上記量子化ノイズ発生指標生成部は、上記復号情報における量子化スケールと発生符号量とを掛け合わせた数に上記符号化ブロックパターン情報による重み付けを行った数を利用して上記発生指標を生成するようにしてもよい。また、この場合において、上記量子化ノイズ発生指標生成部は、上記符号化ブロックパターン情報による重み付けを行った数にさらに上記復号情報におけるピクチャタイプによる重み付けを行った数を利用して上記発生指標を生成するようにしてもよい。
また、この第1の側面において、上記パラメータ設定部は、上記発生指標が高いほど上記量子化ノイズフィルタ部における上記低減処理が強く施されるよう上記パラメータを設定するようにしてもよい。
また、この第1の側面において、上記復号データに含まれるエッジ画像を検出するエッジ検出部をさらに具備し、上記量子化ノイズフィルタ部は、上記エッジ検出部によって上記エッジ画像が検出されたマクロブロックに対しては上記低減処理を施さないようにしてもよい。これにより、ブロック毎の符号化の状態からノイズ低減処理の要否が不明な場合であっても、エッジ画像が検出されたマクロブロックに対しては低減処理を施さないという作用をもたらす。
また、この第1の側面において、上記パラメータ設定部は、上記復号情報における動き情報および上記量子化ノイズ発生指標生成部により生成された上記発生指標に基づいて上記パラメータを設定するようにしてもよい。これにより、動きの状態をさらに加味して量子化ノイズの低減処理を行うという作用をもたらす。この場合において、上記パラメータ設定部は、上記動き情報が大きな動きを示しているほど上記量子化ノイズフィルタ部における上記低減処理が強く施されるよう上記パラメータを設定するようにしてもよい。
また、この第1の側面において、上記所定の量子化ノイズは、モスキートノイズであり、上記量子化ノイズフィルタ部は、上記モスキートノイズの低減処理として平滑化処理を行うようにしてもよい。
また、この第1の側面において、上記発生指標は画像における字幕またはテロップの存在指標であり、上記量子化ノイズフィルタ部は、上記字幕またはテロップの存在領域におけるノイズの低減処理として平滑化処理を行うようにしてもよい。
また、本発明の第2の側面は、符号化データから復号に必要な復号情報をマクロブロック毎に取得する復号情報取得部と、上記復号情報に基づき上記マクロブロック内のブロック毎の符号化の状態に応じて所定の量子化ノイズの発生指標を生成する量子化ノイズ発生指標生成部と、上記発生指標に基づき上記所定の量子化ノイズの低減処理のためのパラメータを生成するパラメータ生成部とを具備する復号制御装置、その復号方法またはプログラムである。これにより、マクロブロック内のブロック毎の符号化の状態に応じて量子化ノイズの低減処理を制御するという作用をもたらす。
本発明によれば、モスキートノイズのような量子化ノイズをフィルタにより低減する際に、マクロブロック内のブロック毎の符号化の状態を考慮してフィルタのパラメータを設定することができるという優れた効果を奏し得る。
本発明の実施の形態における復号装置100の回路構成例を示す図である。 本発明の実施の形態におけるモスキートノイズフィルタモジュール200の回路構成例を示す図である。 MPEG−2におけるデータ構造の概要を示す図である。 本発明の実施の形態における平滑化処理部230の処理例を示す図である。 本発明の実施の形態において使用される符号化ブロックパターン情報の内容を示す図である。 MPEG−2におけるマクロブロックの構文を示す図である。 MPEG−2における符号化ブロックパターン情報(coded_block_pattern())の構文を示す図である。 本発明の実施の形態において想定するマクロブロックとブロックの関係を示す図である。 本発明の第1の実施の形態による復号装置100のパラメータ設定の動作例を示す流れ図である。 本発明の実施の形態による符号化ブロックパターン情報に基づく重み付け処理(ステップS910)の第1の動作例を示す流れ図である。 本発明の実施の形態による符号化ブロックパターン情報に基づく重み付け処理(ステップS910)の第2の動作例を示す流れ図である。 本発明の第1の実施の形態による復号装置100のノイズ低減処理の動作例を示す流れ図である。 本発明の第2の実施の形態による復号装置100のパラメータ設定の動作例を示す流れ図である。 本発明の第2の実施の形態における基準Aによるパラメータ設定処理(ステップS940)の動作例を示す流れ図である。 本発明の第2の実施の形態における基準Bによるパラメータ設定処理(ステップS950)の動作例を示す流れ図である。 本発明の第2の実施の形態における基準Cによるパラメータ設定処理(ステップS960)の動作例を示す流れ図である。 本発明の第2の実施の形態における基準Dによるパラメータ設定処理(ステップS970)の動作例を示す流れ図である。
以下、本発明を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(量子化ノイズ発生指標によりフィルタパラメータを設定する例)
2.第2の実施の形態(量子化ノイズ発生指標に動き情報を加味してフィルタパラメータを設定する例)
3.変形例
<1.第1の実施の形態>
[復号装置100の回路構成例]
図1は、本発明の実施の形態における復号装置100の回路構成例を示す図である。本発明の実施の形態における復号装置100は、MPEG(Moving Picture Experts Group)−2方式により符号化された符号化データに対して復号処理を行うことを想定している。この復号装置100は、可変長復号部110と、逆量子化部120と、逆離散コサイン変換部130と、動きベクトル予測部140と、動き補償部150と、画面内予測部160と、選択器170と、加算器175と、フレームメモリ300とを備えている。また、この復号装置100は、通常のMPEG−2の復号装置に加えて、モスキートノイズ発生指標生成部180と、パラメータ設定部190と、モスキートノイズフィルタモジュール200とを備えている。
可変長復号部110は、符号化データにおける可変長符号(VLC:Variable Length Code)を復号するものである。MPEG−2等では、動き補償フレーム間予測や離散コサイン変換(DCT)による符号化の際の発生確率の偏りを利用して、ハフマン(Huffman)符号に基づく可変長符号化(エントロピ符号化)が行われる。可変長復号部110は、このような可変長符号化されたデータを可変長復号して、マクロブロックの復号に必要な復号情報を生成する。この可変長復号部110によって生成された復号情報は、逆量子化部120、動きベクトル予測部140およびモスキートノイズ発生指標生成部180に供給される。
逆量子化部120は、可変長復号されたデータを逆量子化してDCT係数の直流成分と交流成分を生成するものである。逆離散コサイン変換部130は、逆量子化部120によって逆量子化されたDCT係数の直流成分および交流成分に対して逆離散コサイン変換を行い、画像データを生成するものである。動きベクトル予測部140は、可変長復号されたデータの動きベクトルに関する情報から動きベクトルを予測して、信号線149に出力するものである。動き補償部150は、動きベクトル予測部140によって予測された動きベクトルと、フレームメモリ300に保持されたフレームデータとから、画面間の動き補償(Motion Compensation)を行い、画像データを生成するものである。画面内予測部160は、画面内の予測を行い、画像データを生成するものである。選択器170は、動き補償部150または画面内予測部160により生成された画像データの何れか一方を選択するセレクタである。加算器175は、逆離散コサイン変換部130により生成された画像データと選択器170により選択された画像データを合成(加算)して、画像データを信号線179に出力するものである。これらの処理はマクロブロックを単位として行われる。
モスキートノイズ発生指標生成部180は、可変長復号部110によって生成された復号情報に基づいて、マクロブロック内のブロック毎の符号化の状態に応じてモスキートノイズの発生指標を生成するものである。発生指標の具体的生成方法については後述するが、復号情報のうち特に、量子化スケール、発生符号量、符号化ブロックパターン情報およびピクチャタイプを用いることができる。なお、モスキートノイズ発生指標生成部180は、特許請求の範囲に記載の量子化ノイズ発生指標生成部の一例である。
パラメータ設定部190は、モスキートノイズ発生指標生成部180によって生成されたモスキートノイズの発生指標に基づいて、信号線199を介し、モスキートノイズフィルタモジュール200に対してパラメータを設定するものである。パラメータの具体的設定方法については後述するが、モスキートノイズの発生指標が高いほどモスキートノイズフィルタモジュール200におけるノイズ低減処理が強く施されるよう設定される。
モスキートノイズフィルタモジュール200は、信号線179に出力された画像データに対してモスキートノイズの低減処理を施すものである。この低減処理のパラメータはパラメータ設定部190により設定される。このモスキートノイズフィルタモジュール200により処理された画像データは、信号線209を介してフレームメモリ300に保持される。
フレームメモリ300は、加算器175によって合成された画像データまたはモスキートノイズフィルタモジュール200により処理された画像データを保持するものである。このフレームメモリ300に保持された画像データは、信号線309を介して動き補償部150によって参照される。
なお、可変長復号部110は、特許請求の範囲に記載の復号情報取得部の一例である。また、逆量子化部120、逆離散コサイン変換部130、動きベクトル予測部140、動き補償部150、画面内予測部160、選択器170、加算器175、フレームメモリ300は、特許請求の範囲に記載の復号部の一例である。また、モスキートノイズフィルタモジュール200は、特許請求の範囲に記載の量子化ノイズフィルタ部の一例である。
[モスキートノイズフィルタモジュール200の回路構成例]
図2は、本発明の実施の形態におけるモスキートノイズフィルタモジュール200の回路構成例を示す図である。このモスキートノイズフィルタモジュール200は、画素選択部210と、周辺画素レジスタ220と、平滑化処理部230と、エッジ検出部240と、画素切替部250と、画素切替制御部260とを備える。
画素選択部210は、信号線179を介して入力された画像データをマクロブロック毎に取得して周辺画素レジスタ220に保持するとともに、周辺画素レジスタ220に保持された画像データから処理に必要な画素データを選択するものである。この画素選択部210によって選択される画素データは、例えば縦3ライン×横3画素の9画素である。周辺画素レジスタ220は、画素選択部210によって取得されたマクロブロック毎の画像データを保持するものである。この周辺画素レジスタ220により保持された画像データは、画素選択部210によって再利用される。
平滑化処理部230は、画素選択部210によって選択された画素データに対してモスキートノイズを低減するための平滑化処理を行うものである。この平滑化処理部230における平滑化係数は、信号線199に含まれる信号線196を介して、パラメータ設定部190によって設定される。
エッジ検出部240は、画素選択部210によって選択された画素データに含まれるエッジ画像を検出するものである。このエッジ検出部240におけるエッジ検出レベルは、信号線199に含まれる信号線197を介して、パラメータ設定部190によって設定される。
画素切替部250は、平滑化処理部230によって平滑化処理された画素データまたは平滑化処理されていない画素データの何れか一方に切り替えて、その画素データを信号線209に出力するものである。画素切替制御部260は、画素切替部250において何れの画素に切り替えるかを制御するものである。この画素切替制御部260は、エッジ検出部240によってエッジが検出されたマクロブロックについては平滑化処理されていない画素データの方に切り替えるように画素切替部250を制御する。また、この画素切替制御部260は、信号線199に含まれる信号線198を介して、パラメータ設定部190によって設定された内容に従って画素切替部250を制御する。すなわち、モスキートノイズの発生指標が所定の閾値よりも低い場合には、画素切替制御部260は、そのマクロブロックについては平滑化処理されていない画素データの方に切り替えるように画素切替部250を制御する。
[MPEG−2におけるデータ構造]
図3は、MPEG−2におけるデータ構造の概要を示す図である。MPEG−2では、符号化データのデータ列は、シーケンス層、ピクチャ層、スライス層およびマクロブロック層の4つの層に大別される。
シーケンス層に含まれる各ピクチャ20は1枚の画像を表す。このピクチャ20は複数のスライス30に分割される。このスライス30は、ピクチャ20を16ライン毎に帯状に分割したものである。
スライス30は、複数のマクロブロック40により構成される。マクロブロック40は、画面上の縦16ライン×横16画素の領域に対応する画像データである。各マクロブロック40は、DCTの処理単位として、さらに縦8ライン×横8画素のブロックに分割される。
[平滑化処理部230の処理例]
図4は、本発明の実施の形態における平滑化処理部230の処理例を示す図である。平滑化処理部230は、ノイズフィルタ232を備えており、パラメータ設定部190によって設定された平滑化係数231に従ってノイズ低減のための平滑化処理を行う。このノイズフィルタ232は、例えば、3×3の2次元FIRフィルタにより実現される。この平滑化処理では、ブロック221における縦8ライン×横8画素の各画素が対象画素211となり、例えば、対象画素211の周辺画素212を含む縦3ライン×横3画素の9画素が参照される。したがって、画素選択部210は、この9画素を選択して平滑化処理部230に供給する。なお、ここでは、縦8ライン×横8画素のブロックを単位として平滑化処理を行う例について説明するが、本発明はこれに限定されるものではなく、例えば縦16ライン×横16画素のマクロブロックを単位として平滑化処理を行うようにしてもよい。
平滑化処理では、ブロック221の左上の画素を対象画素とした処理が完了すると、次に右隣の画素を対象画素とした処理に移る。その後、同様に右隣の画素に処理が移行するが、最右の画素を対象画素とした処理が終了すると、その下のラインの最左の画素に処理が移行する。同様の要領でブロック221の右下の画素を対象画素とした処理が完了すると、そのブロック221の平滑化処理は終了する。
平滑化処理の際、ブロック221の周辺部では、同図のように周辺画素が存在しない場合がある。この場合は、ブロック221の周辺部の画素値から、必要な周辺画素を補間することができる。例えば、隣接する画素値をそのまま利用してもよく、また、近接する2画素または3画素の加重平均値を求めてもよい。
なお、ここでは、平滑化処理部230における参照画素について説明したが、エッジ検出部240における参照画素も同様に扱うことができる。
[符号化ブロックパターン情報の内容]
図5は、本発明の実施の形態において使用される符号化ブロックパターン情報の内容を示す図である。符号化ブロックパターン情報(coded_block_pattern)は、MPEG−2方式において利用されている情報であり、マクロブロック内のブロックについて符号化の有無を示す情報である。MPEG−2方式においては、画像データは輝度(Y)および色差(CrおよびCb)により表される。そして、これらの成分の標本化周波数の比率により、「4:2:0」、「4:2:2」および「4:4:4」の3つの形式が想定されている。
すなわち、「4:2:2」形式は、マクロブロックを単位として見ると、図5(b)のように輝度Yとして4成分、色差Crとして2成分、色差Cbとして2成分である。また、「4:4:4」形式は、マクロブロックを単位として見ると、図5(c)のように輝度Yとして4成分、色差Crとして4成分、色差Cbとして4成分である。ただし、「4:2:0」形式は、奇数ラインと偶数ラインで交互に「4:2:0」と「4:0:2」とを繰り返すものであり、マクロブロックを単位として見ると、図5(a)のように輝度Yとして4成分、色差Crとして1成分、色差Cbとして1成分となっている。
[マクロブロックの構文]
図6は、MPEG−2におけるマクロブロックの構文を示す図である。図3により説明したように、マクロブロックはスライスを構成するものであり、6つのブロックを含んでいる。
macroblock_escapeは、固定値「00000001000」であり、直前のマクロブロックアドレスとの差異が「33」を超える場合に使用される。macroblock_address_incrementは、直前のマクロブロックアドレスとの差異を示すものである。macroblock_modes()は、マクロブロックの符号化モードを示すものである。quantiser_scale_codeは、マクロブロックの量子化ステップサイズを示すものである。motion_vectors(0)および(1)は、前方参照および後方参照の動きベクトルに関する情報を示すものである。marker_bitは、位置合わせのために用いられるビット値「1」である。
coded_block_pattern()は、マクロブロック内のブロックの符号化の有無を示す符号化ブロックパターン情報である。この符号化ブロックパターン情報の内容については次図により説明する。block(i)は、マクロブロック内のブロックに関する情報である。
[符号化ブロックパターン情報の構文]
図7は、MPEG−2における符号化ブロックパターン情報、すなわち、coded_block_pattern()の構文を示す図である。この符号化ブロックパターン情報は、上述の3つの形式毎にその内容が異なる。まず、「4:2:0」形式の場合は、符号化ブロックパターン情報はcoded_block_pattern_420となる。このcoded_block_pattern_420は、可変長符号化されており、3乃至9ビットのビット幅を有する。可変長復号後のビットパターンは6ビット幅であり、図5(a)のようにLSB側から輝度Yの左上ブロック、右上ブロック、左下ブロック、右下ブロック、色差Cr、色差Cbの順に1ビットずつ割り当てられる。割り当てられたビットが「1」を示していれば符号化されており(coded)、「0」を示していれば符号化されていない(not coded)ことになる。
また、「4:2:2」形式の場合は、coded_block_pattern_420に、さらに2ビット幅のcoded_block_pattern_1が追加される。これは、coded_block_pattern_420のMSB側に、図5(b)に示す順番により、色差Crの下ブロックと色差Cbの下ブロックをさらに割り当てたものである。
また、「4:4:4」形式の場合は、coded_block_pattern_420に、さらに6ビット幅のcoded_block_pattern_2が追加される。これは、coded_block_pattern_420のMSB側に、図5(c)に示す順番により、色差Crの左下、色差Cbの左下、色差Crの右上、色差Cbの右上、色差Crの右下、色差Cbの右下、の各ブロックをさらに割り当てたものである。
[マクロブロックとブロックの関係]
図8は、本発明の実施の形態において想定するマクロブロックとブロックの関係を示す図である。一般に、モスキートノイズなどの非可逆圧縮によるノイズは、量子化によるデータの削除が主要因である。このため、MPEG−2で量子化のレベルとなる量子化スケールを利用して、データの削除がどのくらい行われたかを判別することができる。ここで、モスキートノイズは文字や細かいテクスチャの周りに発生するため、モスキートノイズが発生しているマクロブロックにおいては、画像の複雑度も高く、つまり、マクロブロック内で発生する符号量が増加することが予測される。
一方、モスキートノイズは直交変換単位であるDCT処理単位で発生することから、マクロブロック内のブロック単位で判別することが望ましい。しかしながら、量子化スケールおよび該当するマクロブロックの発生符号量は、マクロブロック単位で取り扱われる。そのため、例えば、図8(a)のようにマクロブロック内部の一部のブロックのみがモスキートノイズを発生させるような場合には、図8(b)のように1つのマクロブロック内に符号化量が大きいブロックと小さいブロックとが混在することになる。もし、マクロブロック全体としての量子化スケールと発生符号量によりモスキートノイズを検出することとすると、マクロブロック内でそれらの値が単純に平均化されてしまい、適切にモスキートノイズを検出することができなくなるおそれがある。なお、ここでは、一例として、輝度の画素ブロックについて説明をしている。
また、図8(b)および(c)から理解されるように、符号量の大小と符号化の有無には相関がある。そこで、本発明の実施の形態では、上述の符号化ブロックパターン情報を用いて、量子化スケールと該当するマクロブロックの発生符号量とを掛け合わせた結果に重み付けを行う。これにより、モスキートノイズの検出漏れを防止し、より適応的にノイズ検出を図るものである。
さらに、量子化スケールと、該当するマクロブロックの発生符号量は、復号されるピクチャタイプによっても変動する。このピクチャタイプとは、予測符号化方式に対応した画像タイプであり、Iピクチャ、Pピクチャ、Bピクチャに大別される。Iピクチャは、ピクチャ内の情報のみから符号化された画面であり、フレーム間予測をすることなく生成されるものである。Pピクチャは、IピクチャまたはPピクチャからの予測を行うことにより生成される画面であり、フレーム間予測画面の参照方向は順方向である。Bピクチャは、双方向予測により生成される画面であり、フレーム間予測画面の参照方向は順方向および逆方向である。本発明の実施の形態では、ピクチャタイプによって検出結果に重み付けを行うことで、さらに検出精度の向上を図っている。
すなわち、量子化スケールと発生符号量の乗算結果C0に対して符号化ブロックパターン情報に基づく重み付けを行ってC1を算出し、さらにピクチャタイプによって重み付けを行ってC2を算出する。これにより得られたC2が、モスキートノイズの発生指標となる。そして、この発生指標と所定の閾値とを比較することにより、モスキートノイズ軽減のための平滑化処理の要否、平滑化処理の平滑化係数、エッジ検出レベルの各パラメータが決定される。この発生指標が高いほど、モスキートノイズフィルタモジュール200における低減処理が強く施されるよう、各パラメータが設定される。
[パラメータ設定の動作例]
図9は、本発明の第1の実施の形態による復号装置100のパラメータ設定の動作例を示す流れ図である。まず、可変長復号部110は、信号線101に供給されたビットストリームから、復号に必要な復号情報をマクロブロック毎に取得する(ステップS900)。この復号情報には、例えば、量子化スケール、発生符号量、符号化ブロックパターン情報およびピクチャタイプが含まれる。量子化スケールは、図6に示したマクロブロックのquantiser_scale_codeを用いることができる。発生符号量は、可変長復号部110による可変長復号の過程から生成することができる。符号化ブロックパターン情報は、図6に示したマクロブロックのcoded_block_pattern()を用いることができる。ピクチャタイプは、(図示しない)picture_header()のpicture_coding_typeを用いることができる。
モスキートノイズ発生指標生成部180は、復号情報における量子化スケールと発生符号量(符号ビット数)を乗算した結果をC0とする(ステップS901)。そして、モスキートノイズ発生指標生成部180は、C0に対して符号化ブロックパターン情報に基づく重み付けを行った結果をC1とする(ステップS910)。この重み付けは、後述する手順により求められた重みcbp_rateをC0に乗算することにより実現される。
そして、モスキートノイズ発生指標生成部180は、C1に対してピクチャタイプに基づく重み付けを行った結果をモスキートノイズの発生指標C2とする(ステップS902)。ピクチャタイプの重みtype_rateとしては、例えば、Iピクチャの場合には「1」(重み無し)、Pピクチャの場合には「1.5」、Bピクチャの場合には「2」とすることが考えられる。
このようにして得られた発生指標C2に対して、パラメータ設定部190は、例えば3段階の閾値Det_th1、Det_th2、Det_th3を想定することにより、モスキートノイズフィルタモジュール200のパラメータを設定する。ただし、
Det_th1<Det_th2<Det_th3
である。
発生指標C2が閾値Det_th1よりも小さい場合(ステップS903)、モスキートノイズはほとんど発生していないものとして、平滑化処理不要を示すfilter_off_flgが「1」に設定される(ステップS904)。これにより、画素切替部250では、平滑化処理部230による処理が行われていない画素に切り替えられることになる。
発生指標C2が閾値Det_th1以上で閾値Det_th2よりも小さい場合(ステップS905)、filter_off_flgは「0」(平滑化処理必要)に設定される(ステップS906)。この場合、エッジ検出レベルkh2および平滑化係数k2としては、比較的軽いものが設定される(ステップS906)。
発生指標C2が閾値Det_th2以上で閾値Det_th3よりも小さい場合(ステップS907)、filter_off_flgは「0」に設定される(ステップS908)。この場合、エッジ検出レベルkh3および平滑化係数k3としては、中程度のものが設定される(ステップS908)。
発生指標C2が閾値Det_th3以上の場合(ステップS907)、filter_off_flgは「0」に設定される(ステップS909)。この場合、エッジ検出レベルkh4および平滑化係数k4としては、比較的強いものが設定される(ステップS909)。
すなわち、発生指標C2が高いほど、モスキートノイズフィルタモジュール200における平滑化処理が強く施されるよう平滑化係数が設定され、また、エッジ検出のレベルが高くなるようエッジ検出レベルが設定される。これにより、モスキートノイズの発生指標C2に応じたモスキートノイズ低減処理が行われる。また、発生指標C2が低い場合には平滑化処理自体が抑制される。
なお、平滑化係数の具体的な値としては、例えば、k2=1:2:1、k3=2:3:2、k4=1:1:1などに設定することが考えられる。また、エッジ検出レベルの具体的な値としては、例えば、kh2=60、kh3=70、kh4=80などに設定することが考えられる。
図10は、本発明の実施の形態による符号化ブロックパターン情報に基づく重み付け処理(ステップS910)の第1の動作例を示す流れ図である。復号情報に含まれる符号化ブロックパターン情報は、図5により説明したように、マクロブロック内のブロックに対応して、輝度および色差の符号化の有無を1ビットずつ保持している。この符号化ブロックパターン情報について、輝度Yの符号化されたブロック数が変数count_Yに設定され、色差CrおよびCbの符号化されたブロック数が変数count_CbCrに設定される(ステップS911)。また、変数count_Yと変数count_CbCrの和が変数count_allに設定される(ステップS911)。
変数count_allが0の場合(ステップS912)、すなわち符号化されたブロックがマクロブロック内に存在しない場合には、符号化ブロックパターン情報に基づく重みcbp_rateに0が設定される(ステップS913)。変数count_allが0でなければ(ステップS912)、標本化周波数の比率の形式に応じて、以下のように符号化ブロックパターン情報に基づく重みcbp_rateが設定される。
「4:2:0」形式の場合(ステップS914)、まず次式により輝度Yと色差CbおよびCrについて、重みcbp_ate_Yとcbp_ate_CbCrが算出される(ステップS915)。
cbp_rate_Y = 5 − count_Y
cbp_rate_CbCr = 3 − count_CbCr
そして、これらを組み合わせて符号化ブロックパターン情報に基づく重みcbp_rateが算出される(ステップS915)。
cbp_rate = ((cbp_rate_Y<<1)+
(cbp_rate_Y>>1)+
cbp_rate_CbCr)>>1
これは、一般に、ノイズの原因となる高周波成分を含む情報は輝度側に偏る傾向があるため、輝度Yと色差CbおよびCrとで前者の重みが高くなるよう重み付けの比率を変化させたものである。他の形式についても同様である。
「4:2:2」形式の場合(ステップS916)、まず次式により輝度Yと色差CbおよびCrについて、重みcbp_ate_Yとcbp_ate_CbCrが算出される(ステップS917)。
cbp_rate_Y = 5 − count_Y
cbp_rate_CbCr = 5 − count_CbCr
そして、これらを組み合わせて符号化ブロックパターン情報に基づく重みcbp_rateが算出される(ステップS917)。
cbp_rate = ((cbp_rate_Y<<1)+
cbp_rate_Y+
cbp_rate_CbCr)>>1
「4:4:4」形式の場合(ステップS916)、まず次式により輝度Yと色差CbおよびCrについて、重みcbp_ate_Yとcbp_ate_CbCrが算出される(ステップS918)。
cbp_rate_Y = 5 − count_Y
cbp_rate_CbCr = 9 − count_CbCr
そして、これらを組み合わせて符号化ブロックパターン情報に基づく重みcbp_rateが算出される(ステップS918)。
cbp_rate = ((cbp_rate_Y<<1)+
cbp_rate_Y+
cbp_rate_CbCr+
(cbp_rate_CbCr>>1))>>1
このようにして形式に応じて符号化ブロックパターン情報に基づく重みcbp_rateが算出された後、量子化スケールと発生符号量の乗算結果C0に対して重みcbp_rateが乗算され、その乗算結果がC1となる(ステップS919)。
この符号化ブロックパターン情報に基づく重み付け処理の第1の動作例では、輝度Yと色差CbおよびCrとで比率を変化させるために演算内容が複雑になり、演算器の性能によっては処理が困難になる場合も想定される。そこで、以下では、この重み付け処理を簡易に行う第2の動作例について説明する。
図11は、本発明の実施の形態による符号化ブロックパターン情報に基づく重み付け処理(ステップS910)の第2の動作例を示す流れ図である。この第2の動作例では、第1の動作例と同様に、符号化ブロック数が集計される(ステップS911)。
変数count_allが0の場合(ステップS912)、すなわち符号化されたブロックがマクロブロック内に存在しない場合には、符号化ブロックパターン情報に基づく重みcbp_rateに1が設定される(ステップS923)。変数count_allが0でなければ(ステップS912)、第1の動作例と同様に、標本化周波数の比率の形式に応じて、以下のように符号化ブロックパターン情報に基づく重みcbp_rateが設定される。
「4:2:0」形式の場合(ステップS914)、符号化ブロックパターン情報に基づく重みcbp_rateは次式により算出される(ステップS925)。
cbp_rate = 8 − count_all
「4:2:2」形式の場合(ステップS916)、符号化ブロックパターン情報に基づく重みcbp_rateは次式により算出される(ステップS927)。
cbp_rate = 10 − count_all
「4:4:4」形式の場合(ステップS916)、符号化ブロックパターン情報に基づく重みcbp_rateは次式により算出される(ステップS928)。
cbp_rate = 13 − count_all
このようにして形式に応じて符号化ブロックパターン情報に基づく重みcbp_rateが簡略に算出された後、量子化スケールと発生符号量の乗算結果C0に対して重みcbp_rateが乗算され、その乗算結果がC1となる(ステップS919)。なお、この簡略化手法により重みcbp_rateを算出した場合、意図的に過検出となるように閾値Det_th1、Det_th2、Det_th3やエッジ検出レベルkh2、kh3、kh4を設定して整合性を図ることが望ましい。
[ノイズ低減処理の動作例]
図12は、本発明の第1の実施の形態による復号装置100のノイズ低減処理の動作例を示す流れ図である。上述の動作によりパラメータ設定が行われた後、モスキートノイズフィルタモジュール200においてモスキートノイズの低減処理が行われる。まず、画素選択部210は、縦3ライン×横3画素の9画素分の画素データと、信号線179を介して送られてきた処理対象となる画素およびその周辺画素とを周辺画素レジスタ220から取得する(ステップS991)。これら取得された画素は、平滑化処理部230およびエッジ検出部240に供給される。ただし、filter_off_flgが「1」を示している場合には(ステップS992)、画素切替部250は平滑化処理が行われていない画素データ(すなわち、画素選択部210の選択した処理対象画素データ)を出力する(ステップS995)。
filter_off_flgが「0」を示している場合には(ステップS992)、エッジ検出部240においてエッジ検出処理が行われる(ステップS993)。その結果、処理対象となる画素データにおいてエッジが検出された場合には(ステップS994)、filter_off_flgが「1」である場合と同様に、画素切替部250は平滑化処理が行われていない画素データを出力する(ステップS995)。
処理対象となる画素データにおいてエッジが検出されなかった場合には(ステップS994)、平滑化処理部230において平滑化処理が行われ(ステップS996)、画素切替部250は平滑化処理された画素データを出力する(ステップS997)。
このように、本発明の第1の実施の形態によれば、符号化ブロックパターン情報を含む復号情報に基づいてモスキートノイズの発生指標C2が生成され、この発生指標C2によりモスキートノイズフィルタモジュール200のパラメータが設定される。したがって、マクロブロック内のブロック毎の符号化の状態に応じて、モスキートノイズフィルタモジュール200におけるノイズ低減処理の強度を調整することができる。
<2.第2の実施の形態>
圧縮符号化された画像において動きが大きい場合には、画像間の相関性が低くなり、符号化効率が悪化することは一般的に知られている。一般に、動きの大きい画像では、符号化時に符号化量を抑制するために、動きの少ない画像よりも量子化スケールが大きく設定されるため、ノイズの発生が高まる。そこで、本発明の第2の実施の形態では、モスキートノイズの検出精度を高めるために、動き情報が利用される。
図6により説明したように、マクロブロックには動きベクトルに関する情報が含まれている。この動きベクトルに関する情報から、水平予測、垂直予測、前方(forward)/後方(backward)予測、デュアルプライム(dual_prime)予測の何れであるかを判断して、マクロブロックの動き量の絶対値が生成される。この動き量の絶対値は、モスキートノイズ発生指標生成部180またはパラメータ設定部190において生成され、パラメータ設定部190において利用される。回路構成は、上述の第1の実施の形態と同様のもので構わない。なお、動き量の絶対値は、特許請求の範囲に記載の動き情報の一例である。
[パラメータ設定の動作例]
図13は、本発明の第2の実施の形態による復号装置100のパラメータ設定の動作例を示す流れ図である。ステップS900からS902までは、図9により説明した第1の実施の形態と同様である。モスキートノイズの発生指標C2が得られた後、モスキートノイズ発生指標生成部180またはパラメータ設定部190において、動き量の絶対値|mv|に対して、例えば3段階の閾値level0、level1、level2が考慮される。ただし、
level0<level1<level2
である。
動き量の絶対値|mv|が閾値level0以下である場合(ステップS933)、基準Aによるパラメータ設定処理が行われる(ステップS940)。動き量の絶対値|mv|が閾値level0を超え、閾値level1以下である場合(ステップS935)、基準Bによるパラメータ設定処理が行われる(ステップS950)。動き量の絶対値|mv|が閾値level1を超え、閾値level2以下である場合(ステップS937)、基準Cによるパラメータ設定処理が行われる(ステップS960)。動き量の絶対値|mv|が閾値level2を超える場合(ステップS937)、基準Dによるパラメータ設定処理が行われる(ステップS970)。
これにより、動き量の絶対値|mv|が大きいほどモスキートノイズフィルタモジュール200の低減処理は強くなるように設定される。
図14乃至17は、本発明の第2の実施の形態における基準A乃至Dによるパラメータ設定処理(ステップS940、S950、S960、S970)の動作例を示す流れ図である。これらは、閾値とパラメータとの関係以外は互いに同様の内容になっているため、代表して図14について説明する。
図14を参照すると、発生指標C2が閾値Det_th01よりも小さい場合(ステップS943)、モスキートノイズはほとんど発生していないものとして、平滑化処理不要を示すfilter_off_flgが「1」に設定される(ステップS944)。これにより、画素切替部250では、平滑化処理部230による処理が行われていない画素に切り替えられることになる。
発生指標C2が閾値Det_th01以上で閾値Det_th02よりも小さい場合(ステップS945)、filter_off_flgは「0」(平滑化処理必要)に設定される(ステップS946)。この場合、エッジ検出レベルkh02および平滑化係数k02としては、ステップS948やS949により設定されるものと比べて、比較的軽いものが設定される(ステップS946)。
発生指標C2が閾値Det_th02以上で閾値Det_th03よりも小さい場合(ステップS947)、filter_off_flgは「0」に設定される(ステップS948)。この場合、エッジ検出レベルkh03および平滑化係数k03としては、ステップS946やS949により設定されるもの中間程度のものが設定される(ステップS948)。
発生指標C2が閾値Det_th03以上の場合(ステップS947)、filter_off_flgは「0」に設定される(ステップS949)。この場合、エッジ検出レベルkh04および平滑化係数k04としては、ステップS946やS948により設定されるものと比べて、比較的強いものが設定される(ステップS949)。
すなわち、基準A内においては、発生指標C2が高いほど、モスキートノイズフィルタモジュール200における平滑化処理が強く施されるよう平滑化係数が設定され、また、エッジ検出のレベルが高くなるようエッジ検出レベルが設定される。これにより、モスキートノイズの発生指標C2に応じたモスキートノイズ低減処理が行われる。また、発生指標C2が低い場合には平滑化処理自体が抑制される。
また、基準Aと比べて、基準Bでは全体として、モスキートノイズフィルタモジュール200における平滑化処理が強く施されるよう平滑化係数が設定され、また、エッジ検出のレベルが高くなるようエッジ検出レベルが設定される。また、基準Bと比べて、基準Cでは全体として、モスキートノイズフィルタモジュール200における平滑化処理がより強く施されるよう平滑化係数が設定され、また、エッジ検出のレベルがより高くなるようエッジ検出レベルが設定される。また、基準Cと比べて、基準Dでは全体として、モスキートノイズフィルタモジュール200における平滑化処理がより強く施されるよう平滑化係数が設定され、また、エッジ検出のレベルがより高くなるようエッジ検出レベルが設定される。
このように、本発明の第2の実施の形態によれば、さらに動き量の絶対値|mv|を加味してモスキートノイズフィルタモジュール200のパラメータが設定される。したがって、マクロブロック内のブロック毎の符号化の状態および動き量の絶対値に応じて、モスキートノイズフィルタモジュール200におけるノイズ低減処理の強度を調整することができる。
<3.変形例>
本発明は、上述の本発明の第1および第2の実施の形態に限られるものではない。例えば、本発明の実施の形態では、平滑化係数やエッジ検出レベルの分割数を3段階に分けているが、この分割数を任意の数に変更してもよい。
また、本発明の実施の形態では、量子化スケールと発生符号量を乗算した結果をC0としたが、量子化スケールまたは発生符号量の何れか一方をC0とすることも可能である。また、本発明の実施の形態では、C1に対してピクチャタイプによる重み付けを行ったものを発生指標C2としているが、ピクチャタイプによる重み付けを行うことなくC1をそのまま発生指標C2とすることも可能である。
また、本発明の第2の実施の形態では、動き情報として動き量の絶対値を用いたが、動き量の絶対値のみならず、予測の方向が画面内(intra)か画面間(inter)かによって平滑化係数やエッジ検出レベルを変更するようにしてもよい。
また、本発明の実施の形態では、MPEG−2における適用例について説明したが、MPEG−2以外の符号化方式においても、符号化ブロックパターン情報に相当する復号情報を利用することができる場合には、同様の手法により本発明を利用することができる。
本発明の実施の形態ではモスキートノイズの除去に着目して説明したが、このようなモスキートノイズは、例えば画像として含まれる字幕やテロップ部分において発生することが多い。換言すれば、本発明の実施の形態によるモスキートノイズ検出技術を使用すれば、モスキートノイズの発生指標C2を字幕やテロップの存在指標として利用して、画像の中から字幕やテロップ部分を含む領域を抽出することができる。そのためには、以下のように、上述の復号情報における動き情報および量子化ノイズ発生指標の判定基準などを、適宜調整することが考えられる。例えば、固定された字幕やテロップは動き情報の動き量と動きの差分が無い場合に判別することができる。また、画面横方向に一定速度で流れるテロップ字幕は、横方向の動き情報の動き量があり、かつ、動きの差分が無い場合に判別することができる。また、一定速度の縦スクロールの字幕などでは縦方向の動き情報と、動きの差分が無い場合などに判別することができる。また、ここまで説明したモスキートノイズの除去手法により、字幕やテロップ部分のノイズを除去することができるが、さらに字幕やテロップ部分をトランスコードすることを想定することができる。すなわち、本発明の実施の形態による手法を適用することにより字幕やテロップ部分の存在領域を抽出し、その領域についてトランスコードを行って画質を向上させることが可能となる。
なお、本発明の実施の形態は本発明を具現化するための一例を示したものであり、本発明の実施の形態において明示したように、本発明の実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本発明の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本発明は実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
また、本発明の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disk)、メモリカード、ブルーレイディスク(Blu-ray Disc(登録商標))等を用いることができる。
100 復号装置
110 可変長復号部
120 逆量子化部
130 逆離散コサイン変換部
140 動きベクトル予測部
150 動き補償部
160 画面内予測部
170 選択器
175 加算器
180 モスキートノイズ発生指標生成部
190 パラメータ設定部
200 モスキートノイズフィルタモジュール
210 画素選択部
220 周辺画素レジスタ
230 平滑化処理部
240 エッジ検出部
250 画素切替部
260 画素切替制御部
300 フレームメモリ

Claims (15)

  1. 符号化データから復号に必要な復号情報をマクロブロック毎に取得する復号情報取得部と、
    前記復号情報に基づいて前記符号化データを復号して復号データとして生成する復号部と、
    前記復号データに対して所定の量子化ノイズの低減処理を前記マクロブロック毎に施す量子化ノイズフィルタ部と、
    前記復号情報に基づき前記マクロブロック内のブロック毎の符号化の状態に応じて前記所定の量子化ノイズの発生指標を生成する量子化ノイズ発生指標生成部と、
    前記発生指標に基づき前記量子化ノイズフィルタ部に対してパラメータを設定するパラメータ設定部と
    を具備する復号装置。
  2. 前記量子化ノイズ発生指標生成部は、前記復号情報における前記ブロック毎の符号化の有無を示す符号化ブロックパターン情報を利用して前記発生指標を生成する請求項1記載の復号装置。
  3. 前記量子化ノイズ発生指標生成部は、前記マクロブロック内の符号化されたブロックの数を前記符号化ブロックパターン情報から求めて、前記符号化されたブロックの数に基づいて前記発生指標を生成する請求項2記載の復号装置。
  4. 前記量子化ノイズ発生指標生成部は、前記マクロブロック内の符号化されたブロックの数を前記符号化ブロックパターン情報から輝度および色差毎に求めて、前記輝度および色差毎の前記符号化されたブロックの数に基づいて前記発生指標を生成する請求項2記載の復号装置。
  5. 前記量子化ノイズ発生指標生成部は、前記復号情報における量子化スケールと発生符号量とを掛け合わせた数に前記符号化ブロックパターン情報による重み付けを行った数を利用して前記発生指標を生成する請求項2記載の復号装置。
  6. 前記量子化ノイズ発生指標生成部は、前記符号化ブロックパターン情報による重み付けを行った数にさらに前記復号情報におけるピクチャタイプによる重み付けを行った数を利用して前記発生指標を生成する請求項5記載の復号装置。
  7. 前記パラメータ設定部は、前記発生指標が高いほど前記量子化ノイズフィルタ部における前記低減処理が強く施されるよう前記パラメータを設定する請求項1記載の復号装置。
  8. 前記復号データに含まれるエッジ画像を検出するエッジ検出部をさらに具備し、
    前記量子化ノイズフィルタ部は、前記エッジ検出部によって前記エッジ画像が検出されたマクロブロックに対しては前記低減処理を施さない
    請求項1記載の復号装置。
  9. 前記パラメータ設定部は、前記復号情報における動き情報および前記量子化ノイズ発生指標生成部により生成された前記発生指標に基づいて前記パラメータを設定する請求項1記載の復号装置。
  10. 前記パラメータ設定部は、前記動き情報が大きな動きを示しているほど前記量子化ノイズフィルタ部における前記低減処理が強く施されるよう前記パラメータを設定する請求項9記載の復号装置。
  11. 前記所定の量子化ノイズは、モスキートノイズであり、
    前記量子化ノイズフィルタ部は、前記モスキートノイズの低減処理として平滑化処理を行う
    請求項1記載の復号装置。
  12. 前記発生指標は画像における字幕またはテロップの存在指標であり、
    前記量子化ノイズフィルタ部は、前記字幕またはテロップの存在領域におけるノイズの低減処理として平滑化処理を行う
    請求項1記載の復号装置。
  13. 符号化データから復号に必要な復号情報をマクロブロック毎に取得する復号情報取得部と、
    前記復号情報に基づき前記マクロブロック内のブロック毎の符号化の状態に応じて所定の量子化ノイズの発生指標を生成する量子化ノイズ発生指標生成部と、
    前記発生指標に基づき前記所定の量子化ノイズの低減処理のためのパラメータを生成するパラメータ生成部と
    を具備する復号制御装置。
  14. 符号化データから復号に必要な復号情報をマクロブロック毎に取得する復号情報取得手順と、
    前記復号情報に基づいて前記符号化データを復号して復号データとして生成する復号手順と、
    前記復号情報に基づき前記マクロブロック内のブロック毎の符号化の状態に応じて所定の量子化ノイズの発生指標を前記マクロブロック毎に生成する量子化ノイズ発生指標生成手順と、
    前記発生指標に基づき前記所定の量子化ノイズの低減処理のためのパラメータを生成するパラメータ生成手順と、
    前記復号データに対して前記パラメータに従って前記低減処理を前記マクロブロック毎に施す量子化ノイズ低減処理手順と
    を具備する復号方法。
  15. 符号化データから復号に必要な復号情報をマクロブロック毎に取得する復号情報取得手順と、
    前記復号情報に基づいて前記符号化データを復号して復号データとして生成する復号手順と、
    前記復号情報に基づき前記マクロブロック内のブロック毎の符号化の状態に応じて所定の量子化ノイズの発生指標を前記マクロブロック毎に生成する量子化ノイズ発生指標生成手順と、
    前記発生指標に基づき前記所定の量子化ノイズの低減処理のためのパラメータを生成するパラメータ生成手順と、
    前記復号データに対して前記パラメータに従って前記低減処理を前記マクロブロック毎に施す量子化ノイズ低減処理手順と
    をコンピュータに実行させるプログラム。
JP2009257603A 2009-06-29 2009-11-11 復号装置、復号制御装置、復号方法およびそのプログラム Pending JP2011030177A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009257603A JP2011030177A (ja) 2009-06-29 2009-11-11 復号装置、復号制御装置、復号方法およびそのプログラム
CN2010102122471A CN101938649B (zh) 2009-06-29 2010-06-22 译码设备、译码控制设备、译码方法和程序
US12/821,232 US8681877B2 (en) 2009-06-29 2010-06-23 Decoding apparatus, decoding control apparatus, decoding method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009153124 2009-06-29
JP2009257603A JP2011030177A (ja) 2009-06-29 2009-11-11 復号装置、復号制御装置、復号方法およびそのプログラム

Publications (1)

Publication Number Publication Date
JP2011030177A true JP2011030177A (ja) 2011-02-10

Family

ID=43380716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257603A Pending JP2011030177A (ja) 2009-06-29 2009-11-11 復号装置、復号制御装置、復号方法およびそのプログラム

Country Status (3)

Country Link
US (1) US8681877B2 (ja)
JP (1) JP2011030177A (ja)
CN (1) CN101938649B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564002B2 (en) 2013-03-15 2023-01-24 Sling TV L.L.C. Automated replacement of video program content
US11778257B2 (en) 2013-03-15 2023-10-03 Sling TV L.L.C. Digital advertisement frequency correction
US11956499B2 (en) 2013-03-15 2024-04-09 Sling TV L.L.C. Automated replacement of stored digital content

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625192B (zh) * 2011-01-26 2014-12-17 天脉聚源(北京)传媒科技有限公司 一种视频播放系统和方法
CN102630043B (zh) * 2012-04-01 2014-11-12 北京捷成世纪科技股份有限公司 一种基于对象的视频转码方法和装置
US9756100B2 (en) 2013-03-15 2017-09-05 Echostar Technologies L.L.C. Placeshifting of adaptive media streams
US9866889B2 (en) * 2013-03-15 2018-01-09 Echostar Technologies Llc Asymmetric content delivery of media content
CN110891177B (zh) * 2018-09-07 2023-03-21 腾讯科技(深圳)有限公司 视频降噪、视频转码中的降噪处理方法、装置和机器设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900808B2 (ja) * 1994-11-24 1999-06-02 日本ビクター株式会社 画像データの復号化時に生じるモスキートノイズの低減方法及び画像データの復号化装置
JPH08214309A (ja) * 1995-02-07 1996-08-20 Canon Inc 画像信号復号装置
JP2000013643A (ja) * 1998-06-18 2000-01-14 Sony Corp ノイズ低減装置および方法、映像信号処理装置、並びに動き検出方法
EP2899977A1 (en) * 2002-01-31 2015-07-29 Samsung Electronics Co., Ltd Filtering method and apparatus for reducing block artifacts or ringing noise
JP2004343451A (ja) * 2003-05-15 2004-12-02 Matsushita Electric Ind Co Ltd 動画像復号化方法および動画像復号化装置
US7848408B2 (en) * 2005-01-28 2010-12-07 Broadcom Corporation Method and system for parameter generation for digital noise reduction based on bitstream properties
JP2006236159A (ja) * 2005-02-25 2006-09-07 Toshiba Corp 情報処理装置及びその省電力制御方法
JP2007013398A (ja) 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd ポストフィルタ、ポストフィルタリングプログラムおよび電子情報機器
US9014280B2 (en) * 2006-10-13 2015-04-21 Qualcomm Incorporated Video coding with adaptive filtering for motion compensated prediction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564002B2 (en) 2013-03-15 2023-01-24 Sling TV L.L.C. Automated replacement of video program content
US11778257B2 (en) 2013-03-15 2023-10-03 Sling TV L.L.C. Digital advertisement frequency correction
US11956499B2 (en) 2013-03-15 2024-04-09 Sling TV L.L.C. Automated replacement of stored digital content

Also Published As

Publication number Publication date
US20100329357A1 (en) 2010-12-30
CN101938649B (zh) 2013-01-02
US8681877B2 (en) 2014-03-25
CN101938649A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
US10972722B2 (en) Image processing device and image processing method
US10666945B2 (en) Image processing device and image processing method for decoding a block of an image
JP5418756B2 (ja) 画像再符号化装置、画像再符号化方法及び画像再符号化プログラム
KR101158439B1 (ko) 영상 신호의 코딩정보를 압축/해제하기 위해 모델링하는 방법
JP2011030177A (ja) 復号装置、復号制御装置、復号方法およびそのプログラム
US20130294705A1 (en) Image processing device, and image processing method
JP2007184871A (ja) 動画像復号装置及び動画像復号方法
CN106851289A (zh) 图像处理装置和图像处理方法
JP2007201558A (ja) 動画像符号化装置および動画像符号化方法
WO2012063604A1 (ja) 画像処理装置と画像処理方法
WO2019003676A1 (ja) 画像処理装置と画像処理方法およびプログラム
JP2010016806A (ja) フレーム符号化とフィールド符号化の判定方法、画像符号化方法、画像符号化装置およびプログラム
JP2007013298A (ja) 画像符号化装置
JP2013150164A (ja) 符号化装置および符号化方法、並びに、復号装置および復号方法
JP2011015117A (ja) 画像符号化装置、画像符号化方法及び、ビデオカメラ
JP5178616B2 (ja) シーンチェンジ検出装置および映像記録装置
WO2018235405A1 (ja) 画像処理装置と画像処理方法
JP2011223319A (ja) 動画像符号化装置および動画像復号装置
JP2010045598A (ja) 可変長復号装置、及び、符号化装置
JP2009005217A (ja) 画像符号化方法,画像復号方法,画像符号化装置,画像復号装置,画像符号化プログラム,画像復号プログラムおよびコンピュータ読み取り可能な記録媒体
JP2023030585A (ja) 画像符号化装置及び方法及びプログラム
CN117561713A (zh) 数据编码和解码
JP2009302896A (ja) 画像符号化装置および画像符号化方法
JP2008048235A (ja) 可変長符号の復号化方法および復号化装置
JP2011066592A (ja) 符号化モード選択方法,符号化モード選択装置および符号化モード選択プログラム