JP2011026669A - バイオ燃料用耐食性部材 - Google Patents

バイオ燃料用耐食性部材 Download PDF

Info

Publication number
JP2011026669A
JP2011026669A JP2009174157A JP2009174157A JP2011026669A JP 2011026669 A JP2011026669 A JP 2011026669A JP 2009174157 A JP2009174157 A JP 2009174157A JP 2009174157 A JP2009174157 A JP 2009174157A JP 2011026669 A JP2011026669 A JP 2011026669A
Authority
JP
Japan
Prior art keywords
biofuel
zinc
nickel
corrosion
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009174157A
Other languages
English (en)
Inventor
Shigeto Baba
成人 馬場
Toshiaki Makino
利昭 牧野
Satoshi Bando
聡史 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP2009174157A priority Critical patent/JP2011026669A/ja
Publication of JP2011026669A publication Critical patent/JP2011026669A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】バイオ燃料の使用に対して耐食性が良好であり、且つ、有害な六価クロムを含有しないバイオ燃料用耐食性部材を提供する。
【解決手段】バイオ燃料用耐食性部材は、金属表面の少なくとも一部に、ニッケルを5〜25質量%含有する亜鉛−ニッケル合金めっき被膜と、六価クロムを含有しない化成処理被膜とがこの順で形成されている。
【選択図】 なし

Description

本発明は、バイオ燃料を使用するに当たり、該バイオ燃料と接触する可能性のある耐食性部材に関し、特に、給油口から燃料タンクまでの輸送管、燃料タンク、燃料タンクからエンジンまでの輸送管、輸送用ポンプ部材、気化器、内燃機関、又は、燃料供給装置等におけるバイオ燃料と接触する可能性のある部材に関する。
高濃度アルコール燃料は、以前は日本国内で流通されておらず、そのため国内で使用される自動車等のエンジンはこのような燃料の使用を前提とする仕様になっていなかった。1999年頃、一部の企業から天然ガスを原料とする高濃度アルコール燃料が販売されたが、高濃度アルコール燃料が燃料パイプ等の鉄製部品やアルミ製部品を腐食させることから、2000年頃から当該燃料を使用する車両の火災事故が発生した。このため、自動車会社からは、高濃度アルコール燃料を使用しないこととする警告の発表が相次ぎ、高濃度アルコール燃料の使用量が減少すると共に、2003年8月28日から揮発油等の品質の確保等に関する法律により該燃料の販売が禁止された。
しかしながら、近年、環境問題対策としてバイオ燃料に関心が集まり、当該燃料を安全に用いることができる、すなわち、バイオ燃料に対して耐食性に優れた自動車等のエンジンの開発が研究・開発されている。従来、エンジンにおいて、給油口から燃料タンクまでの輸送管、燃料タンク、燃料タンクからエンジンまでの輸送管、輸送用ポンプ部材、気化器、内燃機関、又は、燃料供給装置等の燃料と接触する可能性のある部材の表面には、例えば特許文献1及び2に開示されているような、化成処理めっき被膜が形成されている。
特開2007−254796号公報 特開2002−292791号公報
しかしながら、上述のように、従来の部材は高濃度アルコール燃料の使用を前提としていないため、バイオ燃料を使用した場合には耐腐食性が不良である。また、該部材の材料をステンレス等に変更するものも考えられるが、コスト増や加工性の低下等の問題が生じる。
そこで、本発明は、バイオ燃料の使用に対して耐食性が良好であり、且つ、有害な六価クロムを含有しないバイオ燃料用耐食性部材を提供することを課題とする。
本発明の発明者らは、ニッケルを5〜25質量%含有する亜鉛−ニッケル合金めっき被膜と化成処理被膜とをこの順で形成することによって、バイオ燃料の使用に対して耐食性が良好となることを見出した。
以上の知見を基礎として完成した本発明は一側面において、金属表面を有するバイオ燃料用耐食性部材であって、前記金属表面の少なくとも一部に、ニッケルを5〜25質量%含有する亜鉛−ニッケル合金めっき被膜と、六価クロムを含有しない化成処理被膜とが、この順で形成されていることを特徴とするバイオ燃料用耐食性部材である。
本発明に係るバイオ燃料用耐食性部材の一実施形態においては、前記化成処理被膜上に、電着塗装、トップコート、粉体塗装、又は、静電塗装による保護膜が形成されている。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記化成処理被膜が、三価クロム、コバルト、ニッケル、亜鉛、モリブデン、タングステン、チタン、ジルコニウム、セリウム、アルミニウム、及び、シリカからなる群から選択される3種以上を含有する。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記部材の金属が、亜鉛、鉄、銅、錫、ニッケル、アルミニウム、マグネシウム、又は、これらの2種以上を含む合金である。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記部材の金属表面と、前記亜鉛−ニッケル合金めっき被膜との間に、亜鉛、鉄、銅、錫、ニッケル、アルミニウム、マグネシウム、又は、これらの2種以上を含む合金からなる中間被膜が形成されている。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記亜鉛−ニッケル合金めっき被膜がニッケルを9〜23質量%含有する。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記亜鉛−ニッケル合金めっき被膜がニッケルを11〜19質量%含有する。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記バイオ燃料が、バイオディーゼル燃料を3質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを3質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンである。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記バイオ燃料が、バイオディーゼル燃料を10質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを10質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンである。
本発明に係るバイオ燃料用耐食性部材の更に別の一実施形態においては、前記バイオ燃料が、バイオディーゼル燃料を50質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを50質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンである。
本願発明によれば、バイオ燃料の使用に対して耐食性が良好であり、且つ、有害な六価クロムを含有しないバイオ燃料用耐食性部材を提供することができる。
(バイオ燃料用耐食性部材の構成)
以下、本発明に係るバイオ燃料用耐食性部材の実施形態を説明するが、本発明に係るバイオ燃料用耐食性部材はこれらに限定されない。
本発明の実施形態に係るバイオ燃料用耐食性部材は、少なくとも、金属表面を有する部材と、該部材の金属表面の少なくとも一部に形成された亜鉛−ニッケル合金めっき被膜と、該亜鉛−ニッケル合金めっき被膜上に形成された化成処理被膜とを備えている。
金属表面を有する部材は、自動車等のエンジンにおいて、給油口から燃料タンクまでの輸送管、燃料タンク、燃料タンクからエンジンまでの輸送管、輸送用ポンプ部材、気化器、内燃機関、又は、燃料供給装置等におけるバイオ燃料と接触する可能性のある部材全般を示す。該部材の表面を構成する金属は、亜鉛、鉄、銅、錫、ニッケル、アルミニウム、マグネシウム、又は、これらの2種以上を含む合金である。
前記部材の金属表面の少なくとも一部に形成された亜鉛−ニッケル合金めっき被膜は、ニッケルを5〜25質量%含有する。亜鉛−ニッケル合金において、ニッケル含有量が、このように5〜25質量%であると、高濃度アルコール燃料に対する耐食性が良好である。また、ニッケル含有量は、多い方が耐食性が良好であるが、製造コストや二次加工性についても考慮すると、9〜23質量%が好ましく、11〜19質量%がより好ましい。亜鉛−ニッケル合金めっき形成用薬剤としては、ストロンNiジンク(日本表面化学社製)又はハイNiジンク(日本表面化学社製)等の市販の薬剤を用いることができる。
前記亜鉛−ニッケル合金めっき被膜上に形成された化成処理被膜は、六価クロムを含有せず、三価クロム、コバルト、ニッケル、亜鉛、モリブデン、タングステン、チタン、ジルコニウム、セリウム、アルミニウム、及び、シリカからなる群から選択される3種以上を含有している。このような構成によれば、六価クロムを用いずに美しい光沢のある外観と優れた耐食性、優れた塗装下地性を有する被膜が生成可能となる。
ここで、化成処理被膜とは、電気分解によらずに、金属等を溶液に浸漬して化学的に形成された被膜をいう。
化成処理被膜形成用薬剤としては、上記複数の特定金属と、複数の特定アニオンと、複数の特定有機酸とで構成されていればより好ましく、更にアリルアミン、ポリアリルアミン、芳香族スルホン酸、芳香族スルホン酸−ホルムアルデヒド縮合物およびこれらの誘導体から選択される少なくとも1種との組み合わせにより、強いエッチングや処理液中の亜鉛に依存せずに金属基材表面に意匠性に富んだ外観と六価クロメートと同等以上の耐食性を有する三価クロム化成処理被膜を形成することができる。三価クロム化成処理被膜形成用薬剤の具体例としては、5P043(日本表面化学社製)又はTRN−988(日本表面化学社製)等の市販の薬剤を用いることができる。
バイオ燃料用耐食性部材は、さらに、前記化成処理被膜上に、保護膜が形成されていてもよい。このような構成によれば、部材の耐食性がさらに向上する。該保護膜は、例えば、アクリル樹脂やエポキシ樹脂などをベースとした有機被膜や水ガラスに代表されるケイ素化合物などをベースとした無機被膜で形成されている。
このような保護膜形成剤としては、例えば、ハイシール272(日本表面化学社製)などの市販のコーティング剤、又は、エバクラッド(関西ペイント社製)、マジクロン(関西ペイント社製)及びアラミック(関西ペイント社製)等の塗装剤等を用いることができる。
また、前記部材の金属表面と、前記亜鉛−ニッケル合金めっき被膜との間に、亜鉛、鉄、銅、錫、ニッケル、アルミニウム、マグネシウム、又は、これらの2種以上を含む合金からなる中間被膜が形成されていてもよい。このような構成によれば、さらに前記部材の耐食性が向上する。中間被膜は、例えば、DK−480(日本表面化学社製)等の市販のニッケルめっき、スーパーカポール36(日本表面化学社製)等の市販の銅めっき、Snジンク(日本表面化学社製)等の市販の亜鉛−錫めっき、その他の溶融めっき等の既存の方法で形成することができる。また、部材の金属がアルミニウム等の軽金属の場合は、その表面を亜鉛置換することにより中間被膜を形成することができる。
バイオ燃料用耐食性部材に用いられるバイオ燃料は、バイオディーゼル燃料を3質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを3質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンである。
ここで、バイオディーゼル燃料は、生物由来油から作られる全てのディーゼルエンジン用燃料をいう。バイオエタノールは、サトウキビやトウモロコシ等のバイオマスを発酵させた後、蒸留して精製したエタノールをいう。
バイオディーゼル燃料及びバイオエタノールの含有量は、10質量%以上、さらには50質量%以上であっても、本発明に係るバイオ燃料用耐食性部材の耐食性は良好である。
(バイオ燃料用耐食性部材の製造方法)
次に、バイオ燃料用耐食性部材の製造方法について説明する。本実施形態に係るバイオ燃料用耐食性部材の製造方法は、随意の部材前処理工程、随意の中間被膜形成工程、亜鉛−ニッケル合金めっき被膜形成工程、化成処理被膜形成工程、及び、随意の保護膜形成工程をこの順で備えている。
(部材前処理工程)
部材前処理工程は、金属表面に付着している油脂類、酸化物、水酸化物、ホコリなどを除去し、後続の処理を良好に行うことを目的としている。当該前処理工程としては、部材表面の研磨・脱脂・エッチング・スマット除去等が挙げられる。
(中間被膜形成工程)
中間被膜形成工程は、所定の金属材料を用いためっき処理により行う。当該めっき処理は、電気めっき、無電解めっき、及び、化成処理等の湿式めっきであってもよく、さらに真空蒸着、物理蒸着、及び、化学蒸着等の乾式めっきであってもよく、その他どのようなめっき処理であっても良い。
(亜鉛−ニッケル合金めっき被膜形成工程)
亜鉛−ニッケル合金めっき被膜形成工程は、例えば、アルカリ性水溶液に、亜鉛イオン及びニッケルイオンを含有するめっき溶液を用いてめっき処理を行う湿式めっき方法や、亜鉛及びニッケルを含有するターゲット材料を用いて真空蒸着、物理蒸着、及び、化学蒸着等により被膜を形成する乾式めっき方法を用いても良い。
(化成処理被膜形成工程)
化成処理被膜形成工程では、亜鉛−ニッケル合金めっき被膜が形成された部材を、三価クロム、コバルト、ニッケル、亜鉛、及び、シリカからなる群から選択される3種以上を含有し、必要であれば、さらに、複数の特定アニオンと、複数の特定有機酸と、アリルアミン、ポリアリルアミン、芳香族スルホン酸、芳香族スルホン酸−ホルムアルデヒド縮合物およびこれらの誘導体から選択される少なくとも1種とを含有する溶液中に浸漬することにより、該亜鉛−ニッケル合金めっき被膜上に金属塩の被膜を形成する。
(保護膜形成工程)
保護膜形成工程では、前記化成処理被膜上に、電着塗装、トップコート、粉体塗装、又は、静電塗装によって保護膜を形成する。
ここで、電着塗装は、水溶性塗料中に浸漬した部材に電流を流して、電気泳動によって電気化学的に保護膜を形成するものである。
また、トップコートは、コーティング剤を前記化成処理被膜に設けて硬化させることで保護膜を形成するものである。
また、粉体塗装は、空気を媒体として粉末状塗料を付着させた後、加熱することにより保護膜を形成するものである。
また、静電塗装は、アースした部材を陽極、塗装霧化装置を陰極とし、これに負の高電圧を与えて、両極間に静電界を作り、霧化した塗装粒子を負に帯電させて、部材に効率よく塗料を吸着させることで保護膜を形成するものである。
(実施形態の作用効果)
本実施形態のバイオ燃料用耐食性部材によれば、高濃度アルコール燃料であるバイオ燃料への耐食性が良好であるため、当該燃料を安全に用いることができる自動車等のエンジンを実現することができる。また、被膜に六価クロムを含有していないため、環境対策上も有利となる。
以下、実施例及び比較例を示して、本発明をさらに説明する。
(実施例1)
鉄板を準備し、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、前処理を施した鉄板に、亜鉛−ニッケル合金めっき用薬剤(ZN−202;日本表面化学社製)を用いて、亜鉛ニッケル合金めっきを施した。得られためっき被膜の膜厚は8μmで、ニッケル共析率は7質量%であった。更に、六価クロムを含まない化成被膜処理剤(5P043;日本表面化学社製)により化成処理被膜を形成した後、鉄板を乾燥し、これを実施例1とした。化成処理被膜をグロー放電発光分光分析装置(GDS)を用いて分析すると、三価クロム、コバルト及びシリカの存在を確認した。
(実施例2)
鉄板を準備し、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、前処理を施した鉄板に、亜鉛−ニッケル合金めっき用薬剤(ZN−206;日本表面化学社製)を用いて、亜鉛ニッケル合金めっきを施した。得られためっき被膜の膜厚は8μmで、ニッケル共析率は15質量%であった。更に、六価クロムを含まない化成被膜処理剤(TRN−988;日本表面化学社製)により化成処理被膜を形成した後、鉄板を乾燥し、これを実施例2とした。化成処理被膜をグロー放電発光分光分析装置(GDS)を用いて分析すると、三価クロム、コバルト及び亜鉛の存在を確認した。
(実施例3)
鉄板を準備し、実施例2と同様に、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、前処理を施した鉄板に、亜鉛−ニッケル合金めっき用薬剤(ZN−206;日本表面化学社製)を用いて、亜鉛ニッケル合金めっきを施した。このとき、めっき液中のニッケル濃度は、実施例2よりも大きくした。得られためっき被膜の膜厚は8μmで、ニッケル共析率は18質量%であった。更に、六価クロムを含まない化成被膜処理剤(TRN−988;日本表面化学社製)により化成処理被膜を形成した後、鉄板を乾燥し、これを実施例3とした。化成処理被膜をグロー放電発光分光分析装置(GDS)を用いて分析すると、三価クロム、コバルト及び亜鉛の存在を確認した。
(実施例4)
鉄板を準備し、実施例2及び3と同様に、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、前処理を施した鉄板に、亜鉛−ニッケル合金めっき用薬剤(ZN−206;日本表面化学社製)を用いて、亜鉛ニッケル合金めっきを施した。このとき、めっき液中のニッケル濃度は、実施例3よりも大きくした。得られためっき被膜の膜厚は8μmで、ニッケル共析率は20質量%であった。更に、六価クロムを含まない化成被膜処理剤(TRN−988;日本表面化学社製)により化成処理被膜を形成した後、鉄板を乾燥し、これを実施例4とした。化成処理被膜をグロー放電発光分光分析装置(GDS)を用いて分析すると、三価クロム、コバルト及び亜鉛の存在を確認した。
(実施例5)
鉄板を準備し、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、前処理を施した鉄板に、中間被膜形成用薬剤(DK−480;日本表面化学社製)を用いてニッケルめっきを5μmの膜厚で形成した。続いて、亜鉛−ニッケル合金めっき用薬剤(ZN−206;日本表面化学社製)を用いて、亜鉛ニッケル合金めっきを施した。このとき、得られためっき被膜の膜厚は8μmで、ニッケル共析率は13質量%であった。更に、六価クロムを含まない化成被膜処理剤(TRN−988;日本表面化学社製)により化成処理被膜を形成した後、鉄板を乾燥し、これを実施例5とした。化成処理被膜をグロー放電発光分光分析装置(GDS)を用いて分析すると、三価クロム、コバルト及び亜鉛の存在を確認した。
(実施例6)
アルミニウム板を準備し、前処理として、当該アルミニウム板表面をアルカリ脱脂剤にて清浄した。次に、前処理を施したアルミニウム板に、中間被膜形成用薬剤(亜鉛8g/L及び水酸化ナトリウム90g/Lの水溶液)に浸漬し、用いてアルミニウム板表面を亜鉛置換した。続いて、亜鉛−ニッケル合金めっき用薬剤(ZN−206;日本表面化学社製)を用いて、亜鉛ニッケル合金めっきを施した。このとき、得られためっき被膜の膜厚は8μmで、ニッケル共析率は16質量%であった。更に、六価クロムを含まない化成被膜処理剤(TRN−988;日本表面化学社製)により化成処理被膜を形成した後、アルミニウム板を乾燥し、これを実施例6とした。化成処理被膜をグロー放電発光分光分析装置(GDS)を用いて分析すると、三価クロム、コバルト及び亜鉛の存在を確認した。
(実施例7)
実施例2で得られた鉄板を、さらに保護膜形成用薬剤(50%濃度のハイシール272水溶液;日本表面化学社製)に浸漬し、コーティング処理を施した後、乾燥し、これを実施例7とした。
(比較例1)
鉄板を準備し、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した後、乾燥し、これを比較例1とした。
(比較例2)
鉄板を準備し、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、亜鉛めっき用薬剤(アシッドジンク6420;日本表面化学社製)を用いて亜鉛めっきを施した。得られためっき被膜の膜厚は、8μmであった。更に、六価クロムを含む化成被膜処理剤(ローメイト60;日本表面化学社製)により化成処理を行った後、乾燥し、これを比較例2とした。
(比較例3)
鉄板を準備し、前処理として、当該鉄板表面をアルカリ脱脂剤にて清浄した。次に、亜鉛めっき用薬剤(アシッドジンク6420;日本表面化学社製)を用いて亜鉛めっきを施した。得られためっき被膜の膜厚は、8μmであった。更に、六価クロムを含まない化成被膜処理剤(TR−160;日本表面化学社製)により化成処理を行った後、乾燥し、これを比較例3とした。
上述の実施例1〜7及び比較例1〜3を、エタノールを15質量%含むガソリン中に浸漬保持し、錆の発生を確認した。
その結果、実施例1〜7は、いずれも15日以上錆の発生が認められなかったが、比較例1は翌日、比較例2及び3はそれぞれ3日後に錆の発生が認められた。

Claims (10)

  1. 金属表面を有するバイオ燃料用耐食性部材であって、
    前記金属表面の少なくとも一部に、ニッケルを5〜25質量%含有する亜鉛−ニッケル合金めっき被膜と、六価クロムを含有しない化成処理被膜とが、この順で形成されていることを特徴とするバイオ燃料用耐食性部材。
  2. 前記化成処理被膜上に、電着塗装、トップコート、粉体塗装、又は、静電塗装による保護膜が形成されていることを特徴とする請求項1に記載のバイオ燃料用耐食性部材。
  3. 前記化成処理被膜が、三価クロム、コバルト、ニッケル、亜鉛、モリブデン、タングステン、チタン、ジルコニウム、セリウム、アルミニウム、及び、シリカからなる群から選択される3種以上を含有することを特徴とする請求項1又は2に記載のバイオ燃料用耐食性部材。
  4. 前記部材の金属が、亜鉛、鉄、銅、錫、ニッケル、アルミニウム、マグネシウム、又は、これらの2種以上を含む合金であることを特徴とする請求項1〜3のいずれかに記載のバイオ燃料用耐食性部材。
  5. 前記部材の金属表面と、前記亜鉛−ニッケル合金めっき被膜との間に、亜鉛、鉄、銅、錫、ニッケル、アルミニウム、マグネシウム、又は、これらの2種以上を含む合金からなる中間被膜が形成されていることを特徴とする請求項1〜4のいずれかに記載のバイオ燃料用耐食性部材。
  6. 前記亜鉛−ニッケル合金めっき被膜がニッケルを9〜23質量%含有することを特徴とする請求項1〜5のいずれかに記載のバイオ燃料用耐食性部材。
  7. 前記亜鉛−ニッケル合金めっき被膜がニッケルを11〜19質量%含有することを特徴とする請求項6に記載のバイオ燃料用耐食性部材。
  8. 前記バイオ燃料が、バイオディーゼル燃料を3質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを3質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンであることを特徴とする請求項1〜7のいずれかに記載のバイオ燃料用耐食性部材。
  9. 前記バイオ燃料が、バイオディーゼル燃料を10質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを10質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンであることを特徴とする請求項8に記載のバイオ燃料用耐食性部材。
  10. 前記バイオ燃料が、バイオディーゼル燃料を50質量%以上含有するディーゼルエンジン用燃料、又は、バイオエタノールを50質量%以上含有するバイオエタノール燃料又はバイオエタノール混合ガソリンであることを特徴とする請求項9に記載のバイオ燃料用耐食性部材。
JP2009174157A 2009-07-27 2009-07-27 バイオ燃料用耐食性部材 Pending JP2011026669A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174157A JP2011026669A (ja) 2009-07-27 2009-07-27 バイオ燃料用耐食性部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174157A JP2011026669A (ja) 2009-07-27 2009-07-27 バイオ燃料用耐食性部材

Publications (1)

Publication Number Publication Date
JP2011026669A true JP2011026669A (ja) 2011-02-10

Family

ID=43635735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174157A Pending JP2011026669A (ja) 2009-07-27 2009-07-27 バイオ燃料用耐食性部材

Country Status (1)

Country Link
JP (1) JP2011026669A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160088362A (ko) 2013-12-12 2016-07-25 제이에프이 스틸 가부시키가이샤 내알코올 공식성 및 내알코올 scc 성이 우수한 강재
KR20160130819A (ko) 2014-04-08 2016-11-14 신닛테츠스미킨 카부시키카이샤 도금 강판
JP6075520B1 (ja) * 2015-08-28 2017-02-08 新日鐵住金株式会社 燃料タンク用表面処理鋼板
WO2017038786A1 (ja) * 2015-08-28 2017-03-09 新日鐵住金株式会社 燃料タンク用表面処理鋼板
KR20170138535A (ko) 2015-06-22 2017-12-15 제이에프이 스틸 가부시키가이샤 에탄올 저장 및 수송 설비용 강

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239854A (ja) * 1999-02-15 2000-09-05 Kawasaki Steel Corp 高耐食性燃料タンク用鋼板
JP2001279468A (ja) * 2000-03-30 2001-10-10 Kawasaki Steel Corp 高耐食性燃料タンク用鋼板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239854A (ja) * 1999-02-15 2000-09-05 Kawasaki Steel Corp 高耐食性燃料タンク用鋼板
JP2001279468A (ja) * 2000-03-30 2001-10-10 Kawasaki Steel Corp 高耐食性燃料タンク用鋼板

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160088362A (ko) 2013-12-12 2016-07-25 제이에프이 스틸 가부시키가이샤 내알코올 공식성 및 내알코올 scc 성이 우수한 강재
US10519532B2 (en) 2013-12-12 2019-12-31 Jfe Steel Corporation Steel material having excellent alcohol-induced pitting corrosion resistance and alcohol-induced SCC resistance
KR20160130819A (ko) 2014-04-08 2016-11-14 신닛테츠스미킨 카부시키카이샤 도금 강판
US10041175B2 (en) 2014-04-08 2018-08-07 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet
KR20170138535A (ko) 2015-06-22 2017-12-15 제이에프이 스틸 가부시키가이샤 에탄올 저장 및 수송 설비용 강
JP6075520B1 (ja) * 2015-08-28 2017-02-08 新日鐵住金株式会社 燃料タンク用表面処理鋼板
WO2017038786A1 (ja) * 2015-08-28 2017-03-09 新日鐵住金株式会社 燃料タンク用表面処理鋼板
US10738384B2 (en) 2015-08-28 2020-08-11 Nippon Steel Corporation Surface-treated steel sheet for fuel tanks

Similar Documents

Publication Publication Date Title
JP2011026669A (ja) バイオ燃料用耐食性部材
CN102368438B (zh) 一种钕铁硼磁体的表面复合防护方法
CN103060788B (zh) 一种燃油箱用单面电镀锌无铬表面处理钢板及表面处理剂
CN107740085B (zh) 一种环保型复合彩色钝化液及其制备方法
US20080169199A1 (en) Trivalent chromium electroplating solution and an electroplating process with the solution
CN104141138A (zh) 一种镁合金表面微弧氧化-复合化学镀镍涂层的制备方法
TWI586836B (zh) Steel plate for fuel tank
CN101054665A (zh) 一种电镀锌及锌铁合金硅酸盐清洁钝化液
JP5971431B2 (ja) めっき鋼板
TW201638389A (zh) 燃料槽用鋼板
CN104313554B (zh) 面向生物油应用的汽车发动机缸套表面抗腐耐磨复合涂层
KR101543905B1 (ko) 내부식성 및 심 용접성이 우수한 복합수지 코팅 조성물 및 상기 조성물로 코팅된 강판
CN101555596A (zh) 一种真空镀膜工艺及成套设备
Wang et al. Effect of cerium nitrate and salicylic acid on the titanium–zirconium chemical conversion coating of 6061 aluminum alloy
Liu et al. Comparison of the behaviours of chromate and sol–gel coatings on aluminium
JP6886676B2 (ja) 燃料給油管
CN109365249A (zh) 一种发动机油管表面制备Zn-Al合金涂层的方法
CN110512186A (zh) 一种烧结NdFeB磁体金属涂层的表面磷化钝化方法
CN105506689A (zh) 一种电池钢壳双层镀镍工艺及该工艺制得的电池钢壳
Gong et al. Influence of silane coupling agent on the conversion film forming of galvanized steel treated with cerium salt
CN101451263B (zh) 一种铝合金表面电泳沉积稀土镧氧化物薄膜的方法
KR20090064670A (ko) 마그네슘 합금 판재의 표면 처리 방법
CN104328394A (zh) 一种差异化复合式化学镀方法
CN219603688U (zh) 一种镀锌硅烷无铬钝化的镀层结构
CN104149412B (zh) 表面含Ni-P-植酸非晶镀层的高耐蚀自洁钢芯铝绞线

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624