JP2011017237A - Heat exchange type well device - Google Patents

Heat exchange type well device Download PDF

Info

Publication number
JP2011017237A
JP2011017237A JP2009177006A JP2009177006A JP2011017237A JP 2011017237 A JP2011017237 A JP 2011017237A JP 2009177006 A JP2009177006 A JP 2009177006A JP 2009177006 A JP2009177006 A JP 2009177006A JP 2011017237 A JP2011017237 A JP 2011017237A
Authority
JP
Japan
Prior art keywords
water
reflux
casing
gravel
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177006A
Other languages
Japanese (ja)
Other versions
JP5196354B2 (en
Inventor
Koji Eguchi
幸司 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGUCHI SETSUBI KOGYO KK
Original Assignee
EGUCHI SETSUBI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGUCHI SETSUBI KOGYO KK filed Critical EGUCHI SETSUBI KOGYO KK
Priority to JP2009177006A priority Critical patent/JP5196354B2/en
Publication of JP2011017237A publication Critical patent/JP2011017237A/en
Application granted granted Critical
Publication of JP5196354B2 publication Critical patent/JP5196354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchange type well device which does not change the total amount of ground water by solving the problems of conventional air-conditioning devices, snow-melting devices in snow countries, and other ground water-heat utilization devices wherein ground subsidence occurs due to the excessive pumping-up of ground water, and in certain places, administrative authorities restrict new constructions, additional construction, or an increase in the capacity of a well, causing the situations of these problems serious.SOLUTION: In a ground water pumping-up well, ground water is pumped up from the gravel layer of the deep part (lower layer part) of the well, and the cool heat (summer) or the hot heat (winter) of the pumped-up ground water is provided to the service water (circulation water or river water) on the ground. The ground water is then recirculated to the gravel layer of the shallow part (upper layer part) of the same well, and the service water (circulation water or river water) which receives heat from the ground water is used for air conditioning, snow melting, and other purposes.

Description

この発明は、空調設備や雪国における消雪装置その他の地下水熱利用装置において、汲み上げられる地下水を有効に利用するための、熱交換式井戸装置に関する。  The present invention relates to a heat exchange type well device for effectively using groundwater pumped up in an air conditioner, a snow extinguisher or other groundwater heat utilization device in a snowy country.

地下水はその恒温性により気温に比べて夏は冷たく冬は温かいことから、空調設備における夏期の冷却および冬季の採熱に利用され、また雪国においては、道路等における冬期間中の降雪、積雪の処理手段として消雪用水に利用されているが、此処数年来地下水の汲み上げすぎによる地盤沈下が進行し、社会問題となっている。地域によっては行政当局が消雪井戸の新・増設あるいは能力アップを制限しており、事態は深刻となっている。
そのため、▲1▼地盤沈下に対応する為に消雪用井戸においては、汲み上げた地下水を地上に放出せずに、地面下に埋設された熱交換パイプに通して地面に放熱し、その後別に掘った井戸より再び地中に還流させることが考えられている。
また、▲2▼井戸から地下水を汲み上げずに、井戸内に地上の目的用水を単に循環させ地下水により加温して冬期の消雪用に、或いは加冷して夏期の冷房その他の用途に利用することも考えられている。
Groundwater is cooler in summer and warmer in winter than air temperature due to its constant temperature, so it is used for air-conditioning cooling in summer and heat collection in winter, and in snowy countries, snowfall and snowfall during winter periods on roads etc. Although it is used as snow treatment water as a treatment means, it has become a social problem because of ground subsidence due to excessive pumping of groundwater for several years. In some areas, administrative authorities are restricting new or additional snow-breaking wells or increasing capacity, making the situation serious.
Therefore, in order to deal with (1) ground subsidence, in the snow-breaking well, the groundwater pumped up is not discharged to the ground, but is radiated to the ground through a heat exchange pipe buried under the ground, and then dug separately. It is considered to return to the ground again from a well.
(2) Without pumping groundwater from the well, simply circulate the target water on the ground in the well and heat it with groundwater for snow removal in winter, or use it for cooling and other uses in summer It is also considered to do.

しかしながら、上記▲1▼の方法では二つの井戸を掘らなければならず費用がかかり、用地も制限されるため何処でもと言う訳にもゆかない。また、▲2▼の方法は、井戸内の水が流れていればともかく、一般に滞留しているものであるから、循環する目的用水により井戸内の地下水の温度が低下し(冬期の消雪等温熱源として利用する場合)、或いは上昇し(夏期の冷熱源として利用する場合)機能しなくなってしまう。  However, in the method (1), it is necessary to dig two wells, which is expensive and the land is limited. In addition, since the method (2) is generally stagnant regardless of the flow of water in the well, the temperature of the groundwater in the well is lowered by the circulating target water (such as snow removal in winter). When used as a heat source) or rising (when used as a summer heat source), it will not function.

地下水熱を利用するための汲み上げ井戸において、深部(下層部)の砂礫層から地下水を汲み上げ、汲み上げた地下水の冷熱または温熱を地上に存在する用水(循環液又は河川水等)に与え、その後の地下水を再び同じ井戸の浅部(上層部)の砂礫層に還流させ、上記地下水により熱を与えられた用水を各種目的に利用するようにした、熱交換式井戸の地下水還流方法。
また、
▲1▼ ケーシングより一回り大きく掘削され、深部(下層部)に一つ以上の汲み上げ砂礫層を有し、また浅部(上層部)に一つ以上の還流砂礫層を有し、それらの中間層に不透水層を有する穿井孔、
▲2▼ 上記穿井孔に挿入され、深部の汲み上げ砂礫層に対応する下部に吸水スリットを設け、また還流砂礫層に対応する上部に還流スリットを設けたケーシング、
▲3▼ 穿井孔とケーシングの外周との間隙に充填された礫、中間部の不透水層の存在する部分および還流砂礫層の上部と地上との間にある不透水層の存在する部分の礫に施された上下を遮断するに充分なセメンチング、
▲4▼ ケーシングの上端を密閉する蓋、還流スリット下方においてケーシング内部を上下に二分する遮蔽部材により、その下部に形成された吸水域とその上部に形成された還流域、
▲5▼ 遮蔽部材に吊下げられて吸水域に設置された水中ポンプ、水中ポンプから上記遮蔽部材およびケーシング上端の蓋を貫通して地上に導出して下記熱交換槽に至る吐出パイプ、熱交換槽から上記還流域に至る還流パイプ、
▲6▼ 流入用送水パイプが連接された流入室から、流出用送水パイプが連接された流出室に至る複数本の熱交換パイプを有する熱交換槽、
からなり、地下深部より汲み上げられた地下水を、その熱を地上に存在する用水(循環液または河川水)に与えたのち、同じ井戸ケーシング内の上部還流域に戻し、該還流域のケーシング外周に設けられた還流スリットより、深部の吸水砂礫層からセメンチングにより遮断された浅部の砂礫層に還流させるようにした、熱交換式井戸装置。
更に
▲1▼ ケーシングより一回り大きく掘削され、深部(下層部)に一つ以上の吸水砂礫層を有し、また浅部(上層部)に一つ以上の還流砂礫層を有し、それらの中間層に不透水層を有する穿井孔、
▲2▼ 上記穿井孔に挿入され、汲み上げ砂礫層に対応する下部に給水スリットを設けまた還流砂礫層に対応する上部に還流スリットを設けたケーシング、
▲3▼ 穿井孔とケーシングの外周との間隙に充填された礫、中間部の不透水層の存在する部分の礫および還流砂礫層の上部と地上との間にある不透水層の存在する部分の礫に施された上下を遮断するに充分なセメンチング、
▲4▼ ケーシング内の還流スリット下方の内壁に設けられた環状受座、環状突起により前記環状受座に密接して設置されケーシング上端まで伸びて上壁によりケーシングと共に密閉された、ケーシングより一回り小さい円筒状熱交換槽、
▲5▼ 円筒状熱交換槽の上部に形成され、上壁を通じて用水の流入用送水パイプと流出用送水パイプが連接された流入室と流出室、流入室から熱交換槽内部に伸びて流出室に戻る熱交換パイプ、熱交換槽の上部周壁に設けられた複数の還流口、
▲6▼ 熱交換槽の下部に連結されて、吸水域の地下水を吐出パイプを通じて熱交換槽に供給する水中ポンプ、
からなり、地下深部より汲み上げられた地下水を、その保有する熱を地上から井戸内に循環する用水(循環液または河川水)に与えたのち、同じ井戸ケーシング内の上部還流域に戻し、該還流域のケーシング外周に設けられたスリットより、深部の汲み上げ砂礫層からセメンチングにより遮断された浅部の砂礫層に還流させるようにした、熱交換式井戸装置。
In the pumping well for using groundwater heat, the groundwater is pumped from the gravel layer in the deep part (lower layer), and the cold water or heat of the pumped groundwater is given to the ground water (circulating fluid or river water) A groundwater recirculation method for heat exchange type wells in which groundwater is returned to the gravel layer in the shallow part (upper part) of the same well, and the water heated by the groundwater is used for various purposes.
Also,
(1) Excavated slightly larger than the casing and has one or more pumped gravel layers in the deep part (lower part) and one or more reflux gravel layers in the shallow part (upper part). A borehole having an impermeable layer in the layer,
(2) A casing which is inserted into the borehole and has a water absorption slit at the lower part corresponding to the deeply-pumped gravel layer and a reflux slit at the upper part corresponding to the reflux gravel layer,
(3) The gravel filled in the gap between the borehole and the outer periphery of the casing, the part where the impermeable layer exists in the middle part and the part where the impermeable layer exists between the upper part of the reflux gravel layer and the ground Enough cementing to block the top and bottom of the gravel,
(4) A lid that seals the upper end of the casing, and a shielding member that bisects the inside of the casing up and down below the reflux slit, a water absorption area formed in the lower part and a reflux area formed in the upper part,
(5) A submersible pump suspended in a shielding member and installed in a water absorption area, a submerged pump that passes through the shielding member and the top cover of the casing and leads to the ground and discharge pipe to the heat exchange tank below, heat exchange A reflux pipe from the tank to the reflux zone,
(6) A heat exchange tank having a plurality of heat exchange pipes extending from an inflow chamber connected to the inflow water pipe to an outflow chamber connected to the outflow water pipe,
After the groundwater pumped up from the deep underground is given to the water (circulating fluid or river water) existing on the ground, it is returned to the upper return zone in the same well casing, A heat exchanging well device in which a reflux slit is provided to return to a shallow gravel layer blocked by cementing from a deep water-absorbing gravel layer.
Furthermore, (1) it is excavated one size larger than the casing, has one or more water-absorbing gravel layers in the deep part (lower layer part), and one or more reflux gravel layers in the shallow part (upper layer part). A borehole having an impermeable layer in the intermediate layer,
(2) A casing which is inserted into the borehole and has a water supply slit at the lower part corresponding to the pumped gravel layer and a reflux slit at the upper part corresponding to the reflux gravel layer,
(3) Gravel filled in the gap between the borehole and the outer periphery of the casing, gravel in the middle part of the impermeable layer, and impermeable layer between the upper part of the reflux gravel layer and the ground Enough cementing to block the top and bottom applied to the gravel of the part,
(4) An annular seat provided on the inner wall below the reflux slit in the casing, installed in close contact with the annular seat by an annular projection, extending to the upper end of the casing and sealed together with the casing by the upper wall. Small cylindrical heat exchange tank,
(5) An inflow chamber and an outflow chamber formed at the upper part of the cylindrical heat exchange tank and connected to the inflow water supply pipe and the outflow water supply pipe through the upper wall. The outflow chamber extends from the inflow chamber to the inside of the heat exchange tank. A heat exchange pipe returning to the top, a plurality of reflux ports provided in the upper peripheral wall of the heat exchange tank,
(6) A submersible pump connected to the lower part of the heat exchange tank and supplying groundwater in the water absorption area to the heat exchange tank through the discharge pipe,
After the groundwater pumped from the deep underground is supplied to the water (circulating fluid or river water) circulating from the ground to the well, it is returned to the upper return zone in the same well casing and returned. A heat exchanging well device in which a deeply-pumped gravel layer is returned to a shallow gravel layer blocked by cementing from a slit provided in the outer periphery of the casing of the basin.

上記手段により、本発明は単一の井戸内に下部の吸水域と上部の還流域とを設け、深部より汲み上げた地下水は地上に存在する用水(循環液又は河川水等)と熱交換をするのみで、地上に放出せずに再び地下すなわち同じ井戸内の上部の還流域を通じて浅部の砂礫層に還流させるものであり、そして、上記地下水との熱交換により冷熱または温熱を与えられた循環水や河川水等を用水として使用するものであるから、地層は異なるとは言え地中の水の総量は変わらず、地下水を浪費せずに地下水熱を利用できるので、地下水の汲み上げ過ぎによる地盤沈下の問題を解消することができる。したがって、地盤沈下で問題となり制限されている地域においても新たに井戸を掘削することができる。
また消雪方法として従来考えられた、汲み上げられた地下水を地面下に敷設された熱交換パイプに循環させてその保有する熱を地面に放熱した後、別の個所に設けられた還流井戸により地中に戻すことは、消雪井戸の他に還流井戸を掘らなければならず、そのための敷地の確保と費用の増加が問題となり、また目的用水を単に井戸内に循環させて熱交換する方法は、井戸内の地下水が一般に滞溜層であるために熱交換のために井戸水の温度が低下或いは上昇してしまい、目的を果たせなくなってしまうが、本発明によればこれらの問題を解消することができる。
By the above means, the present invention provides a lower water absorption area and an upper reflux area in a single well, and the groundwater pumped up from the deep part exchanges heat with water existing on the ground (such as circulating liquid or river water). It is only recirculated to the shallow gravel layer through the upper recirculation zone in the same well without discharging to the ground, and the circulation given heat or cold by heat exchange with the groundwater Since water and river water are used as water, the total amount of water in the ground does not change even though the strata are different, and groundwater heat can be used without wasting groundwater. The settlement problem can be solved. Therefore, new wells can be drilled even in areas where land subsidence is a problem and is restricted.
In addition, after circulating the groundwater pumped up to the heat exchange pipe laid under the ground and radiating the heat held by it to the ground, which was conventionally considered as a snow-melting method, In order to return to the inside, it is necessary to dig a return well in addition to the snow-dissipating well, and securing the site for that purpose and increasing the cost are problematic, and the method of simply circulating the target water in the well and exchanging heat is the problem. Since the groundwater in the well is generally a stagnant layer, the temperature of the well water decreases or rises due to heat exchange, and the purpose cannot be achieved. However, the present invention eliminates these problems. Can do.

図1により、本発明の実施例1を説明する。
Aは地面、Bはパーカッション工法その他の穿井工法等によりケーシングCより若干大きく掘削された穿井孔、Dは熱交換槽、Eは上部のセメンチングで上層部の砂礫層上部の不透水層においてケーシング周りの穿井孔を遮断し、Fは下部のセメンチングで汲み上げ域の砂礫層と還流域の砂礫層との間の不透水層においてケーシング周りの穿井孔を遮断するものである。
1は熱交換槽Dに地上に存在する用水(循環液又は河川水等)を導入する送水パイプで、導入された用水は流入室5熱交換パイプ7流出室6を通って送水パイプ2から空調設備或いは消雪装置等の目的装置に送られる。8は砂排出パイプである。9は吸水域16にある水中ポンプPから送られる地下水を熱交換槽Dに送る吐出パイプ、10は還流パイプで熱交換した地下水を還流域12に戻す。これらのパイプはケーシングの蓋11を密に貫通し、還流域12を密閉空間とする。
14はケーシングを上方の還流域12と下方の吸水域16とに分割する閉止円盤で、下部セメンチングF付近のケーシング内周に設けられた環状受座に支持されてその上下を封止する。またその中央にはポンプPからの吐出パイプが水密に貫通される。なお閉止円盤はケーシングの内周との隙間を僅かにしておけば、ポンプを中心にセットするガイドとなる。また、閉止円盤下面外周にパッキンを装着すればより確実に封止できる。
13は還流スリットで上部セメンチングEの下方においてケーシングの還流域の外周に設けられる。また17はストレーナとしての吸水スリットで下部セメンチングの下方において吸水域の外周に設けられる。このような単純なスリットに替えて、スリットを大きく形成してその外周にワイヤーを一定間隔に螺旋状に巻いてストレーナ部を構成すると目詰まり防止効果があがる。
18はポンプへの電源コードで、還流域を通して地上に導かれる。
以上の構成により、ポンプPにより吸水域の吸水スリット17を通じて深部の砂礫層より汲み上げられる地下水は、吐出パイプ9を通って熱交換槽Dに送られる。ここで熱交換パイプ7内を流れる用水に地下水熱を与えた後、還流パイプ10からケーシング内の還流域に戻され、更に還流スリット13を通じて浅部の砂礫層に戻される。
用水は送水パイプ1から熱交換槽に入り、地下水熱を与えられて送水パイプ2から冷暖房装置、消雪装置その他の目的の装置に送られる。なお、この熱交換槽をヒートポンプの受熱用に利用出来ることは勿論である。
これを消雪に利用する場合、消雪用水は、綺麗な河川水が得られるならばこれを取り入れて路面や屋根などに散水し直接消雪するようにしてもよいが、ゴミが流れてきて一緒に吸込まれると消雪パイプ内各所につまり支障をきたすので、不凍液を循環させて地下水との熱交換により加温し、これを路面下または屋根下等に敷設した消雪パイプに循環させることにより路面又は屋根を暖めて間接的に消雪したほうが、トラブルがなく効果的である。
Embodiment 1 of the present invention will be described with reference to FIG.
A is the ground, B is the borehole drilled slightly larger than the casing C by the percussion method and other drilling methods, D is the heat exchange tank, E is the upper impermeable layer above the upper gravel layer by cementing the upper part The well hole around the casing is blocked, and F blocks the hole near the casing in the impermeable layer between the gravel layer in the pumping area and the gravel layer in the reflux area by lower cementing.
Reference numeral 1 denotes a water supply pipe for introducing water (circulation liquid or river water) existing on the ground into the heat exchange tank D. The introduced water is air-conditioned from the water supply pipe 2 through the inflow chamber 5, the heat exchange pipe 7, and the outflow chamber 6. It is sent to a target device such as equipment or a snow removal device. 8 is a sand discharge pipe. 9 is a discharge pipe for sending ground water sent from the submersible pump P in the water absorption area 16 to the heat exchange tank D, and 10 is for returning the ground water heat-exchanged by the reflux pipe to the reflux area 12. These pipes penetrate the casing lid 11 closely, and the reflux area 12 is a sealed space.
Reference numeral 14 denotes a closed disk that divides the casing into an upper reflux area 12 and a lower water absorption area 16, and is supported by an annular seat provided on the inner periphery of the casing near the lower cementing F to seal the upper and lower sides. Further, a discharge pipe from the pump P is penetrated in the center in a watertight manner. In addition, if a clearance gap with the inner periphery of a casing is made small, a closed disk will become a guide set centering on a pump. Moreover, it can seal more reliably if packing is attached to the outer periphery of the lower surface of the closed disk.
A reflux slit 13 is provided on the outer periphery of the reflux area of the casing below the upper cementing E. Reference numeral 17 denotes a water absorption slit as a strainer, which is provided on the outer periphery of the water absorption area below the lower cementing. In place of such a simple slit, a clogging prevention effect can be obtained by forming a large slit and winding a wire around the outer periphery in a spiral manner to form a strainer portion.
18 is a power cord to the pump, which is led to the ground through the return zone.
With the above configuration, the groundwater pumped from the deep gravel layer through the water absorption slit 17 of the water absorption area by the pump P is sent to the heat exchange tank D through the discharge pipe 9. Here, after the groundwater heat is given to the water flowing in the heat exchange pipe 7, it is returned from the reflux pipe 10 to the reflux area in the casing, and further returned to the shallow gravel layer through the reflux slit 13.
The water enters the heat exchange tank through the water supply pipe 1, is given groundwater heat, and is sent from the water supply pipe 2 to a cooling / heating device, a snow squeezing device, and other target devices. Needless to say, this heat exchange tank can be used for receiving heat from a heat pump.
If this is used for snow removal, the water for snow removal may be taken directly into the road surface or roof, etc. if clean river water is obtained, but the snow will flow directly. If sucked together, it will cause troubles in the snowpipe pipe, so it will circulate the antifreeze and heat it by exchanging heat with the groundwater, and circulate it through the snowpipe pipe laid under the road surface or under the roof. Therefore, it is more effective and trouble-free if the road surface or roof is warmed to remove snow indirectly.

次に図2により、本発明の実施例2を説明する。
これは思想的には実施例1と同じであるが、熱交換槽をケーシングの還流域内に設けた点で異なるので、この点について説明し、同じ点については省略する
熱交換槽DはケーシングCの還流域12´内に還流空間を残して挿入され、その下端をケーシング内周の環状受座15´に密に支持されて下部の吸水域16と上部の還流域とを区画する。3´はケーシングの上端を密封するとともに熱交換槽の上部をも同時に密封する上壁で、送水パイプ1および2が取り付けられる。
Pは水中ポンプで熱交換槽の下部に吊下げられ、吐出管9を通じて吸水域内の地下水を送水パイプ9を通して熱交換槽に送る。10´は熱交換槽上部周囲に設けられた還流口である。なお、熱交換槽および熱交換パイプは、1,2個所フランジやカップリングにより上下に分割可能にしておけば、組み立てやメンテナンスが容易となる。
以上の構成により、ポンプPにより深部の砂礫層から汲み上げられた地下水は吐出管9を通じて熱交換槽Dに送られ、ここで熱交換パイプ7を介してその内部を流れる用水に地下水熱を与え、上部の還流口10´から還流域12´に入り、還流スリット13から浅部の砂礫層に戻される。
この構成によれば、熱交換槽を地上に設ける必要がないので、敷地に余裕がなくてもよく、また地上がすっきりする。
Next, Embodiment 2 of the present invention will be described with reference to FIG.
This is conceptually the same as in Example 1, but differs in that the heat exchange tank is provided in the return zone of the casing, so this point will be described, and the same points will be omitted. The recirculation zone 12 'is inserted into the recirculation zone 12' while leaving a recirculation space. The lower end of the recirculation zone 12 'is closely supported by the annular seat 15' on the inner periphery of the casing to divide the lower water absorption zone 16 and the upper reflux zone. 3 'is an upper wall that seals the upper end of the casing and at the same time seals the upper part of the heat exchange tank, to which the water supply pipes 1 and 2 are attached.
P is suspended under the heat exchange tank by a submersible pump, and the groundwater in the water absorption area is sent through the discharge pipe 9 to the heat exchange tank through the water supply pipe 9. Reference numeral 10 'denotes a reflux port provided around the upper part of the heat exchange tank. In addition, if the heat exchange tank and the heat exchange pipe can be divided vertically by 1, 2 flanges or couplings, assembly and maintenance are facilitated.
With the above configuration, the groundwater pumped from the deep gravel layer by the pump P is sent to the heat exchange tank D through the discharge pipe 9, where the groundwater heat is given to the water flowing through the heat exchange pipe 7 through the heat exchange pipe 7, It enters the reflux region 12 ′ from the upper reflux port 10 ′ and returns to the shallow gravel layer from the reflux slit 13.
According to this configuration, since it is not necessary to provide the heat exchange tank on the ground, there is no room on the site, and the ground is clean.

本発明の実施例1の概略側断面図。  1 is a schematic sectional side view of Example 1 of the present invention. 本発明の実施例2の概略側断面図。  The schematic sectional side view of Example 2 of this invention. 図2III−III線矢視における横断面図。  Fig. 2 is a transverse sectional view taken along line III-III.

A 地面、 B 穿井孔、 C ケーシング、 D 熱交換槽、 E 上部セメンチング、 F 下部セメンチング、 P モータ内蔵の水中ポンプ、 1・2 送水パイプ、 3、3´ 上壁、 4 閉止金具、 7 熱交換パイプ、 8 砂排出パイプ、 9 吐出パイプ、 10 還流パイプ、 11 蓋、 12、12´ 還流域、 13 還流スリット、 14 閉止円盤、 14´ 環状突起、 15、15´ 環状受座、 16 吸水域、 17 吸水スリット、 18 電源コードA ground, B borehole, C casing, D heat exchange tank, E upper cementing, F lower cementing, P submersible pump with built-in motor, 1.2 water supply pipe, 3, 3 'upper wall, 4 closure fitting, 7 heat Exchange pipe, 8 Sand discharge pipe, 9 Discharge pipe, 10 Return pipe, 11 Lid, 12, 12 'Return area, 13 Return slit, 14 Closed disk, 14' Annular projection, 15, 15 'Annular seat, 16 Water absorption area , 17 Water absorption slit, 18 Power cord

Claims (3)

地下水熱を利用するための汲み上げ井戸において、深部(下層部)の砂礫層から地下水を汲み上げ、汲み上げた地下水の冷熱または温熱を地上に存在する用水(循環液又は河川水等)に与え、その後の地下水を再び同じ井戸の浅部(上層部)の砂礫層に還流させ、上記地下水により熱を与えられた用液を各種目的に利用するようにした、熱交換式井戸の地下水還流方法。  In the pumping well for using groundwater heat, the groundwater is pumped from the gravel layer in the deep part (lower layer), the cold water or the heat of the pumped groundwater is given to the ground water (circulating fluid or river water, etc.) A groundwater recirculation method for heat exchange type wells, in which groundwater is recirculated to the gravel layer in the shallow (upper layer) of the same well, and the above-mentioned liquid heated by the groundwater is used for various purposes. ▲1▼ ケーシングより一回り大きく掘削され、深部(下層部)に一つ以上の汲み上げ砂礫層を有し、また浅部(上層部)に一つ以上の還流砂礫層を有し、それらの中間層に不透水層を有する穿井孔、
▲2▼ 上記穿井孔に挿入され、汲み上げ砂礫層に対応する下部に吸水スリットを設けまた還流砂礫層に対応する上部に還流スリットを設けたケーシング、
▲3▼ 穿井孔とケーシングの外周との間隙に充填された礫、中間部の不透水層の存在する部分および還流砂礫層の上部と地上との間にある不透水層の存在する部分の礫に施された上下を遮断するに充分なセメンチング、
▲4▼ ケーシングの上端を密閉する蓋、還流スリット下方においてケーシング内部を上下に二分する遮蔽部材により、その下部に形成された吸水域とその上部に形成された還流域、
▲5▼ 遮蔽部材に吊下げられて吸水域に設置された水中ポンプ、水中ポンプから上記遮蔽部材およびケーシング上端の蓋を貫通して地上に導出して下記熱交換槽に至る吐出パイプ、熱交換槽から上記還流域に至る還流パイプ、
▲6▼ 流入用送水パイプが連接された流入室から、流出用送水パイプが連接された流出室に至る複数本の熱交換パイプを有する熱交換槽、
からなり、地下深部より汲み上げられた地下水を、その熱を地上に存在する用水(循環液または河川水)に与えたのち、同じ井戸ケーシング内の上部還流域に戻し、該還流域のケーシング外周に設けられた還流スリットより、深部の汲み上げ砂礫層からセメンチングにより遮断された浅部の砂礫層に還流させるようにした、熱交換式井戸装置。
(1) Excavated slightly larger than the casing and has one or more pumped gravel layers in the deep part (lower part) and one or more reflux gravel layers in the shallow part (upper part). A borehole having an impermeable layer in the layer,
(2) A casing which is inserted into the borehole and has a water absorption slit at the lower part corresponding to the pumped gravel layer and a reflux slit at the upper part corresponding to the reflux gravel layer,
(3) The gravel filled in the gap between the borehole and the outer periphery of the casing, the part where the impermeable layer exists in the middle part and the part where the impermeable layer exists between the upper part of the reflux gravel layer and the ground Enough cementing to block the top and bottom of the gravel,
(4) A lid that seals the upper end of the casing, and a shielding member that bisects the inside of the casing up and down below the reflux slit, a water absorption area formed in the lower part and a reflux area formed in the upper part,
(5) A submersible pump suspended in a shielding member and installed in a water absorption area, a submerged pump that passes through the shielding member and the top cover of the casing and leads to the ground and discharge pipe to the heat exchange tank below, heat exchange A reflux pipe from the tank to the reflux zone,
(6) A heat exchange tank having a plurality of heat exchange pipes extending from an inflow chamber connected to the inflow water pipe to an outflow chamber connected to the outflow water pipe,
After the groundwater pumped up from the deep underground is given to the water (circulating fluid or river water) existing on the ground, it is returned to the upper return zone in the same well casing, A heat exchanging well apparatus in which the deeply pumped gravel layer is refluxed from the provided reflux slit to the shallow gravel layer blocked by cementing.
▲1▼ ケーシングより一回り大きく掘削され、深部(下層部)に一つ以上の汲み上げ砂礫層を有し、また浅部(上層部)に一つ以上の還流砂礫層を有し、それらの中間層に不透水層を有する穿井孔、
▲2▼ 上記穿井孔に挿入され、汲み上げ砂礫層に対応する下部に給水スリットを設けまた還流砂礫層に対応する上部に還流スリットを設けたケーシング、
▲3▼ 穿井孔とケーシングの外周との間隙に充填された礫、中間部の不透水層の存在する部分の礫および還流砂礫層の上部と地上との間にある不透水層の存在する部分の礫に施された上下を遮断するに充分なセメンチング、
▲4▼ ケーシング内の還流スリット下方の内壁に設けられた環状受座、環状突起により前記環状受座に密接して設置されケーシング上端まで伸びて上壁によりケーシングと共に密閉された、ケーシングより一回り小さい円筒状熱交換槽、
▲5▼ 円筒状熱交換槽の上部に形成され、上壁を通じて用水の流入用送水パイプと流出用送水パイプが連接された流入室と流出室、流入室から熱交換槽内部に伸びて流出室に戻る熱交換パイプ、熱交換槽の上部周壁に設けられた複数の還流口、
▲6▼ 熱交換槽の下部に連結されて、吸水域の地下水を吐出パイプを通じて熱交換槽に供給する水中ポンプ、
からなり、地下深部より汲み上げられた地下水を、その保有する熱を同じ井戸内において地上から井戸内に循環する用水(循環液または河川水)に与えたのち、同じ井戸ケーシング内の上部還流域に戻し、該還流域のケーシング外周に設けられたスリットより、深部の汲み上げ砂礫層からセメンチングにより遮断された浅部の砂礫層に還流させるようにした、熱交換式井戸装置。
(1) Excavated slightly larger than the casing and has one or more pumped gravel layers in the deep part (lower part) and one or more reflux gravel layers in the shallow part (upper part). A borehole having an impermeable layer in the layer,
(2) A casing which is inserted into the borehole and has a water supply slit at the lower part corresponding to the pumped gravel layer and a reflux slit at the upper part corresponding to the reflux gravel layer,
(3) Gravel filled in the gap between the borehole and the outer periphery of the casing, gravel in the middle part of the impermeable layer, and impermeable layer between the upper part of the reflux gravel layer and the ground Enough cementing to block the top and bottom applied to the gravel of the part,
(4) An annular seat provided on the inner wall below the reflux slit in the casing, installed in close contact with the annular seat by an annular projection, extending to the upper end of the casing and sealed together with the casing by the upper wall. Small cylindrical heat exchange tank,
(5) An inflow chamber and an outflow chamber formed at the upper part of the cylindrical heat exchange tank and connected to the inflow water supply pipe and the outflow water supply pipe through the upper wall. The outflow chamber extends from the inflow chamber to the inside of the heat exchange tank. A heat exchange pipe returning to the top, a plurality of reflux ports provided in the upper peripheral wall of the heat exchange tank,
(6) A submersible pump connected to the lower part of the heat exchange tank and supplying groundwater in the water absorption area to the heat exchange tank through the discharge pipe,
After the groundwater pumped from the deep underground is given to the water (circulating fluid or river water) circulating from the ground to the well in the same well, the groundwater is pumped into the upper return zone in the same well casing. A heat exchanging well device that is returned to the shallow gravel layer blocked by cementing from the deeply pumped gravel layer through a slit provided on the outer periphery of the casing in the return zone.
JP2009177006A 2009-07-07 2009-07-07 Heat exchange type well equipment Expired - Fee Related JP5196354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177006A JP5196354B2 (en) 2009-07-07 2009-07-07 Heat exchange type well equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177006A JP5196354B2 (en) 2009-07-07 2009-07-07 Heat exchange type well equipment

Publications (2)

Publication Number Publication Date
JP2011017237A true JP2011017237A (en) 2011-01-27
JP5196354B2 JP5196354B2 (en) 2013-05-15

Family

ID=43595205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177006A Expired - Fee Related JP5196354B2 (en) 2009-07-07 2009-07-07 Heat exchange type well equipment

Country Status (1)

Country Link
JP (1) JP5196354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687714A (en) * 2017-10-24 2018-02-13 中国煤炭地质总局水文地质局 A kind of mid-deep strata geothermal energy underground heat-exchanger rig
KR101913466B1 (en) * 2016-08-10 2018-12-28 두산중공업 주식회사 Forward osmosis water treatment device using thermosensitive draw solute for treating high-temperature underground water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824762A (en) * 1981-08-05 1983-02-14 Shinichi Adachi Extracting method of heat energy from underground water
JPH06228928A (en) * 1993-02-03 1994-08-16 Hiroaki Kamiyama Circulation underground device making cooling reduction liquid as revival/snow-melting geothermal liquid
JPH07284753A (en) * 1994-04-20 1995-10-31 Sumikon Serutetsuku Kk Method and apparatus for removing underground contaminant
JP2003213645A (en) * 2002-01-21 2003-07-30 Jmc Geothermal Engineering Co Ltd Snow melting method using heat pump and device therefor
JP2004225936A (en) * 2003-01-20 2004-08-12 Iwata Construction Co Ltd Cooling system utilizing groundwater heat
JP2004263525A (en) * 2003-03-04 2004-09-24 Nippon Kensetsu Gijutsu Kk Road paving structure
JP2004346580A (en) * 2003-05-21 2004-12-09 Shibayama Cement Seihin Kojo:Kk Pavement structure and construction method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824762A (en) * 1981-08-05 1983-02-14 Shinichi Adachi Extracting method of heat energy from underground water
JPH06228928A (en) * 1993-02-03 1994-08-16 Hiroaki Kamiyama Circulation underground device making cooling reduction liquid as revival/snow-melting geothermal liquid
JPH07284753A (en) * 1994-04-20 1995-10-31 Sumikon Serutetsuku Kk Method and apparatus for removing underground contaminant
JP2003213645A (en) * 2002-01-21 2003-07-30 Jmc Geothermal Engineering Co Ltd Snow melting method using heat pump and device therefor
JP2004225936A (en) * 2003-01-20 2004-08-12 Iwata Construction Co Ltd Cooling system utilizing groundwater heat
JP2004263525A (en) * 2003-03-04 2004-09-24 Nippon Kensetsu Gijutsu Kk Road paving structure
JP2004346580A (en) * 2003-05-21 2004-12-09 Shibayama Cement Seihin Kojo:Kk Pavement structure and construction method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913466B1 (en) * 2016-08-10 2018-12-28 두산중공업 주식회사 Forward osmosis water treatment device using thermosensitive draw solute for treating high-temperature underground water
CN107687714A (en) * 2017-10-24 2018-02-13 中国煤炭地质总局水文地质局 A kind of mid-deep strata geothermal energy underground heat-exchanger rig

Also Published As

Publication number Publication date
JP5196354B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
KR101992308B1 (en) Geothermal System Using a Single Water Supply System for Smart Farm and Building Cooling and Method for constructing this same
JP3927593B1 (en) Double pipe type geothermal water circulation device
US8820394B2 (en) Convection enhanced closed loop geothermal heat pump well
US20080128108A1 (en) Convective earrh coil
JP5731127B2 (en) Geothermal utilization system
US9157666B2 (en) Ground heat exchange processes and equipment
JP4869145B2 (en) Underground heat exchange system
KR100798127B1 (en) Geothermal hole protection and groundwater circulation system
JP2011017237A (en) Heat exchange type well device
JP4485465B2 (en) Underground equipment in groundwater heat utilization facilities
CN109813000A (en) Shallow layer geothermal energy based on surface water body utilizes device
JP5079295B2 (en) Two well type groundwater heat exchange system and construction method of two well type groundwater heat exchange system
JP2004317102A (en) Heat pump using well water heat
KR101220897B1 (en) equipment for exchanging terrestrial heat
JP2004225936A (en) Cooling system utilizing groundwater heat
KR20080014916A (en) Ground heat returning device for improving underground heat exchange efficiency by connecting with empty pipes installed to the bottom of groundwater core
JP6907596B2 (en) How to use groundwater
KR20170057548A (en) Groundwater Circulation System Of The Overflowing Geothermal Standing Column Well
JP2008069576A (en) Underground water heat exchange system, construction method of underground water heat exchange system and underground water heat exchange method
JP6303361B2 (en) Thermal well and snow melting method
JP2008156867A (en) Circulation-type heat absorption and radiation equipment utilizing geothermal heat
JPS6320913Y2 (en)
KR20160148268A (en) Underground heat exchange apparatus using multiple well and improved pour power
GB2463237A (en) Geothermal heating or cooling apparatus and method
JPS62237249A (en) Method of thawing snow utilizing terrestrial heat

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20220215

Year of fee payment: 9

R150 Certificate of patent or registration of utility model

Ref document number: 5196354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees