JP4485465B2 - Underground equipment in groundwater heat utilization facilities - Google Patents

Underground equipment in groundwater heat utilization facilities Download PDF

Info

Publication number
JP4485465B2
JP4485465B2 JP2005374917A JP2005374917A JP4485465B2 JP 4485465 B2 JP4485465 B2 JP 4485465B2 JP 2005374917 A JP2005374917 A JP 2005374917A JP 2005374917 A JP2005374917 A JP 2005374917A JP 4485465 B2 JP4485465 B2 JP 4485465B2
Authority
JP
Japan
Prior art keywords
pipe
casing
groundwater
aquifer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005374917A
Other languages
Japanese (ja)
Other versions
JP2007177434A (en
Inventor
喜代美 今
Original Assignee
野本 哲嗣
立山 潤
喜代美 今
水嶋 浩雅
三上 芳宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野本 哲嗣, 立山 潤, 喜代美 今, 水嶋 浩雅, 三上 芳宏 filed Critical 野本 哲嗣
Priority to JP2005374917A priority Critical patent/JP4485465B2/en
Publication of JP2007177434A publication Critical patent/JP2007177434A/en
Application granted granted Critical
Publication of JP4485465B2 publication Critical patent/JP4485465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、地下水熱利用設備における地中装置に関し、例えば冷暖房設備、あるいは屋上・屋根や路面その他の地上において、降雪を融かす融雪設備等の循環密閉回路式地上設備へ地下水熱を直接または間接的に循環供給するために地中深くに構築される地中装置(井戸)に関する。   The present invention relates to an underground device in a groundwater heat utilization facility, for example, direct or indirect groundwater heat to a circulating closed circuit type ground facility such as a cooling / heating facility or a snow melting facility that melts snow on a rooftop, roof, road surface, or other ground. The present invention relates to an underground device (well) constructed deeply in the ground in order to circulate and supply.

従来の一本の井戸で揚水と還元を行っている先行技術は、揚水層と還元層を別々として考え、各々揚水する帯水層と、還元する帯水層としているが、現実的には、ケーシング(井戸)の上端部が大気開放型若しくは、密閉状態にしている。
そして、その二次側の利用方法は、開放回路、密閉回路に限定しておらず、あくまでも揚水量が還元量と同じになるとの前提でシステムが構築されている(例えば、特許文献1,2参照)。
The prior art that performs pumping and reduction in a conventional well considers the pumping layer and the reducing layer as separate, and each has an aquifer to pump and aquifer to reduce, but in reality, The upper end of the casing (well) is open to the atmosphere or sealed.
And the usage method of the secondary side is not limited to an open circuit and a sealed circuit, and the system is constructed on the premise that the amount of pumped water is the same as the amount of reduction (for example, Patent Documents 1 and 2). reference).

しかし、本来、別々の層同士が連通されておらず、帯水層と帯水層の間には、層の厚み、幅は別として、不透水層が存在する。即ち、不透水層が存在するから帯水層が存在する。
揚水側の帯水層の出水量と還元側の帯水層の浸透量、又は各帯水層(水脈)の水圧、又は各帯水層の上下に挟まっている不透水層の土圧等々が、全く同等、同水量の揚水、還元が出来なければ、おたがい同じ量の揚水・還元は絶対不可能である。
However, originally, separate layers are not communicated with each other, and an impermeable layer exists between the aquifer and the aquifer, apart from the thickness and width of the layer. That is, an aquifer exists because an impermeable layer exists.
The amount of water discharged from the aquifer on the pumping side and the amount of seepage of the aquifer on the reduction side, the water pressure of each aquifer (water vein), the earth pressure of the impermeable layer sandwiched above and below each aquifer, etc. If the same amount of water cannot be pumped or reduced, the same amount of water cannot be pumped or reduced.

何故ならば、一本のケーシング(井戸)をして、揚水と還元の循環をなすと言うことは、各々が全く僅差無く同じ条件にならなければ、揚水量分と同量の還元は不可能である。
即ち、どちらか上か下の帯水層を揚水し、他方の帯水層に還元する訳だから、上下で既に層の幅、水圧・土圧・上下の落差抵抗など、必ず条件が違うからである。
Because it means that a single casing (well) is used for circulation of pumping and reduction. If the conditions are not exactly the same, reduction of the same amount as the pumped amount is impossible. It is.
That is, because the upper or lower aquifer is pumped and reduced to the other aquifer, the conditions such as the width of the layer, water pressure, earth pressure, and head resistance at the top and bottom are always different. is there.

その状態で揚水と還元の循環運動を行った場合、揚水量が多く、還元量が少なければ、結局、還元量分しか水量は利用できない。
又、逆とするも不可能で、本来水脈が違う帯水層に、他から移動してきた水量は、一定量しか帯水層には還元できない。
なぜならば、帯水層は一定の流れがあるにせよ、ひとつの大きな水瓶と考えると、その水瓶から揚水した分しか還元できないのは物理的に当り前で、器以上には還元できない。
In this state, when the circulating movement of pumping and reduction is performed, if the amount of pumping is large and the amount of reduction is small, the amount of water can be used only for the amount of reduction.
In addition, the reverse is impossible, and the amount of water that has moved from the other to the aquifer that originally has a different water vein can only be reduced to the aquifer.
This is because even though the aquifer has a constant flow, when it is considered as one large water bottle, it is physically natural that only the amount pumped from the water bottle can be reduced, and it cannot be reduced beyond the vessel.

揚水することは帯水層の水脈の量に応じて、相当量の水量を確保は可能であるが、何十年何百年何千年の雨水・雪解け水などの水が浸透して水脈が構成され、様々な因果関係から各帯水層、不透水層などの層の重なり深さが、地球の歴史と供に自然的に構成されて来たわけで、地中内の土圧、水圧に押し上げられてきた地下水を揚水することは、多少の動力ポンプにより簡単に出来る。自噴している帯水層があるくらいだから。
しかし、逆に還元すると言うことは、地中内の土圧、水圧以上に大きな圧力をして押し込まなければ還元できない。
まれにある程度の浸透しやすい帯水層が仮にあったとしても、もともとの水量分しか構成しない層(一定の水瓶層)に、それ以上の水量を還元できたとしても、バランスが崩れ、地中内で帯水層が崩落することになり、還元層は成立しないことになる。
It is possible to secure a considerable amount of water depending on the amount of aquifers in the aquifer, but water veins are formed by infiltration of water such as rainwater and snowmelt for decades, hundreds and thousands of years. Because of various causal relationships, the overlapping depth of each aquifer, impermeable layer, etc. has been naturally constructed along with the history of the earth, and is pushed up by earth pressure and water pressure in the ground. It is easy to pump up the groundwater that has been pumped by some power pumps. Because there is an aquifer that is blowing out.
However, in other words, reducing is not possible unless the pressure is greater than the earth pressure and water pressure in the ground.
In rare cases, even if there is an aquifer that is easy to penetrate to some extent, even if it can be reduced to a layer that only constitutes the original amount of water (a constant water bottle layer), the balance will be lost, and the underground In this case, the aquifer will collapse, and the reduction layer will not be established.

一般的には浸透しやすい帯水層は考えにくく、上下に粘土層などの不透水層に挟まれて物理的に水瓶となる水脈帯水層が自然的に出来てきている訳だから、本発明においては、浸透しやすい浸透層的な帯水層はありえないことを前提に考えるとすれば、特許文献1、2の技術では100%揚水、還元を一本のケーシング(井戸)で継続的に運転利用することが無理で実用的でないことが分かる。   In general, it is difficult to think of an aquifer that easily permeates, and a water aquifer aquifer that physically becomes a water bottle by being sandwiched between impermeable layers such as a clay layer on the top and bottom is naturally made, so the present invention However, if it is assumed that there is no osmotic aquifer that is easy to penetrate, the technologies of Patent Documents 1 and 2 continuously operate 100% pumping and reduction with a single casing (well). It turns out that it is impossible to use and it is not practical.

特開平6−88327号公報JP-A-6-88327 特開平9−280689号公報Japanese Patent Laid-Open No. 9-280689

従って、前記したように別々の帯水層同士に揚水した地下水を還元するためには、浸透しない限り不可能である。   Therefore, as described above, it is impossible to reduce the groundwater pumped up between the separate aquifers unless it penetrates.

本発明は、前記問題点に鑑みてなされたもので、その目的とするところは、一本のケーシング(井戸)の地熱・地下水熱を利用し、その利用した地下水を単一の帯水層に容易に戻すことができる地下水熱利用設備における地中装置を提供することにある。
更に、地中深く構築させる井戸内の地下水熱の放熱ロスを抑制し、しかも、井戸内への水脈圧(地圧)による地下水の上昇高さを高め、尚且つ水脈から井戸内上部側への温度差に地下水の対流(上下移動)を促進せしめて、地下水熱の循環密閉回路式地上設備への熱移動を合理的且つ効率的に実施し、単一(一層)の有効帯水層から揚水・還元、即ち単に「循環」行程として構成し、限りある地下水を空気に触れさせないで循環移動する、地下水「熱」だけを無駄なく効率的に実用的に取り出せる地下水熱利用設備における地下装置を提供することにある。
The present invention has been made in view of the above-described problems, and the object of the present invention is to use the geothermal / groundwater heat of a single casing (well), and use the groundwater as a single aquifer. An object of the present invention is to provide an underground device in a groundwater heat utilization facility that can be easily returned.
Furthermore, the heat dissipation loss of groundwater heat in the well constructed deep underground is suppressed, and the rising height of groundwater due to the water pressure (ground pressure) into the well is increased, and further, the water vein leads to the upper side of the well. Groundwater convection (up-and-down movement) is promoted by the temperature difference, and groundwater heat is rationally and efficiently transferred to the circulating closed circuit type ground facility, and pumping is performed from a single (one layer) effective aquifer.・Providing underground equipment for groundwater heat utilization facilities that can be constructed as a reduction, that is, simply a “circulation” process, and that circulates and moves limited groundwater without exposing it to air. There is to do.

前記の課題を解決するために本発明は、地中の所定深度に存在する水脈に達するようにケーシングを植設せしめ、このケーシング内にそれぞれ挿入配置される往管と還管を介して接続される循環密閉回路式地上設備に地下水を循環供給するように地中に構築される地下水熱利用設備における地中装置であって、
前記ケーシングは、密閉上端を地表又は地中所定深度まで没入させた状態で地中に挿入植設され、地中の所定深度に存在する単一の帯水層に対応する上下長さ方向の所定位置の周壁に吸・排水用の開口を有するストレーナ部を備え、前記ストレーナ部は、前記単一の帯水層の上下端よりそれぞれ突出する開口長さ範囲で前記ケーシングに形成されてなり、前記ストレーナ部の前記開口長さ範囲内に前記ケーシングの内部を上下に分断するための遮水管を配設して、該遮水管より上方の前記ケーシング内の上部空間内に前記往管の吸い口または還管の出口の何れか一方を位置させ、他方を前記遮水管より下方の下部空間内に位置させたことを特徴とする。
そして、前記還管に前記遮水管を連結させて、前記遮水管を前記還管として利用することが好適なものとなる。この場合、前記遮水管より上方の前記上部空間に吸い口を位置させた往管を通して前記単一の帯水層から前記循環密閉回路式地上設備に送られて(吸い上げられて)熱交換された戻り地下水が前記遮水管内を通して該遮水管より下方の下部空間内に位置する前記還管の出口から前記単一の帯水層に排水される(戻される)ようにすることが好適なものとなる。
前記ケーシングにおけるストレーナ部の形態としては、ケーシングの周壁に内外貫通する上下長さ方向に所定長さのスリット、或いは丸孔、角孔などの開口が挙げられる。
In order to solve the above-mentioned problems, the present invention has a casing implanted so as to reach a water vein existing at a predetermined depth in the ground, and is connected via an outgoing pipe and a return pipe, which are respectively inserted and arranged in the casing. An underground device in a groundwater heat utilization facility constructed in the ground so as to circulate and supply groundwater to a circulating closed circuit type ground facility ,
The casing is inserted and planted in the ground with the sealed upper end immersed to the ground surface or a predetermined depth in the ground, and a predetermined vertical length direction corresponding to a single aquifer existing at a predetermined depth in the ground. A strainer portion having an opening for suction and drainage on the peripheral wall of the position, the strainer portion is formed in the casing in an opening length range protruding from the upper and lower ends of the single aquifer, A water shielding pipe for dividing the interior of the casing in the vertical direction is provided within the opening length range of the strainer portion, and the forward pipe mouthpiece or the upper pipe in the upper space in the casing above the water shielding pipe One of the outlets of the return pipe is positioned, and the other is positioned in the lower space below the water shielding pipe .
Then, it is preferable to connect the water shielding pipe to the return pipe and use the water shielding pipe as the return pipe. In this case, heat was exchanged (sucked up) from the single aquifer to the circulating sealed circuit type ground facility through the outgoing pipe in which the suction port was positioned in the upper space above the impermeable pipe. It is preferable that the return groundwater is drained (returned) to the single aquifer through the outlet of the return pipe located in the lower space below the impermeable pipe through the impermeable pipe. Become.
As a form of the strainer part in the casing, a slit having a predetermined length in the vertical length direction penetrating in and out of the peripheral wall of the casing, or an opening such as a round hole or a square hole may be mentioned.

前記の手段によれば、最も水量のある水脈、即ち有効な単一の帯水層をケーシング内に配置される遮水管で上下に分断し、且つ循環するために遮水管より上方に吸水口(ストレーナ部)を、遮水管より下方の排水口(ストレーナ部)が離れ距離を保ち、循環密閉回路式地上設備で熱交換(放熱)されて温度が下がった戻り地下水は、還管で単一の帯水層の下部流れ方向に排水され(戻され)、同時にその温度差により、温度が高い送り地下水は単一の帯水層の上部に移動する自然対流が単一の帯水層内で発生する。つまり、単一の帯水層内では、循環密閉回路式地上設備へと循環されて戻されてきた戻り地下水を再度汲み上げない構造、環境が構成される。
しかも、単一の帯水層側から見て、ストレーナ部の真中1/3程が遮水管で遮水されているので、遮水管より上方の上部空間におけるストレーナ部1/3と遮水管より下方の下部空間におけるストレーナ部1/3が有効で、単一の帯水層側から地下水が流通する。しかし、上部空間のストレーナ部からケーシング内に流入し往管と通して循環密閉回路式地上設備に送られ熱交換(放熱)されて温度が低下し還管と連通された遮水管と、下部空間のストレーナ部を経由して単一の帯水層に戻ってきた戻り地下水は、温度の低下により同じ単一の帯水層の下部に下がり、帯水層本来の水流に乗り、這うようにその流れ方向に移動する。従って、同じ単一の帯水層内に水温の温度差が発生してくると、温度の高い地下水は上昇し、遮水管より上方の単一の帯水層の上部側に自然的にながれる自然対流が起こる一方で、温度の低い地下水は単一の帯水層の下部(底部)側に滞留しながら、帯水層の流れ方向に移動して行く。
According to the above-mentioned means, a water vein having the highest water volume, that is, an effective single aquifer is divided into upper and lower portions by a water shielding pipe disposed in the casing and is circulated above the water shielding pipe to circulate ( the strainer portion), at a distance away drainage outlet below the Saegimizukan (strainer portion), the heat exchanger in a circulating closed-circuit ground facility (heat radiation) by the return ground water the temperature drops, the single in place pipe The groundwater is drained (returned) in the lower flow direction of the aquifer, and at the same time, due to the temperature difference, natural convection is generated in the single aquifer where the hot groundwater moves to the upper part of the single aquifer To do. That is, in a single aquifer, a structure and environment are constructed in which return groundwater that has been circulated back to the circulating closed circuit type ground facility is not pumped up again.
Moreover, as seen from the single aquifer side, about 1/3 of the middle of the strainer part is shielded by the water shielding pipe, so that it is below the strainer part 1/3 and the water shielding pipe in the upper space above the water shielding pipe. The strainer part 1/3 in the lower space is effective, and groundwater flows from the single aquifer side. However, the water-impervious pipe that flows into the casing from the strainer part of the upper space, passes through the outgoing pipe, is sent to the circulating closed circuit type ground facility, and is exchanged with heat (heat radiation) , the temperature drops, and communicates with the return pipe, and the lower space The groundwater that has returned to the single aquifer through the strainer part of the water falls to the bottom of the same single aquifer due to the decrease in temperature, and rides the original aquifer's original water flow. Move in the flow direction. Therefore, when the temperature difference of the water temperature in the same single aquifer comes occurred, the temperature high groundwater rises, Ru flows naturally to the upper side of the upper single aquifer than Saegimizukan While natural convection occurs, groundwater with low temperature moves in the flow direction of the aquifer while staying at the lower (bottom) side of the single aquifer.

また、本発明では、前記往管の吸い口に水中ポンプを接続装備することが好適なものとなる。
この場合には、帯水層の地下水を強制的に吸水して往管を通して循環密閉回路式地上設備に供給できるため、安定した地下水熱の熱源利用が可能となる。
In the present invention, it is preferable that a submersible pump is connected to the outlet of the outgoing pipe.
In this case, groundwater in the aquifer can be forcibly absorbed and supplied to the circulating closed circuit type ground facility through the outgoing pipe, so that a stable heat source for groundwater heat can be used.

さらに、前記遮水管より下方の下部空間に前記往管の吸い口を位置させ、上方の上部空間に還管の出口を位置させた構成とすることができる。この場合、前記下部空間に位置させた前記往管の吸い口に水中ポンプを接続するが好適なものとなる。Furthermore, the outlet of the outgoing pipe can be located in the lower space below the impermeable pipe, and the outlet of the return pipe can be located in the upper space above. In this case, a submersible pump is preferably connected to the outlet of the outgoing pipe located in the lower space.

さらに、地中の深度の異なる複数の各単一の帯水層がそれぞれ存在する位置に対応させた前記ケーシングの上下長さ方向の周壁に、前記ストレーナ部をそれぞれ備えるとともに、各ストレーナ部が開口するそれぞれの開口長さ範囲内に前記ケーシングの内部をそれぞれ上下に分断する遮水管をそれぞれ配置し、かつ、各遮水管より上方の上部空間内に前記各単一の帯水層の地下水を吸水する往管の吸い口または各単一の帯水層に地下水を戻す還管の出口の何れか一方をそれぞれ位置させ、他方を前記各遮水管より下方の下部空間内にそれぞれ位置させる構成とすることができる。- Furthermore, the strainer portions are respectively provided on the peripheral walls in the vertical length direction of the casing corresponding to positions where a plurality of single aquifers having different depths exist respectively, and each strainer portion is opened. A water shielding pipe that divides the inside of the casing in the vertical direction is arranged in each opening length range, and the groundwater of each single aquifer is absorbed in the upper space above each water shielding pipe. One of the outlet of the outgoing pipe or the outlet of the return pipe that returns the groundwater to each single aquifer is positioned, and the other is positioned in the lower space below each of the water shielding pipes. be able to. -

前記の手段によれば、一本のケーシング(井戸)の中で、例えば、水温が13℃前後の有効な単一の帯水層と、更に深度が深く水温が20℃以上(30℃〜50℃でもよい)の有効な各単一の帯水層などから選択的に目的水温の送り地下水を、それぞれの往管を通して循環密閉回路式地上設備に送り込み、熱交換されて温度が下がった戻り地下水を還管を通して各単一の帯水層にそれぞれ排水する(戻す)ことができる。例えば、循環密閉回路式地上設備において水温の低い温度域で利用する時期と、高い温度域で利用する時期が異なる場合、それぞれの利用時期に応じた水温の地下水を選択的に利用することができる。同時に温度差を利用する設備などの二極化、またはそれ以上の複数利用方法が可能となる。 According to the above means, in one casing (well), for example, an effective single aquifer having a water temperature of around 13 ° C. and a deeper water temperature of 20 ° C. or more (30 ° C. to 50 ° C.). The groundwater with the target water temperature is selectively sent from each effective single aquifer, etc., to the circulating closed circuit type ground facility through the respective outgoing pipes, and the groundwater is returned to the groundwater by heat exchange. Can be drained (returned) to each single aquifer through a return pipe. For example, in a circulating closed circuit type ground facility, when the time of use in a low temperature range is different from the time of use in a high temperature range, groundwater with a water temperature corresponding to each use time can be selectively used. . At the same time, it is possible to use two or more bipolar methods such as equipment that uses the temperature difference.

本発明の地下水熱利用設備における地中装置は、単一の同じ帯水層内で地下水の吸水(揚水)と排水(還元)することにより、循環密閉回路式地上設備への地下水熱の循環を容易に行うことができる。それは、単一の帯水層を大きな水瓶と考えれば、同じ器の中で、同圧で、吸水した分の地下水を瞬時に排出、排出した分の地下水を瞬時に吸水することにより地下水熱の循環密閉回路式地上設備への循環をスムーズに実施することができる。
これにより、地下水の枯渇を防ぎ、地盤沈下を防ぎ、環境にやさしい、自然エネルギーを有効利用する無散水方式の融雪装置並びに、冷房装置などの地下水熱利用設備における地下装置を提供することができる。
The underground device in the groundwater heat utilization facility of the present invention circulates the groundwater heat to the circulating closed circuit type ground facility by absorbing (pumping) groundwater and draining (reducing) groundwater within a single aquifer. It can be done easily. If a single aquifer is considered to be a large water bottle , groundwater that has been absorbed is instantaneously discharged in the same vessel at the same pressure, and the discharged groundwater is instantaneously absorbed. Circulation to the circulating closed circuit type ground equipment can be carried out smoothly.
Accordingly, it is possible to provide a groundwater device in groundwater heat utilization facilities such as a water-sprinkling type snow melting device that prevents the depletion of groundwater, prevents land subsidence, is environmentally friendly, and that effectively uses natural energy.

また、単一の帯水層を、上下に分断するように、同帯水層とストレーナ部を介して連通するケーシング内に配置した遮水管より上方の上部空間に往管の吸い口を位置させ、遮水管より下方の下部空間に還管の出口を位置させた配置構造を採用することで、循環密閉回路式地上設備で熱交換(放熱)されて温度が下がった戻り地下水は、単一の帯水層の下部流れ方向に戻され、温度が高い地下水は単一の同じ帯水層の上部に移動する自然対流を単一の同じ帯水層内で発生させることができる。
これにより、単一の同じ帯水層内でありながら、循環密閉回路式地上設備へと循環されて戻されてきた戻り地下水を再度汲み上げない構造、環境にて、温度の高い送り地下水のみを確実に、かつ、効率的に循環密閉回路式地上設備に送り込み循環させることができる。
In addition, the outlet of the outgoing pipe is positioned in the upper space above the water shielding pipe arranged in the casing communicating with the aquifer through the strainer so as to divide the single aquifer vertically. By adopting an arrangement structure in which the outlet of the return pipe is located in the lower space below the impermeable pipe, the return groundwater whose temperature has been lowered by heat exchange (heat radiation) in the circulating closed circuit type ground facility is a single The groundwater, which is returned to the lower flow direction of the aquifer and has a high temperature, can generate natural convection in the same same aquifer that moves to the upper part of the same aquifer.
This ensures that only high-temperature groundwater is delivered in a structure and environment that does not re-pump the returned groundwater that has been circulated back to the circulating closed circuit type ground facility, even though it is in a single aquifer. In addition, it can be efficiently fed into the circulating closed circuit type ground facility for circulation.

また、一本のケーシング(井戸)の中で、例えば地下水温が13℃前後の有効な帯水層と、更に深度の深い地下水温度が20℃以上(30℃〜50℃でもよい)の有効な帯水層に各々配置し、循環密閉回路式地上設備において地下水温度の低い温度域で利用する時期と、高い温度域で利用する時期が異なる場合、同時に温度差を利用する設備などの二極化、またはそれ以上の複数利用方法が可能となる。   Further, in one casing (well), for example, an effective aquifer having a groundwater temperature of around 13 ° C. and an effective deep groundwater temperature of 20 ° C. or more (may be 30 ° C. to 50 ° C.). Bipolarization of equipment that uses a temperature difference at the same time when it is placed in each aquifer and the time to use it in a circulating closed circuit type ground facility is different from the time when the groundwater temperature is low and the time when it is used in a high temperature range Multiple usage methods are possible.

以下、本発明に係る地下水熱利用設備における地中装置の実施の形態を図面に基づいて説明する。
図1は、地上ポンプ仕様の地下水熱利用設備における地中装置の全体を示す概略図であり、図中、1は、地中深く井戸構築するケーシングで、そのケーシング1の内部に、所定の深度に存在する単一の同じ帯水層の地下水を循環密閉回路式地上設備(図示では融雪装置を一例として図示、以後、単に地上設備と称する)16に輸送する往管2と、地上設備16で熱交換されて温度が低くなった戻り地下水を単一の同じ帯水層に排水する還管3が挿入配置されている。さらに、還管3の下端には単一の同じ帯水層の層高さ範囲内にてケーシング1の内部を上下に分断する遮水管4が接続されて配設されている。
そして、ケーシング1の上端は密閉蓋5で閉鎖され、その密閉蓋5を貫通して往管2と還管3が外部に突出され、その往管2が地上設備16の入口側に、還管3が地上設備16の出口側にそれぞれ接続されるとともに、地上設備16の入口側より上流の往管2の配管中には往き水量計M1と地上ポンプP1が接続され、地上設備16の出口側より下流の還管3の配管途中には戻り水量計M2が接続されている。
Hereinafter, an embodiment of an underground device in a groundwater heat utilization facility according to the present invention will be described with reference to the drawings.
Figure 1 is a schematic diagram showing the entire underground device in groundwater heat utilization equipment ground pump specification, in the figure, 1 is a casing to construct a deep underground wells, the interior of the casing 1, a predetermined A forward pipe 2 for transporting groundwater of a single aquifer existing at a depth to a circulating closed circuit type ground facility (in the figure, a snow melting device is shown as an example, hereinafter simply referred to as a ground facility) 16; A return pipe 3 for draining the returned groundwater whose temperature has been lowered due to heat exchange in the same aquifer is inserted . Further, a water shielding pipe 4 that divides the interior of the casing 1 vertically is connected to the lower end of the return pipe 3 within a layer height range of a single aquifer.
The upper end of the casing 1 is closed with a sealing lid 5, and the outgoing pipe 2 and the return pipe 3 project outside through the sealing lid 5, and the outgoing pipe 2 is connected to the inlet side of the ground facility 16. with 3 are respectively connected to the outlet side of the ground equipment 16, during upstream of往管second piping from the inlet side of the ground equipment 16 is connected to the forward water meter M1 and ground pump P1, the outlet side of the ground equipment 16 A return water meter M2 is connected in the middle of the downstream return pipe 3.

また、図1および図2に示すように、単一の帯水層の略中間部に位置してケーシング1内に配置されている遮水管4より上方の上部空間に往管2の吸い口が位置し、遮水管4より下方の下部空間には遮水管4に連通(貫通)された還管3の出口が位置している。
これにより、ケーシング1のストレーナ部(排水口)より排出される地上設備16からの温度が下がった戻り地下水は、単一の帯水層の底部分で水脈の下手流れ方向に這うように移動し、一方、単一の帯水層の上部付近(吸水口付近)では水脈の上手方向より、温度の高い地下水がケーシング1のストレーナ部(吸水口)6よりケーシング1内に導入されて地上ポンプP1より地上設備16へ吸引輸送される。
Further, as shown in FIGS. 1 and 2, the mouthpiece of the outgoing pipe 2 is located in the upper space above the water shielding pipe 4 that is located in the casing 1 and is located approximately in the middle of the single aquifer. The exit of the return pipe 3 that is located and communicated (penetrated) with the water shielding pipe 4 is located in the lower space below the water shielding pipe 4.
As a result, the returned groundwater from the ground facility 16 discharged from the strainer section (drain port) 6 of the casing 1 moves so as to flow in the downstream direction of the water vein at the bottom of the single aquifer. On the other hand, in the vicinity of the upper part of the single aquifer (near the water inlet), groundwater with higher temperature is introduced into the casing 1 from the strainer part (water inlet) 6 of the casing 1 from the upper direction of the water vein, and the ground pump It is sucked and transported to the ground facility 16 from P1.

ケーシング1は、金属製のパイプで構成され、その口径は地下水の必要循環量に応じて100mm、125mm、150mm、200mm、300mmから適宜選択して使用される。そして、選択された口径のケーシングは、目的の温度や水量などを有する単一の帯水層が存在している深度に合わせて地中深く挿入植設される。
なお、図示を省略しているが、ケーシング1は、数メートルの長さを有する短管複数本を順次連結して地中に挿入植設されることで、一本の井戸を地中深く構築するようになっている。そして、目的の単一の帯水層と対応する位置には吸・排水用の開口を有するストレーナ部6を周壁に備えている短管を挿入植設させるようになっている。
The casing 1 is composed of a metal pipe, and the diameter of the casing 1 is appropriately selected from 100 mm, 125 mm, 150 mm, 200 mm, and 300 mm according to the required circulation amount of groundwater. Then, the casing having the selected diameter is inserted and planted deeply in the ground in accordance with the depth at which a single aquifer having a target temperature, amount of water, and the like exists .
In addition, although illustration is abbreviate | omitted, the casing 1 constructs | assembles one well deeply in the ground by connecting several short pipes which have a length of several meters one by one, and inserting and planting in the ground. It is supposed to be. A short pipe having a strainer portion 6 having a suction / drainage opening on the peripheral wall is inserted and planted at a position corresponding to the target single aquifer.

ストレーナ部6は、単一の帯水層を流れる地下水をケーシング1内に流入させるための吸水口と、及びケーシング1外に流出させるための排水口となる開口であり、ケーシング1の周壁に軸芯と平行ならしめて周方向に等間隔をおいて形成されるスリット6a群から形成されている(図2参照)。
そして、ケーシング1の上下長さ方向におけるストレーナ部6(スリット6a)の開口長さは、単一の帯水層の上下端(帯水層を挟んで上下に存在しているそれぞれの不透水層との境目)よりそれぞれ1〜2mほど不透水層側に突出するように形成されている。
尚、ストレーナ部6は、スリットに限定されず、丸孔、或いは角孔等、地下水が出入りすることが出来る開口であればよい。
The strainer section 6 is an opening serving as a water inlet for allowing groundwater flowing through a single aquifer to flow into the casing 1 and a drain outlet for allowing the groundwater to flow out of the casing 1. It is formed of a group of slits 6a formed in parallel with the core and at equal intervals in the circumferential direction (see FIG. 2).
And the opening length of the strainer part 6 (slit 6a) in the up-down length direction of the casing 1 is the upper and lower ends of a single aquifer (the respective impermeable layers present above and below the aquifer). And 1 to 2 m from the boundary of the water-impermeable layer.
In addition, the strainer part 6 is not limited to a slit, What is necessary is just an opening which can go in and out of groundwater, such as a round hole or a square hole.

遮水管4は、単一の帯水層が存在する位置に対応させてケーシング1の周壁に備えられるストレーナ部6の開口長さ範囲内でケーシング1の内部を、往管2の吸い口が位置する吸水側と、還管3の出口が位置する排水側に分断する。つまり、単一の帯水層内において、温度が高い地下水が吸水される吸水側と、地上設備16との熱交換がなされた後に戻されてくる温度が低い戻り地下水が排水される排水側との温度が違う地下水が干渉しないようにケーシング1の内部を上部空間側と下部空間側とに分断する。
そして、この遮水管4は、温度が高い地下水と温度が低い地下水とが干渉しないように吸水口側と排水口側との距離を、ストレーナ部6の開口長さ範囲内で確保する程度の長さ(例えば、3〜5m位)に形成されている。
これにより、例えば、遮水管4は、ストレーナ部6の開口長さ範囲内の中央部分(単一の帯水層の略中央部)に配設されたときに、ストレーナ部6の開口長さ方向の1/3〜1/4を遮水し、ケーシング1内において地下水の上下流通を遮断する。
また、遮水管4は、図2に示すように、ケーシング1内の定位置において内周面に密着して止水効果を発揮させるための遮水材7を外周面の長さ方向に間隔をおいて複数備えている。
The impermeable pipe 4 is located within the casing 1 within the range of the opening length of the strainer portion 6 provided on the peripheral wall of the casing 1 so as to correspond to the position where a single aquifer exists, and the suction mouth of the outgoing pipe 2 is located. It is divided into a water-absorbing side and a drain side where the outlet of the return pipe 3 is located. That is, in a single aquifer, a water absorption side where high temperature groundwater is absorbed, and a drainage side where low temperature returned groundwater returned after heat exchange with the ground facility 16 is drained. The inside of the casing 1 is divided into an upper space side and a lower space side so that groundwater with different temperatures does not interfere.
And this impermeable pipe 4 is long enough to ensure the distance between the water inlet side and the water outlet side within the opening length range of the strainer part 6 so that the groundwater having a high temperature and the groundwater having a low temperature do not interfere with each other. (For example, about 3 to 5 m).
Thereby, for example, when the water shielding pipe 4 is disposed in the central portion (substantially central portion of a single aquifer) within the range of the opening length of the strainer portion 6, the opening length direction of the strainer portion 6. 1/3 to 1/4 of the water in the casing 1, and the vertical flow of groundwater in the casing 1 is blocked.
In addition, as shown in FIG. 2, the water shielding pipe 4 is provided with a water shielding material 7 that is in close contact with the inner peripheral surface at a fixed position in the casing 1 and exhibits a water blocking effect in the longitudinal direction of the outer peripheral surface. There are several.

尚、ケーシング1の内径が100mmで、水中ポンプを利用した場合には、単一の帯水層内で往管2の一部に遮水管4を構成することになるが、それ以外の基本的な構成は単一の帯水層内で還管3の一部に遮水管4を接続構成する。   In addition, when the inner diameter of the casing 1 is 100 mm and a submersible pump is used, the water shielding pipe 4 is formed in a part of the outgoing pipe 2 in a single aquifer, but other basics are used. In such a configuration, a water shielding pipe 4 is connected to a part of the return pipe 3 in a single aquifer.

遮水材7は、遮水管4がケーシング1の内周面に接触しながらある程度移動ができるような多少の柔軟性があり、時間の経過と共に含水することにより体積膨張しケーシング内面と遮水管外面の密着度を高める材料、例えば含水性のあるコルク、ゴム(遮水専用)、膨潤ゴムなどを用いることができる。
遮水材7の取り付け位置は、図2に示すように、遮水管4の上端側と下端側、及び遮水管4の長さ方向の中程の3箇所に配置しているが、これに限らず、遮水管の上・下端側2箇所に配置したり、遮水管4の全体に取り付けることも任意である。
The water shielding material 7 has some flexibility so that the water shielding pipe 4 can move to some extent while being in contact with the inner peripheral surface of the casing 1, and expands in volume by containing water over time, and the inner surface of the casing 1 and the water shielding pipe. Materials that enhance the adhesion of the outer surface, such as cork having water content, rubber (only for water shielding), swollen rubber, and the like can be used.
As shown in FIG. 2, the water shielding material 7 is attached at three positions, that is, the upper end side and the lower end side of the water shielding tube 4 and the middle of the length of the water shielding tube 4. not, or to place the upper and lower side two places Saegimizukan 4, it is optional to mount the entire Saegimizukan 4.

前記構成により、井戸自体の水脈に到達させているケーシング1を密閉状態にし、遮水管4より上側にある空気を図1に示す空気抜き弁又は真空ポンプ8などで抜気して、ケーシング1の内部に大気圧力の影響をする空気を入り込まないように密閉回路を構成し、外気から遮断する。
それにより、同圧内では温度差による水流移動が望めるので、熱交換器を直接ケーシング内にドブ付けし、熱交換して直接地下水を外部に出さないで、ケーシングと水脈ドーム間で循環運動させて、熱移動を容易にするも可能である。
By the arrangement, and the casing 1 are allowed to reach the vein of the well itself in a sealed state, and evacuated in such air vent or a vacuum pump 8 shows the air in the above the Saegimizukan 4 in FIG. 1, the casing 1 A closed circuit is constructed so that air that has the effect of atmospheric pressure does not enter the air and is blocked from outside air.
As a result, water flow movement due to temperature difference can be expected within the same pressure, so that the heat exchanger is directly pumped into the casing 1 and heat is exchanged so that the groundwater is not directly discharged to the outside. It is also possible to facilitate heat transfer.

その結果、単一の帯水層の上場(上部)から地下水を吸水し、放熱して温度が下がった地下水を下場(下部)に排水することができ、温度差が生じることにより、排水された低温部分は帯水層の下部を這うように、流れ方向に移動し、温度のある上場の地下水が、遮水管の上場に入り込むように成る。 As a result, groundwater can be absorbed from the listing (upper part) of a single aquifer, and groundwater whose temperature has decreased due to heat dissipation can be drained to the lower part ( lower part) . The low-temperature part moves in the flow direction so as to crawl the lower part of the aquifer, so that the listed groundwater with temperature enters the listing of the impervious pipe.

下記に、前記した地中装置のボーリング施工手順などについて説明する。
(1)各都道府県の土木地質調査の記録(ホームページ等で一般的に公開されているとこ
ろもある)などから、目的地に一番近い過去調査書などの資料に基づいて、有効な
帯水層となる浸透性の地質(砂礫・砂・粗砂・小石・砂利)を分析し、層の深さな
ど考慮しながらボーリング深度を決定する。50m、75m、100m、150m
等、必要に応じてそれ以上の深度で、凡その帯水層を予測する。又、ケーシングの
口径は地下水の必要循環量に応じて100mm、125mm、150mm、200
mm、300mmから適宜選択する。

(2)深度を決めながら掘削を開始し、掘削深度により変化してくる、コア(掘削した際
の土、砂、石、砂利等の排出されてきた削りカス)の量、大きさ、深さなどにより
、層の地質を確認、検収しながら柱状図、検層図を作成する。

(3)ボーリング中は土質により掘削穴が崩れないように、ベットナイト(潤滑・遮水用
の専用材料)を混入して、遮水しながら予定深度まで掘削を進める。

(4)予定深度まで掘削した後、速やかに電流計測装置等により、各層の掘削時の検層と
の修正を施し、深度に対しての地層の分布を把握し、有効帯水層の確定をする。

(5)確定した帯水層の位置決めをし、それに合わせて帯水層の深さ以上に上下に各々1
〜2m長めにスリット6aが入ったストレーナ部6を有したケーシング1をケーシ
ング1に位置決め連結して挿入準備をする。

(6)ボーリング後に(4)〜(5)の作業は同日に同時進行する位に速やかに行なわな
ければ、掘削坑が崩れるので、速やかに(5)のケーシングを挿入する。

(7)ケーシング挿入後、掘削時のベッドナイト交じりの泥水を排出させながら、帯水
層の地下水の濁りがおさまるまで地下水を排出する。ベッドナイトが抜けきれ、地
下水の揚水状態が目的水量までの出水能力が有るか確認しながら、一定量排出させ
帯水層内に水中ドーム(仮称)が形成されて行く効果を期待しながら井戸を洗う。
(帯水層とケーシング内面やスリット部分の目地に挟まっている砂・泥・ベットナ
イトなどを洗い流すためと、その帯水層の水量が安定することを確認する)

(8)(7)の行程を経て、暫定的に必要以上の揚水量を出せるテスト用の水中ポンプを
入れ、揚水水位(循環ではないので汲み上げ時には水位が下がるので、どこまで下
がるかの位置)と、自然水位(地圧、地下水圧などの水柱圧力と大気圧の均衡が取
れた位置)の深さを調査し、地上に設置するポンプか水中ポンプの仕様の選定をす
る。

(9)(8)の結果により、揚水水位がGLから−7mより更に低くなる場合は水中ポンプ
、−7mより高い場合は、設計水量が間に合う範囲で地上設置のポンプを選定する
。これらの選定により、地上ポンプ(水中ポンプでもケーシング内径が125mm
以上の場合は同様)が選定される場合は、帯水層の中心部に長さが3〜4m程度の
遮水管4(遮水管の長さの目安は帯水層の深さの略1/3〜1/4)を設置し、遮
水管の位置の調整が出来る様に遮水管4の下端に連通された還管の先がケーシング
の底に着かないように上下の調整余裕を持たせる。その還管の周壁には排水用
のスリット3aが形成されている(図2参照)。

(10)遮水管4より上側で揚水水位より深い位置に往管2の吸い口(又はケーシング内径
が125mm以上の場合は水中ポンプ)を配置し、往管2、還管3が並行に地上の
地上設備16に向かうが、ケーシング1上端の密閉蓋5は密閉状態で、往管2、還
管3のケーシングの外部に出る接続部分は密閉を維持できる接続構造とし、空気
の進入を防ぎ、地上設備16との接続も同じく、全体が密閉回路を構成する(図1
、図3参照)。

(11)ケーシング1の内径が100mmの場合は、水中ポンプの外径が97mm位なので
、該ケーシング1の内面と水中ポンプ10外周面との隙間が殆どなく、そのために
還管3を前記隙間を通して下方に案内することはできない。そこで、この場合は、
遮水管4の下に水中ポンプ10が配置され、遮水管4より上側に還管を位置させ
、水中ポンプ10と遮水管4と連通された管が、往管2となり、(10)とは反対方
向に循環される。
しかし往管2、還管3の役割は同じで、並行に地上の地上設備16に向かう。(10
)と同様である(図4参照)。
Below, the boring construction procedure etc. of the above-mentioned underground apparatus are demonstrated.
(1) Based on the records of civil engineering geological surveys of each prefecture (some of which are publicly available on the website, etc.) Analyze the permeable geology (sand gravel, sand, coarse sand, pebbles, gravel) that forms the water layer, and determine the drilling depth while considering the depth of the layer. 50m, 75m, 100m, 150m
Etc. Predict the aquifer at a greater depth if necessary. Also, the diameter of the casing is 100mm, 125mm, 150mm, 200 depending on the required amount of groundwater circulation.
It selects from mm and 300 mm suitably.

(2) The excavation is started while determining the depth, and the amount, size and depth of the core (scraps discharged from the excavated soil, sand, stone, gravel, etc.) that change according to the excavation depth. By checking the geology of the stratum and checking it, etc., create a columnar figure and a well log.

(3) During drilling, bet knight (a dedicated material for lubrication and water shielding) is mixed so that the excavation hole does not collapse due to the soil, and drilling is proceeded to the planned depth while blocking water.

(4) After excavating to the planned depth, promptly correct it with the logging at the time of excavation by current measurement device, etc., grasp the distribution of the stratum with respect to the depth, and determine the effective aquifer. To do.

(5) Position the confirmed aquifer and adjust the depth of the aquifer above and below the aquifer depth accordingly.
The casing 1 having the strainer portion 6 with the slit 6a having a length of ˜2 m is positioned and connected to the casing 1 to prepare for insertion.

(6) If the operations of (4) to (5) are not performed promptly at the same time on the same day after boring, the excavation pit will collapse, so the casing 1 of (5) is inserted promptly.

(7) After inserting the casing 1 , drain the groundwater until the turbidity of the aquifer has subsided while draining the muddy water mixed with bed night during excavation. While confirming whether bed nights can be removed and the groundwater pumping capacity has the capacity to discharge to the target amount of water, a certain amount of water is discharged and the well is expected to produce an underwater dome (tentative name) in the aquifer. Wash.
(Confirm that the amount of water in the aquifer is stable in order to wash away sand, mud, bed nuts, etc. sandwiched between the aquifer and the inner surface of the casing and the joints of the slits.)

(8) After the process of (7), insert a test submersible pump that can temporarily provide more pumping than necessary, and the pumping water level. ) And the depth of the natural water level (position where the water column pressure such as ground pressure and groundwater pressure is balanced) and the atmospheric pressure are selected, and the specifications of the pump installed on the ground or the submersible pump are selected.

(9) From the results of (8), select a submersible pump if the pumped water level is lower than -7m from GL, and if it is higher than -7m, select a pump installed on the ground within the range of the design water volume. With these selections, ground pumps (inner pumps with a casing inner diameter of 125 mm
If the same applies to the above case, the water shielding pipe 4 having a length of about 3 to 4 m in the center of the aquifer (the length of the water shielding pipe is approximately 1 / the depth of the aquifer). 3 to 1/4) is installed, and the tip of the return pipe connected to the lower end of the water shielding pipe 4 is the casing so that the position of the water shielding pipe 4 can be adjusted.
Provide a vertical adjustment margin so as not to reach the bottom of 1 . A slit 3a for drainage is formed on the peripheral wall of the return pipe 3 (see FIG. 2).

(10) Place the suction port of the outgoing pipe 2 (or a submersible pump if the casing inner diameter is 125 mm or more) above the water shielding pipe 4 and deeper than the pumped water level, and the outgoing pipe 2 and the return pipe 3 are Heading to the ground facility 16 , the sealing lid 5 at the upper end of the casing 1 is in a sealed state, and the connection part of the outgoing pipe 2 and return pipe 3 that goes outside the casing 1 has a connection structure that can maintain the sealing, preventing the ingress of air, The connection with the ground equipment 16 similarly constitutes a closed circuit (FIG. 1).
FIG. 3).

(11) When the inner diameter of the casing 1 is 100 mm, since the outer diameter of the submersible pump is about 97 mm, there is almost no gap between the inner surface of the casing 1 and the outer peripheral surface of the submersible pump 10, and therefore the return pipe 3 is passed through the gap. It cannot be guided down. So in this case,
The submersible pump 10 is arranged under the impermeable pipe 4, the return pipe 2 is positioned above the impermeable pipe 4, and the pipe connected to the submersible pump 10 and the impermeable pipe 4 becomes the outgoing pipe 2. It is circulated in the opposite direction.
However, the roles of the outgoing pipe 2 and the return pipe 3 are the same, and go to the ground equipment 16 on the ground in parallel. (Ten
) (See FIG. 4).

前記した実施形態は、単一の有効な帯水層において吸水、排水を行なう構成であるが、1本の井戸で同時に地中の深度の異なる複数の各単一の帯水層を利用する構成とすることもできる。
以下、その構成を図6および図7に基づいて簡単に説明する。
1本のケーシング1内に、3個の遮水管11、12、13を前記の実施形態と同様に挿入配置し、最上位の遮水管11は上層の単一の帯水層A内に位置させ、最下位の遮水管13は下層の単一の帯水層B内に位置させ、更に真中の遮水管12は上層の単一の帯水層Aと下層の単一の帯水層Bとの間の不透水層C内に位置させる。真中の遮水管12は、上層の単一の帯水層Aと下層の単一の帯水層Bの地下水が干渉しないように遮水するためのものである。
そして、上層の単一の帯水層A内に配置した遮水管11には、下層の単一の帯水層B内に配置した遮水管13の往管2Bと還管3Bが貫通して配管されると共に、該遮水管11の下端に往管2Aが接続されている。
又、不透水層C内に配置した遮水管12には、下層の帯水層B内に配置した遮水管13の往管2Bと還管3Bが貫通して配管されている。
更に、下層の単一の帯水層B内に配置した遮水管13には、往管2Bのみが接続されている。
In the above-described embodiment, water absorption and drainage are performed in a single effective aquifer. However, a single well uses a plurality of single aquifers having different depths in the ground at the same time. It can also be.
The configuration will be briefly described below with reference to FIGS.
In the same casing 1, three impermeable pipes 11, 12, and 13 are inserted and arranged in the same manner as in the above embodiment, and the uppermost impermeable pipe 11 is positioned in a single upper aquifer A. The lowermost water shield 13 is located in the lower single aquifer B, and the middle water shield 12 is formed between the upper single aquifer A and the lower single aquifer B. It is located in the impermeable layer C between. The middle impermeable pipe 12 is for shielding the groundwater of the upper single aquifer A and the lower single aquifer B so as not to interfere with each other.
And, in the impermeable pipe 11 arranged in the upper single aquifer A, the outgoing pipe 2B and the return pipe 3B of the impermeable pipe 13 arranged in the lower single aquifer B penetrate the piping. In addition, the outgoing pipe 2 </ b> A is connected to the lower end of the water shielding pipe 11.
In addition, the impermeable pipe 12 disposed in the impermeable layer C is provided with an outgoing pipe 2B and a return pipe 3B of the impermeable pipe 13 arranged in the lower aquifer B.
Furthermore, only the forward pipe 2 </ b> B is connected to the water shielding pipe 13 disposed in the single lower aquifer B.

そして、前記構成により、1本の井戸の中で地下水温度が13℃前後の有効な深度が異なる単一の帯水層(比較的浅い深度100m以内)と、更に深度の深い地下水温度が20℃以上(30〜50℃でもよい)の有効な単一の帯水層Bの水脈を、地上設備16において地下水温度の低い温域で利用する時期と高い温域で利用する時期を異にして使用する場合、或いは温度差を利用する設備などの二極化、またはそれ以上の複数利用が可能となる。 And by the said structure, the single aquifer A (within a comparatively shallow depth of less than 100 m) in which the effective depth in which a groundwater temperature is around 13 degreeC in one well differs, and a deeper groundwater temperature is 20 The time when the effective single aquifer B having a temperature higher than or equal to 0 ° C. (or 30 to 50 ° C.) is used in the ground facility 16 in the low temperature range and the high temperature range is different. When it is used, it is possible to use two or more bipolar devices such as a facility that utilizes a temperature difference.

図1〜7に示した前記の各地下装置では、地下水熱を直接地上設備に循環する構成の装置として説明したが、図8は下記の目的理由により、地下水熱を直接地上設備で循環させずに、ケーシング内で水中ポンプを利用して強制循環させ、熱交換器となるパイプラインより熱吸収(熱交換)させた熱媒体(例えば不凍液)を地上設備に循環させて地下水熱を取り出す装置である。 In each of the above-described underground devices shown in FIGS. 1 to 7, it has been described as a device configured to circulate groundwater heat directly to the ground facility. However, FIG. 8 does not circulate groundwater heat directly in the ground facility for the following purpose. In addition, a heat medium (for example, antifreeze) that has been forcedly circulated in the casing 1 using a submersible pump and absorbed (heat exchanged) from a pipeline serving as a heat exchanger is circulated to the ground facility to extract groundwater heat. It is.

1.地上設備において、地下水の成分上、直接熱媒体として使用に耐え難い場合もある。例えば鉄分、硫黄分が多すぎて、冷水利用のファンコイルの細い銅管を腐蝕、酸化させて目詰まり、劣化等で耐用年数を短くしてしまう虞れがある。
2.融雪システムに利用する場合、必要温度に達しない地下水温度の場合、地上設備で直接利用すると、凍結の可能性があるとすれば、先に不凍液を熱媒体にして熱交換した方が安全である。
3.地上に熱交換器をおくよりも最短距離で熱交換できるので、熱ロスを防げることと、地上設備に熱交換器のスペースをはぶける。
4.各都道府県の地盤沈下、公害規制などにより「地下水の汲み上げ規制」のある地域において、その地下水を全く地上に汲み上げずに対応できる。即ち、揚水しないで地下ケーシング内だけで循環させ、熱交換できることにより、規制に関わらない、地下水熱の利用方法となる。
5.熱交換器となるパイプラインが地上設備と連通するので、直接地下水が循環するわけではないので、帯水層内の地下水圧・地圧などに影響しないため、この場合の地上設備は必ずしも密閉回路でなくとも、半密閉・若しくは開放回路でもどちらでも有効利用できる。
1. In ground facilities, it may be difficult to withstand use as a direct heat medium due to the components of groundwater. For example, there are too many iron and sulfur components, and the thin copper tube of the cold water-based fan coil may be corroded and oxidized, resulting in clogging and deterioration, which may shorten the service life.
2. When used for snow melting systems, if the groundwater temperature does not reach the required temperature, if it is possible to freeze if used directly on the ground equipment, it is safer to exchange heat using antifreeze as a heat medium first. .
3. Heat can be exchanged in the shortest distance than placing a heat exchanger on the ground, so heat loss can be prevented and space for heat exchangers on the ground equipment.
4). In areas where there are “groundwater pumping regulations” due to land subsidence and pollution regulations of each prefecture, it is possible to respond without pumping the groundwater to the ground at all. That is, it is possible to circulate only in the underground casing without pumping, and to exchange heat, thereby making it possible to use groundwater heat regardless of regulations.
5). Since the pipeline that serves as a heat exchanger communicates with the ground equipment, groundwater does not circulate directly, so it does not affect the groundwater pressure and ground pressure in the aquifer. Even if it is not, it can be used effectively in either a semi-sealed or open circuit.

以下、図8について簡単に説明する。尚、前記実施例で示したと同じ構成要素については同一の符号を付し、その説明を省略する。
前記の実施例で示したケーシング1内の遮水管4上部に、熱交換器14のパイプライン14’を挿入配置し、そのパイプライン14’を地上設備16に連通接続する。そして、そのパイプライン14’内には媒体液(例えば不凍液)を注入し、地上設備16で放熱した後、ケーシング内の熱交換器14の下部より入り熱交換されながら上昇し、地上設備16への循環行程を行なう。
強制対流装置17は、熱交換器14より上方位置に水中ポンプ10が付設され、単一の帯水層の上部の地下水が、ケーシングのストレーナ部6より流入し、熱交換器14の隙間を通り、熱交換しながら上部水中ポンプ10に強制的に吸い込まれ、水中ポンプ10の出口に連通され下部に向かって折り返した還管15を通り、更に連通されている遮水管4を通り、還管15のスリットよりケーシングのストレーナ部6より排水される。
このような構成の地下装置によれば、ケーシング1内だけでの水中ポンプ10の運転による熱交換のために、水流の速度は速く、熱交換は容易となり、地下水もケーシング内だけに留まっていることになるので、空気にも触れず、且つ流失も無く汚染も地盤沈下の心配もない地下水熱利用設備における地中装置を提供できる。
Hereinafter, FIG. 8 will be briefly described. In addition, the same code | symbol is attached | subjected about the same component as shown in the said Example, and the description is abbreviate | omitted.
The pipeline 14 ′ of the heat exchanger 14 is inserted into the upper portion of the water shielding pipe 4 in the casing 1 shown in the above embodiment, and the pipeline 14 ′ is connected to the ground facility 16. Then, a medium liquid (for example, an antifreeze liquid) is injected into the pipeline 14 ′ and radiated by the ground facility 16, and then enters the lower portion of the heat exchanger 14 in the casing 1 and rises while being heat-exchanged. The circulation process to is performed.
In the forced convection device 17, the submersible pump 10 is attached above the heat exchanger 14, and the groundwater above the single aquifer flows from the strainer portion 6 of the casing 1 , and the gap of the heat exchanger 14 is removed. The water is forcibly sucked into the upper submersible pump 10 while exchanging heat, passes through the return pipe 15 communicated with the outlet of the submersible pump 10 and turned back toward the lower part, and further passes through the water shielding pipe 4 communicated with the return pipe. Water is drained from the strainer portion 6 of the casing 1 through the 15 slits.
According to the underground apparatus having such a configuration, the heat flow is fast and the heat exchange is easy because of the heat exchange by the operation of the submersible pump 10 only in the casing 1, and the groundwater stays only in the casing 1 . Therefore, it is possible to provide an underground apparatus in a groundwater heat utilization facility that does not touch air, does not flow out, and is free from contamination and ground subsidence.

本発明に係る地中装置の一例を示す地下水熱利用設備の全体概略図。BRIEF DESCRIPTION OF THE DRAWINGS The whole schematic of the groundwater heat utilization equipment which shows an example of the underground apparatus which concerns on this invention. (a)は図1の遮水管の付近の拡大図、(b)はケーシングに対する遮水管の挿入状態を示す説明図。(A) is an enlarged view of the vicinity of the water shielding pipe of FIG. 1, (b) is an explanatory view showing an insertion state of the water shielding pipe with respect to the casing. ケーシングの内径が125mm以上で、遮水管より上方に位置する往管の下端に水中ポンプを接続した形態を示す全体概略図。The whole schematic diagram which shows the form which connected the submersible pump to the lower end of the outgoing pipe which has an internal diameter of a casing of 125 mm or more and is located above a water shielding pipe. ケーシングの内径が100mmで、遮水管の下に水中ポンプを連結して往管を構成し、還管を遮水管の上側に配置した全体概略図。An overall schematic diagram in which an inner diameter of a casing is 100 mm, a submersible pump is connected under a water shielding pipe to form an outgoing pipe, and a return pipe is disposed above the water shielding pipe. (a)は図4の遮水管と水中ポンプの取り合いの拡大図、(b)は遮水管に連結された水中ポンプをケーシングに挿入する状態を示す説明図。(A) is an enlarged view of the connection between the water shielding pipe and the submersible pump in FIG. 4, and (b) is an explanatory view showing a state in which the submersible pump connected to the water shielding pipe is inserted into the casing. 1本のケーシング(井戸)で、深度を異にする複数の帯水層の地下水を利用する地下水熱利用設備の全体概略図。1 is an overall schematic diagram of a groundwater heat utilization facility that uses groundwater of a plurality of aquifers having different depths in one casing (well). (a)は図6の部分拡大図、(b)は遮水管に対する往管、還管の配管状態を示す一部切欠拡大図。(A) is the elements on larger scale of FIG. 6, (b) is a partially notched enlarged view which shows the piping state of the outgoing pipe with respect to a water-impervious pipe, and a return pipe. ケーシング内に強制対流装置と熱交換器を挿入配置した他の実施例を示す地中装置の全体概略図。The whole schematic diagram of the underground apparatus which shows the other Example which inserted and arranged the forced convection apparatus and the heat exchanger in the casing.

符号の説明Explanation of symbols

A,B…帯水層 C…不透水層
1…ケーシング 2,2B…往管
3,3B…還管 4,11,12,13…遮水管
5…密閉蓋 6…ストレーナ部
7…遮水材 8…真空ポンプ
10…水中ポンプ 4…熱交換器
16…循環密閉回路式地上設備
A, B ... Aquifer C ... Impervious layer
DESCRIPTION OF SYMBOLS 1 ... Casing 2, 2B ... Outgoing pipe 3, 3B ... Return pipe 4, 11, 12, 13 ... Impermeable pipe
5 ... Sealing lid 6 ... Strainer section
7 ... Water shielding material 8 ... Vacuum pump
10 ... Submersible pump 4 ... Heat exchanger
16 ... Circulating closed circuit type ground equipment

Claims (5)

地中の所定深度に存在する水脈に達するようにケーシング(1)を植設せしめ、このケーシング(1)内にそれぞれ挿入配置される往管(2)と還管(3)を介して接続される循環密閉回路式地上設備(16)に地下水熱を循環供給するように地中に構築される地下水熱利用設備における地中装置であって、
前記ケーシング(1)は、密閉上端を地表又は地中所定深度まで没入させた状態で地中に挿入植設され、地中の所定深度に存在する単一の帯水層に対応する上下長さ方向の所定位置の周壁に吸・排水用の開口を有するストレーナ部(6)を備え、
前記ストレーナ部(6)は、前記単一の帯水層の上下端よりそれぞれ突出する開口長さ範囲で前記ケーシング(1)に形成されてなり、
前記ストレーナ部(6)の前記開口長さ範囲内に前記ケーシング(1)の内部を上下に分断するための遮水管(4)を配設して、該遮水管(4)より上方の前記ケーシング(1)内の上部空間内に前記往管(2)の吸い口または還管(3)の出口の何れか一方を位置させ、他方を前記遮水管(4)より下方の下部空間内に位置させたことを特徴とする地下水熱利用設備における地中装置。
The casing (1) is planted so as to reach a water vein existing at a predetermined depth in the ground, and is connected via an outgoing pipe (2) and a return pipe (3) respectively inserted and arranged in the casing (1). An underground device in a groundwater heat utilization facility constructed in the ground so as to circulate and supply groundwater heat to the circulating closed circuit type ground facility (16) ,
The casing (1) is inserted and planted in the ground with the sealed upper end immersed to the ground surface or a predetermined depth in the ground, and has a vertical length corresponding to a single aquifer existing at a predetermined depth in the ground. A strainer portion (6) having an opening for suction and drainage on a peripheral wall at a predetermined position in the direction;
The strainer portion (6) is formed in the casing (1) with an opening length range protruding from the upper and lower ends of the single aquifer,
The casing above the water shield pipe (4) is provided with a water shield pipe (4) for dividing the inside of the casing (1) vertically within the opening length range of the strainer section (6). (1) Either one of the outlet of the forward pipe (2) or the outlet of the return pipe (3) is positioned in the upper space inside, and the other is positioned in the lower space below the water shielding pipe (4). An underground device in a groundwater heat utilization facility characterized by having been made .
前記遮水管(4)を前記還管(3)に連結させて、前記循環密閉回路式地上設備(16)で熱交換された戻り地下水が前記遮水管(4)内を通して前記下部空間内に位置する前記還管(2)の出口から前記単一の帯水層に戻し排水されるように成し、前記往管(2)の吸い口を、前記上部空間における前記ストレーナ部(6)の前記開口長さ範囲内に位置させたことを特徴とする請求項1に記載の地下水熱利用設備における地中装置。 By connecting the water shielding pipe (4) to the return pipe (3), the return groundwater heat-exchanged by the circulating sealed circuit type ground facility (16) is located in the lower space through the water shielding pipe (4). The outlet of the return pipe (2) is drained back to the single aquifer, and the outlet of the forward pipe (2) is connected to the strainer section (6) in the upper space. The underground apparatus in the facility for utilizing groundwater heat according to claim 1, wherein the underground apparatus is located within an opening length range . 前記往管(2)の前記吸い口に水中ポンプ(10)が接続されていることを特徴とする請求項2に記載の地下水熱利用設備における地中装置。 The underground apparatus in the groundwater heat utilization facility according to claim 2, wherein a submersible pump (10) is connected to the suction port of the outgoing pipe (2) . 前記往管(2)の吸い口を、前記遮水管(4)より下方の前記下部空間に位置させて当該吸い口に前記遮水管(4)を介して水中ポンプ(10)を接続し、前記還管(3)の出口を前記遮水管(4)より上方の前記上部空間に位置させたことを特徴とする請求項1に記載の地下水熱利用設備における地中装置。 The outlet of the outgoing pipe (2) is positioned in the lower space below the water shielding pipe (4), and the submersible pump (10) is connected to the suction mouth via the water shielding pipe (4), The underground apparatus in the groundwater heat utilization facility according to claim 1 , wherein an outlet of the return pipe (3) is positioned in the upper space above the water shielding pipe (4) . 地中の深度の異なる複数の各単一の帯水層(A,B)がそれぞれ存在する位置に対応させた前記ケーシング(1)の上下長さ方向の周壁に、前記ストレーナ部(6)をそれぞれ備えるとともに、各ストレーナ部(6)が開口するそれぞれの開口長さ範囲内に前記ケーシング(1)の内部をそれぞれ上下に分断する遮水管(11,12,13)をそれぞれ配置し、かつ、各遮水管(11,12,13)より上方の上部空間内に前記各単一の帯水層(A,B)の地下水を吸水する往管(2B)の吸い口または各単一の帯水層(A,B)に地下水を戻す還管(3B)の出口の何れか一方をそれぞれ位置させ、他方を前記各遮水管(11,12,13)より下方の下部空間内にそれぞれ位置させたことを特徴とする請求項1に記載の地下水熱利用設備における地中装置。 The strainer portion (6) is provided on the peripheral wall in the vertical length direction of the casing (1) corresponding to the position where each of a plurality of single aquifers (A, B) having different depths exists. A water shielding pipe (11, 12, 13) that divides the inside of the casing (1) vertically into each opening length range in which each strainer portion (6) opens, and Outlet (2B) inlet or each single aquifer that absorbs the groundwater of each single aquifer (A, B) into the upper space above each impermeable pipe (11, 12, 13) Either one of the outlets of the return pipe (3B) for returning the groundwater to the layers (A, B) is located, and the other is located in the lower space below each of the water shielding pipes (11, 12, 13). in groundwater heat utilization equipment according to claim 1, characterized in that Medium apparatus.
JP2005374917A 2005-12-27 2005-12-27 Underground equipment in groundwater heat utilization facilities Active JP4485465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374917A JP4485465B2 (en) 2005-12-27 2005-12-27 Underground equipment in groundwater heat utilization facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374917A JP4485465B2 (en) 2005-12-27 2005-12-27 Underground equipment in groundwater heat utilization facilities

Publications (2)

Publication Number Publication Date
JP2007177434A JP2007177434A (en) 2007-07-12
JP4485465B2 true JP4485465B2 (en) 2010-06-23

Family

ID=38302887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374917A Active JP4485465B2 (en) 2005-12-27 2005-12-27 Underground equipment in groundwater heat utilization facilities

Country Status (1)

Country Link
JP (1) JP4485465B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341482B2 (en) * 2008-11-13 2013-11-13 東邦地水株式会社 Groundwater heat exchange method and groundwater heat exchange equipment
JP5314394B2 (en) * 2008-11-27 2013-10-16 千秋ボーリング株式会社 Geothermal and hot spring heat collection and recovery equipment
JP6998593B2 (en) * 2018-03-02 2022-01-18 株式会社リビエラ Groundwater traffic device
JP6681059B2 (en) * 2018-09-14 2020-04-15 三浦 克志 Heat conversion device in pumping well
CN114198036B (en) * 2021-11-29 2023-10-31 中海石油(中国)有限公司 Flushing head, negative pressure sand flushing device with flushing head and use method of negative pressure sand flushing device
KR102561407B1 (en) * 2022-11-23 2023-07-28 박영우 Heating and cooling system using heat exchanged hydrothermal energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448237A (en) * 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
JP2002054856A (en) * 2000-08-10 2002-02-20 Sekisui House Ltd Heat pump system utilizing underground water
JP2003307089A (en) * 2002-04-16 2003-10-31 Ariga Sakusen Kogyo:Kk Underground heat intake hole with inside of hole divided
JP2004271129A (en) * 2003-03-11 2004-09-30 Tone Boring Co Ltd Underground heat exchange system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521702A (en) * 1975-06-24 1977-01-07 Kyoritsu Pump Seisakusho:Kk Forced lift water method
JPS57104051A (en) * 1980-12-19 1982-06-28 Kanji Suzuki Collection and returning of geothermal energy
JP3008322B2 (en) * 1992-09-09 2000-02-14 清水建設株式会社 Well stratified pumping and injection system
JP3338909B2 (en) * 1994-01-19 2002-10-28 清水建設株式会社 Layered pumping well
JP3375474B2 (en) * 1995-11-10 2003-02-10 地熱技術開発株式会社 Heat pump air conditioning system using underground thermal convection layer
JP3600992B2 (en) * 1996-04-10 2004-12-15 清水建設株式会社 Heat pump equipment using groundwater as heat source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448237A (en) * 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
JP2002054856A (en) * 2000-08-10 2002-02-20 Sekisui House Ltd Heat pump system utilizing underground water
JP2003307089A (en) * 2002-04-16 2003-10-31 Ariga Sakusen Kogyo:Kk Underground heat intake hole with inside of hole divided
JP2004271129A (en) * 2003-03-11 2004-09-30 Tone Boring Co Ltd Underground heat exchange system

Also Published As

Publication number Publication date
JP2007177434A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4485465B2 (en) Underground equipment in groundwater heat utilization facilities
US9611608B2 (en) Zone freeze pipe
JP5731127B2 (en) Geothermal utilization system
KR101238454B1 (en) Enclosed upper guard return head unit for open underground heat exchanger
KR101944023B1 (en) Complex underground thermal exchanger using ground water tube well
JP2005207718A (en) Snow melting device utilizing soil heat
KR102090954B1 (en) Geothermal heat exchanging system using automatic control device for underground water extraction
CN111699349A (en) Geothermal heat exchanger, geothermal heat device and method for injecting thermal energy into the ground
US10401057B2 (en) Induced groundwater flow closed loop geothermal system
KR100576394B1 (en) A heat exchanging system of underground energy having a water-replenishment unit
JP2012215377A (en) Underground heat exchange system and installing method of heat exchange well
JP5314394B2 (en) Geothermal and hot spring heat collection and recovery equipment
KR101511198B1 (en) Method for punching digging hole for heat exchanger having a type of soaking in underground water and structure of digging hole the same
KR20200001038A (en) Semi open type geothemal system
KR20180133579A (en) Heat pump system using geothermal energy and controlling apparatus contrl
KR20160065502A (en) Geothermal heat exchange system using heat storage-tank of vertical pipe
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
KR101220897B1 (en) equipment for exchanging terrestrial heat
KR101606830B1 (en) Tube Well-type Heat Exchanger for Heat Pump System
JP2015148415A (en) Groundwater resource recovery system
KR102151268B1 (en) Combined wells geothermal system and performance estimation method therefor
JP6303361B2 (en) Thermal well and snow melting method
KR20170031441A (en) Open type ground heat exchanger having adapting chamber for ground water supply
JP2021131223A (en) Geothermal heat utilization device and method for using the same
KR20160148268A (en) Underground heat exchange apparatus using multiple well and improved pour power

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4485465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250