JPS5824762A - Extracting method of heat energy from underground water - Google Patents

Extracting method of heat energy from underground water

Info

Publication number
JPS5824762A
JPS5824762A JP56123797A JP12379781A JPS5824762A JP S5824762 A JPS5824762 A JP S5824762A JP 56123797 A JP56123797 A JP 56123797A JP 12379781 A JP12379781 A JP 12379781A JP S5824762 A JPS5824762 A JP S5824762A
Authority
JP
Japan
Prior art keywords
water
groundwater
aquifer
underground water
heat energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56123797A
Other languages
Japanese (ja)
Inventor
Shinichi Adachi
安達 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56123797A priority Critical patent/JPS5824762A/en
Publication of JPS5824762A publication Critical patent/JPS5824762A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To separate and extract only heat energy from underground water caused to move in the form of underground water stream without being exposed directly to open air by a method wherein a tectonic portion satisfying with a certain specific condition is bored in order to artificially connecting between respective water-bearing strata. CONSTITUTION:A main tube body 2 equipped with gate holes 21-23 for underground water stream consisting of a large number of small holes respectively at the locations corresponding to the water-bearing strata S1-S3 is inserted throughout the water-bearing strata S1-S3, which are separated by impermeable strata R1-R3 and have different water heads and water temperatures with one another. In addition, shut-off structures 3 are formed between the main tube body 2 and bored hole 1 so as to prevent the respective water-bearing strata from short-circuiting one another. Furthermore, a guide tube 4 is inserted in the interior of the main pipe body 2 and a packer 5 for preventing short-circuiting. A closing cover 6 is fitted on the upper opening of the main tube body 2 and the end of a thermal good conductor extending from a heat energy extracting device M, for example of a heat pipe, is arranged to the cover 6. Accordingly, natural underground water stream is generated and only heat energy moving with the stream is extracted.

Description

【発明の詳細な説明】 ゛この発明は、地下水から熱エネルギーを採取するため
の極めて新規な熱エネルギー採取方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extremely novel thermal energy extraction method for extracting thermal energy from groundwater.

陸地部分に存在する水の中で、氷として凍結しているも
の(75%以上)を除けば、その大部分の22%程度の
水は地下水としゝて存在している。
Of the water that exists on land, excluding what is frozen as ice (more than 75%), the majority of water, about 22%, exists as groundwater.

この地下水は、地殻構造によって様々な態様で存在する
が、一般には、降水や河川、湖沼から供給される帯水層
中の地下水層を形成する。
This groundwater exists in various forms depending on the crustal structure, but generally forms a groundwater layer in an aquifer supplied from precipitation, rivers, and lakes.

この帯水層が数枚の不透水層を含む一連の地殻構造内に
存在する場合には、上下の不透水層間の地下水が被圧帯
水層を形成し、各帯水層の水頭圧(静水圧ともいう)な
らびに水温は夫々独立した別個の値を示すものとなる。
If this aquifer exists within a series of crustal structures containing several impermeable layers, the groundwater between the upper and lower impermeable layers forms an artesian aquifer, and the hydraulic head pressure of each aquifer ( Hydrostatic pressure (also called hydrostatic pressure) and water temperature each exhibit independent and distinct values.

このような状態で存在する地下水は、通常、所定深度の
帯水層まで達する井戸ないしは管体を設け、それら井戸
ないしは管体の通過する帯水層からまとめて地下水とし
て汲み上げ、その汲み上げた水の保有する熱エネルギー
を取り出した後、そのまま地上に放出するか、あるいは
、ポンプ等によって強制的に地下に環元する等して地下
水から熱エネルギーを採取していた。しかしながら、こ
れら従前までの方法では、まず、地下水を汲み上げるた
めに相当の動力エネルギーを必要とすること、また、地
下水汲み上げによる地殻構造への影響を配慮しなければ
ならず、その為に地下環元法を採用した場合、余計な経
費を必要とすること等から、必ずしも効率の良い熱エネ
ルギー採取方法とする訳にはいがなかった。
Groundwater that exists in such a state is usually obtained by installing wells or pipes that reach an aquifer at a certain depth, and pumping up all of the water from the aquifer that the well or pipe passes through as groundwater. After extracting the retained thermal energy, the thermal energy was extracted from groundwater either by releasing it directly above ground, or by forcing it underground with a pump or the like. However, with these conventional methods, first of all, a considerable amount of power energy is required to pump up groundwater, and the impact of pumping groundwater on the crustal structure must be taken into consideration. If this method were adopted, it would not necessarily be an efficient method of extracting thermal energy, as it would require extra costs.

この発明は、それら従前までの地下水からの熱エネルギ
ー採取方法の非効率さ等番と対処すべくして鋭意開発研
究の結果到達し得た極めて新規且つ有用な方法であって
、以下において詳述するとおりの構成からなるものであ
る。
This invention is an extremely novel and useful method that was achieved as a result of intensive research and development in order to address the inefficiency of conventional methods of extracting thermal energy from groundwater, and will be described in detail below. It consists of the following structure.

図面−にも示すこの発明を実施するための代表的な実施
例を参考にしながら説明すると、地表面Eの下方には・
複数の不透水層R1,R2,・・・・・・・・が存在し
、地表面Eに続く不飽和帯Fの下方で不透水層R1の上
方には、まず第1の帯水層S1が形成され、不透水層R
1とR2の間には被圧帯水層S2が、そして、不透水層
R2とR3,同R3とR4・曲・・・・・・・・の間に
は夫々被圧帯水層83.84・・・・・・・・・・・が
形成されている。これら各被圧帯水層相蔦互而は、不透
水層によって隔絶されていて夫々被圧状態となっており
、夫々が異なる水頭圧ならびに水水温値を有することと
なっている。・(被圧状態ではない帯水層S1と被圧帯
水層S2.S3曲曲・間も、当然のことなから水頭圧な
らびに水温値に差異を有する。) このような地殻構造部分を穿穴1して所望の不透水層(
実施例の場合にはR3)まで達する主管体2を挿入する
。この主管体2には、その帯水層Slないし被圧帯水層
82.83・・・・・・・・・・に相当する個所に多数
のスリットか小孔等のような地下水流出入相が設けられ
、最も水頭圧値の高い被圧帯水層部分(実施例ではSa
)ではそれが流入孔幻、それ以外の部分では流出孔ρ、
2′1・・・・・・・・となる。
To explain this with reference to a typical embodiment for carrying out the present invention shown in the drawings, below the ground surface E.
There are a plurality of impermeable layers R1, R2,..., and below the unsaturated zone F following the ground surface E and above the impermeable layer R1, there is a first aquifer S1. is formed, and an impermeable layer R
There is a confined aquifer S2 between 1 and R2, and a confined aquifer 83 between impermeable layers R2 and R3, and between R3 and R4. 84...... is formed. Each of these confined aquifers is separated by an impermeable layer and is in a pressurized state, and each has a different head pressure and water temperature value.・(Of course, there are differences in head pressure and water temperature values between the unpressurized aquifer S1 and the pressurized aquifer S2.S3.) Hole 1 and create the desired impermeable layer (
In the case of the embodiment, the main pipe body 2 reaching up to R3) is inserted. This main pipe body 2 has many slits or small holes in the groundwater inflow/outflow phase at locations corresponding to the aquifer Sl or confined aquifer 82.83. is provided, and the confined aquifer part with the highest hydraulic head pressure value (in the example, Sa
), it is an inflow hole phantom, and in other parts, it is an outflow hole ρ,
2'1......

また、この主管体2と穿穴1との間で、地表面E部分、
不透水層S1.S2・・・・・・・・・・・相当部分に
は、地上と第1の帯水層S1問および各帯水層間が穿入
1内で直接短絡してしまわないようにするための遮断構
造、例えば、セメント充填密封層3が形成されなければ
ならない。
In addition, between this main pipe body 2 and the drilling hole 1, the ground surface E part,
Impermeable layer S1. S2・・・・・・・・・In a considerable part, there is a cutoff to prevent a direct short circuit between the ground and the first aquifer S1 and each aquifer within the penetration 1. A structure, for example a cement-filled sealing layer 3, must be formed.

こうしそ形成され7た主管体2の内部には、最下層にあ
る被圧帯水層(実施例ではSa)の直上に達し、且つ、
主管体1との間に所定の間隙を有する如くした誘導管4
が挿入され、主管体1と該誘導管4との間には、最下層
の被圧帯水層(実施例では83)と直上の被圧帯水層(
実施例では82)とがこの間隙部分の下方において短絡
してしまわないようにした短絡防止パッカー5( が介在される。なお、該誘導管4は、その機能上断熱構
造管で形成することにより、熱エネルギー採取効率を高
めることができる。
The inside of the main pipe body 2 formed in this way reaches directly above the lowermost confined aquifer (Sa in the example), and
Guide pipe 4 having a predetermined gap between it and the main pipe body 1
is inserted, and between the main pipe body 1 and the guide pipe 4, the lowermost confined aquifer (83 in the example) and the immediately above confined aquifer (83) are inserted.
In the embodiment, a short-circuit prevention packer 5 ( ) is interposed to prevent the short-circuit between the guide pipe 82) and the pipe 82 from being short-circuited below this gap. , the thermal energy harvesting efficiency can be increased.

主管体1と誘導管4とが上記の如く配設され−たところ
で主管体1の上方開口部に閉塞蓋6を取り付け、誘導管
4の上方所定位置に該閉塞蓋6が位置する如く計画され
ると共に、この部分には、地上の熱エネルギー採取装置
Mから延びた熱良伝導体7、例えば、ヒートバイブの末
端が配設される。
Once the main pipe body 1 and the guide pipe 4 are arranged as described above, the closing cover 6 is attached to the upper opening of the main pipe body 1, and the block cover 6 is planned to be positioned at a predetermined position above the guide pipe 4. At the same time, the end of a heat conductor 7 extending from the thermal energy harvesting device M on the ground, such as a heat vibrator, is arranged in this part.

なお、図示した実施例では、誘導管4内に補助加速機8
を設けた例としたが、これは、上記したような構成でこ
の発明を実施するに際し、設営場所によっては水頭圧差
が小さす・ぎて自然に発生すべき地下水流の流速に不足
を来たしたり、それなりの地下水流は発生しているもの
のより熱エネルギー採取効率を高める必要のある時等に
、地下水流の流速を補助的に高める装置であって、必要
に応じて採用すれば足りるものである。
In the illustrated embodiment, an auxiliary accelerator 8 is installed inside the guide pipe 4.
However, this is because when implementing this invention with the above-mentioned configuration, the water head pressure difference may be too small depending on the construction location, resulting in insufficient flow velocity of underground water flow that should naturally occur. This is a device that supplementarily increases the flow velocity of groundwater flow when a certain amount of groundwater flow is occurring but it is necessary to further increase the thermal energy extraction efficiency, and it is sufficient to adopt it as necessary. .

上記のようにして帯水層S1ならびに各被圧帯水層間S
2,83.・・・・・・・・・・・・が大気に直接曝さ
れることなく人工的に連結されることにより、帯水層S
1ならびに各被圧帯水層S2.S3・・・・・・・・・
間には夫々の水頭圧に応じた水頭圧差を生ずる。即ち、
図示した実施例で示すならば、最も嵩い水頭圧を示す被
圧帯水層33 (水頭圧値P3)とそれ以外の被圧帯水
層S2・(水頭圧値p2 )ならびに帯水層S1(水頭
圧値PI)との間には、P3− P2ニーQl>O。
As described above, the aquifer S1 and each confined aquifer S
2,83. By artificially connecting ・・・・・・・・・・・・ without being directly exposed to the atmosphere, the aquifer S
1 and each confined aquifer S2. S3・・・・・・・・・
A difference in head pressure is generated between them depending on the respective head pressures. That is,
In the illustrated example, the confined aquifer 33 exhibiting the largest head pressure (head pressure value P3), the other confined aquifers S2 (head pressure value p2), and the aquifer S1 (Hydraulic head pressure value PI), P3-P2 knee Ql>O.

P3−P1=す>0+Q:2−Ql>oという関係の水
頭正値差値を示す。したがって、この水頭圧差に基づき
水頭圧の高、い方から低い方へ向って、即ち、被圧帯水
層S3の地下水が、図中の矢印の如く、人工的に連結−
された経路に従い、まず、流入孔nから主管体2内に流
入して誘導管4内を上昇する。一方、被圧帯水層S2お
よび帯水層81の各地下水も、一端はその水頭圧に応じ
て流出孔η、21から主管体2と誘導管4との間隙を上
・昇しようとするものの、上方を閉塞蓋わで遮られてし
まって行き場の無くなった先の被圧帯水層S3から上昇
してきた地下水に押しやられ、逆にこの地下水が主管体
2と誘導管4との間隙部を下降して流出孔4,22から
帯水層81.82へ流出することとなり、被圧帯水層S
3から被圧帯水層S2および帯水層S1に向う自然な地
下水流が惹起される。この地下水流は、人工的に穿入連
結される個所の地殻構造によって必ずしも一様ではない
が、水頭圧を異にする帯水層と被圧帯水層が重層存在す
る個所である限り、はとんど確実且つ半永久的に発生す
るものであり、必要に応じて採用することもある補助加
速機8に要する人工的なエネルギーを除けば、全て自然
界に存在する位置のエネルギーだけを利用する形で自然
な地下水流を惹起させることができるものである。
P3-P1=su>0+Q:2-Ql>o shows the positive water head difference value. Therefore, based on this head pressure difference, the groundwater in the confined aquifer S3 is artificially connected from the higher to the lower head pressure as shown by the arrow in the figure.
Following the route, it first flows into the main pipe body 2 through the inflow hole n and rises inside the guide pipe 4. On the other hand, the groundwater in the confined aquifer S2 and the aquifer 81 also tries to rise through the gap between the main pipe body 2 and the guide pipe 4 from the outflow hole η, 21 depending on the head pressure. , the groundwater rising from the confined aquifer S3, whose upper part is obstructed by the obstructing cover and has nowhere to go, is pushed away, and conversely, this groundwater flows through the gap between the main pipe body 2 and the guide pipe 4. It descends and flows out from the outflow holes 4 and 22 to the aquifer 81 and 82, and the confined aquifer S
3 to the confined aquifer S2 and the aquifer S1. This groundwater flow is not necessarily uniform depending on the crustal structure of the place where it is artificially penetrated and connected, but as long as there are layers of aquifers and artesian aquifers with different head pressures, the flow will be uniform. This is a form that uses only potential energy that exists in nature, except for the artificial energy required by the auxiliary accelerator 8, which is generated almost reliably and semi-permanently, and may be adopted as necessary. This can induce natural underground water flow.

こうして発生させられた最も高い水頭圧値を示す被圧帯
水層から他の帯水層ならび被圧帯水層への一方通行の地
下水流により、その最も高い水頭圧値を示す被圧帯水層
部分の地下水の保有する熱エネルギーもその地下水流に
よって同時に運ばれてくることから、その中途、図示し
た実施例では閉塞蓋6の下方において熱の良伝導体7に
接触させることにより、その保有する熱エネルギー(地
上部分で必要とする熱エネルギーとしては負の場合と正
の場合とがある。)だけを該地下水流から分離抽出して
地上部分で採取することができる。
The confined aquifer exhibiting the highest hydraulic head pressure value is caused by the one-way groundwater flow from the confined aquifer exhibiting the highest hydraulic head pressure value to other aquifers and to the confined aquifer thus generated. Since the thermal energy possessed by the groundwater in the layered portion is also carried along by the underground water flow, the thermal energy retained by the groundwater is brought into contact with a good thermal conductor 7 midway through the flow, below the closing cover 6 in the illustrated embodiment. It is possible to separate and extract only the thermal energy (the thermal energy required in the above-ground part can be negative or positive) from the underground water flow and collect it in the above-ground part.

叙述のとおり、この発明の地下水からの熱エネルギーの
採取方法は、ある特定の条件を備えた個所の地殻構造部
分を穿入して各帯水層間を人工的に連結させることによ
り、自然界に存在する位置のエネルギー差に基づく地下
水の移動、即ち、地下水流を大気に直接曝すことなく発
生させ、その地下水流から熱エネルギーだけを分離抽出
する如くしたものであることから、まず第一に、熱エネ
ルギー採取のための地下水の汲み上げを必要とせず、し
たがって、地下水汲み上げ動力が全く不要となって経済
的であること。
As described above, the method of extracting thermal energy from groundwater according to the present invention involves penetrating the crustal structure of locations with specific conditions and artificially connecting each aquifer. First of all, the movement of groundwater based on the energy difference between the positions of It is economical because there is no need to pump up groundwater for energy extraction, and therefore no groundwater pumping power is required at all.

また、第二に、地下水の汲み上げをしないことから、地
盤沈下や地下水の涸渇現象を招来する慮れは全くなく、
したがって、地下水利用についての様々な法規制゛に対
してなんらそり配慮を必要としなくなること。第三に、
自然に発生させる地下水流は、直接大気に曝されること
がなく、且つまた、地下水内のガスの発散もないことか
ら、地下水内の化学成分に変化を来す慮れが少なく、シ
たがって、・地下水内にスケール成分等が抽出沈澱する
ことも少なくなり、地下水流は、各帯水層部分および各
施設内において半永久的で円滑な流れとして保障される
こと。更にまた、第四として、この発明を実施するに適
した地殻構造部分は、はとんど全世界の至るところに存
在することから、従来のような火山地帯の特定地域にお
ける高エネルギーの回収方法としてだけではなく、寧ろ
通常の日常生活用に直接使用可能な低エネルギーの採取
方法としてその利用価値が高く、シかも、はとんど無尽
蔵に存在することから、昨今のようなエネルギー危機の
時代に打って付けの熱エネルギー採取方法となり得るこ
と。等々あらゆる点でクリーン且つ理想的な熱エネルギ
ーの採取方法とすることができるものである。
Secondly, since groundwater is not pumped up, there is no possibility of ground subsidence or groundwater depletion.
Therefore, there is no need to give any consideration to various laws and regulations regarding groundwater use. Third,
Naturally generated groundwater flow is not directly exposed to the atmosphere and there is no release of gases in the groundwater, so there is little chance of changing the chemical composition of the groundwater.・The extraction and precipitation of scale components in groundwater will be reduced, and groundwater flow will be guaranteed as a semi-permanent and smooth flow in each aquifer and within each facility. Furthermore, fourthly, since tectonic parts suitable for carrying out this invention exist almost everywhere in the world, conventional high energy recovery methods in specific areas of volcanic areas are not possible. It has high utility value not only as an energy source, but also as a method of extracting low energy that can be used directly for normal daily life, and because it exists in almost inexhaustible quantities, it is especially useful in times of energy crisis such as the current one. It can be an ideal method of harvesting thermal energy. It is a clean and ideal method of harvesting thermal energy in all respects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の詳細な説明するための代表的な実施
例を断面図として図示したものである。 1:穿入、2:主管体、21,22.Z3:地下水流出
入孔、3:セメント充填密封層、4:誘導管、5:短絡
防止バッカー、6:閉塞蓋・7:熱良伝導体、8:補助
加速機、R1,R2,R3:不透水層、Sl:帯水層、
32. S3 :被圧帯水層。
The drawings are cross-sectional views of typical embodiments for explaining the invention in detail. 1: Penetration, 2: Main pipe body, 21, 22. Z3: Groundwater inflow/outflow hole, 3: Cement filled sealing layer, 4: Guidance pipe, 5: Short circuit prevention backer, 6: Closure lid, 7: Good thermal conductor, 8: Auxiliary accelerator, R1, R2, R3: Non-conductor Permeable layer, Sl: aquifer,
32. S3: Confined aquifer.

Claims (1)

【特許請求の範囲】[Claims] 不透水層に隔られて水頭圧ならびに水温値を異にする帯
水層間を大′気に直接曝すことなく人工的に連結し、両
者間の水頭圧差による自然な地下水流を発生させ、地下
水流とともに移動する熱エネルギーだけをヒートパイプ
その他の熱良伝導体によるで該地下水流より分離抽出す
る如くした、地下水からの熱エネルギー採取方法。
Aquifers that are separated by impermeable layers and have different water head pressures and water temperatures are artificially connected without being directly exposed to the atmosphere, and a natural groundwater flow is generated due to the difference in water head pressure between the two, and the groundwater flow is improved. A method for extracting thermal energy from groundwater, in which only the thermal energy that moves along with the groundwater is separated and extracted from the groundwater flow using a heat pipe or other good thermal conductor.
JP56123797A 1981-08-05 1981-08-05 Extracting method of heat energy from underground water Pending JPS5824762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123797A JPS5824762A (en) 1981-08-05 1981-08-05 Extracting method of heat energy from underground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123797A JPS5824762A (en) 1981-08-05 1981-08-05 Extracting method of heat energy from underground water

Publications (1)

Publication Number Publication Date
JPS5824762A true JPS5824762A (en) 1983-02-14

Family

ID=14869542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123797A Pending JPS5824762A (en) 1981-08-05 1981-08-05 Extracting method of heat energy from underground water

Country Status (1)

Country Link
JP (1) JPS5824762A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023737A (en) * 1983-03-01 1985-02-06 Ihe Miyasaka Cooler and heater
JPS6258206A (en) * 1985-09-07 1987-03-13 Nippon Sheet Glass Co Ltd Waveguide type lens
US7490657B2 (en) 2006-09-22 2009-02-17 Hiroaki Ueyama Double-pipe geothermal water circulating apparatus
WO2009039840A1 (en) * 2007-09-28 2009-04-02 Geo-En Energy Technologies Gmbh Well for collecting energy
WO2009043548A1 (en) * 2007-09-28 2009-04-09 Geo-En Energy Technologies Gmbh Groundwater well
JP2011017237A (en) * 2009-07-07 2011-01-27 Eguchi Setsubi Kogyo:Kk Heat exchange type well device
JP2011179693A (en) * 2010-02-26 2011-09-15 Hazama Corp Geothermal utilization system
JP2012087976A (en) * 2010-10-19 2012-05-10 Sumitomo Fudosan Kk Ground water use heat exchange system and ground water use heat exchange equipment
US8365815B2 (en) 2007-09-28 2013-02-05 Geo-En Energy Technologies Gmbh System for extracting and decontaminating groundwater
JP2014206035A (en) * 2013-04-11 2014-10-30 坂本 興平 Heat collection well requiring water collection and reduction of same water-bearing layer completely dividing inside of hole
JP2015218935A (en) * 2014-05-15 2015-12-07 清水建設株式会社 Method and apparatus of increasing heat collection amount by underground heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023737A (en) * 1983-03-01 1985-02-06 Ihe Miyasaka Cooler and heater
JPH0157259B2 (en) * 1983-03-01 1989-12-05 Ihee Myasaka
JPS6258206A (en) * 1985-09-07 1987-03-13 Nippon Sheet Glass Co Ltd Waveguide type lens
US7490657B2 (en) 2006-09-22 2009-02-17 Hiroaki Ueyama Double-pipe geothermal water circulating apparatus
US8365815B2 (en) 2007-09-28 2013-02-05 Geo-En Energy Technologies Gmbh System for extracting and decontaminating groundwater
WO2009043548A1 (en) * 2007-09-28 2009-04-09 Geo-En Energy Technologies Gmbh Groundwater well
WO2009039840A1 (en) * 2007-09-28 2009-04-02 Geo-En Energy Technologies Gmbh Well for collecting energy
US8434554B2 (en) 2007-09-28 2013-05-07 Geon-En Energy Technologies GmbH Groundwater well
JP2011017237A (en) * 2009-07-07 2011-01-27 Eguchi Setsubi Kogyo:Kk Heat exchange type well device
JP2011179693A (en) * 2010-02-26 2011-09-15 Hazama Corp Geothermal utilization system
JP2012087976A (en) * 2010-10-19 2012-05-10 Sumitomo Fudosan Kk Ground water use heat exchange system and ground water use heat exchange equipment
JP2014206035A (en) * 2013-04-11 2014-10-30 坂本 興平 Heat collection well requiring water collection and reduction of same water-bearing layer completely dividing inside of hole
JP2015218935A (en) * 2014-05-15 2015-12-07 清水建設株式会社 Method and apparatus of increasing heat collection amount by underground heat exchanger

Similar Documents

Publication Publication Date Title
US6848503B2 (en) Wellbore power generating system for downhole operation
CN100480475C (en) Controllable one-well lamina precipitation construction method
CN100455769C (en) Method for extracting hydrate on bottom of sea by deep earth heart water circulation
US4492083A (en) Geothermal salinity control system
US4052857A (en) Geothermal energy from salt formations
US11053927B2 (en) Underground energy generating method
CN110644963B (en) Method for exploiting hydrate based on multilateral well
CN106194122B (en) A kind of method that oil field abandoned well transform geothermal well or sub-salt well as
CN112197448B (en) Geothermal development system
JPS5824762A (en) Extracting method of heat energy from underground water
RU96118498A (en) METHOD FOR PRODUCING LIQUID FROM EARTH FORMATION
CN108060915B (en) Completion structure capable of improving dewatering and oil increasing capacity
CN104213846A (en) Cased hole completion multi-section-fractured horizontal well selective production pipe column and working method thereof
CN203321480U (en) Cased hole completion multi-stage fracturing horizontal well selective mining pipe column
CN102906365B (en) Pressure controlled wellbore structure and operating system and can be used for the method for hydrocarbon operation, storage and solution exploitation
CN102312659A (en) Pollution-free well workover process for oil field
AU2011287564A1 (en) Methods and arrangements for carbon dioxide storage in subterranean geological formations
CN111827948A (en) Open hole fishbone production increasing and sieve tube well completion integrated tool
US20020180215A1 (en) Method of producing electricity through injection of water into a well
CN113404468A (en) Novel gas-liquid separate production pipe column for underground drainage and gas production of sulfur-containing gas well
Tóth et al. A prospect geothermal potential of an abandoned copper mine
CN205823189U (en) Perforation oil production by layer integrated pipe column
CN114922594B (en) Method for deep crack type geothermal segmented packing and layered mining
RU2163964C2 (en) Method of recovery of water well of underground structure
Bobok et al. Geothermal energy production and its environmental impact in Hungary