JP2011016042A - Method and system for dewatering muddy water - Google Patents

Method and system for dewatering muddy water Download PDF

Info

Publication number
JP2011016042A
JP2011016042A JP2009160813A JP2009160813A JP2011016042A JP 2011016042 A JP2011016042 A JP 2011016042A JP 2009160813 A JP2009160813 A JP 2009160813A JP 2009160813 A JP2009160813 A JP 2009160813A JP 2011016042 A JP2011016042 A JP 2011016042A
Authority
JP
Japan
Prior art keywords
muddy water
drum screen
screw press
agglomerated
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009160813A
Other languages
Japanese (ja)
Other versions
JP5087053B2 (en
Inventor
Sukeaki Shiraishi
祐彰 白石
Norihide Ishibashi
則秀 石橋
Kazutomo Yoshida
和睦 吉田
Shizuo Hayasaka
静夫 早坂
Kyuichiro Sasaki
久一郎 佐々木
Takahiro Kashiwabara
孝博 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKOKU KOGYO KK
HIROSAWA MACHINERY CO Ltd
Okumura Corp
Dianitrix Co Ltd
Original Assignee
FUKOKU KOGYO KK
HIROSAWA MACHINERY CO Ltd
Okumura Corp
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKOKU KOGYO KK, HIROSAWA MACHINERY CO Ltd, Okumura Corp, Dianitrix Co Ltd filed Critical FUKOKU KOGYO KK
Priority to JP2009160813A priority Critical patent/JP5087053B2/en
Publication of JP2011016042A publication Critical patent/JP2011016042A/en
Application granted granted Critical
Publication of JP5087053B2 publication Critical patent/JP5087053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and system for dewatering muddy water which can stably obtain dehydrated cakes having a fixed strength.SOLUTION: The muddy water is reacted with a flocculant in a flocculation reaction tank 3 to generate flocculated muddy water. The flocculated muddy water is drained off by a rotating drum screen 41, and then compressed and dehydrated by a screw press 5 to generate dehydrated cakes C having a predetermined water content. The rotational speeds of the drum screen 41 optimum for a plurality of muddy waters different in concentration are obtained as data with respect to the respective concentrations of the muddy waters. While referring the data, the rotation drive of the drum screen 41 is controlled, and the amount of the flocculated muddy water supplied from the flocculation reaction tank 3 to the drum screen 41 per unit time is controlled so as to be optimum.

Description

本発明は、主としてダム湖・港湾・河川の浚渫工事、トンネル掘削工事等で発生する泥水の脱水処理方法及びシステムに関する。   The present invention relates to a method and system for dewatering muddy water generated mainly during dredging work for dam lakes, harbors and rivers, tunnel excavation work, and the like.

ダム湖・港湾・河川の浚渫工事、トンネル掘削工事等で発生した水、粘土、シルトなどの混合物(以下、「泥水」という。)は、脱水処理装置によって水が分離され脱水ケーキとされる。凝集反応槽で泥水と凝集剤とが攪拌混合されて土粒子どうしがフロックを形成し、凝集泥水が生成され、スクリュープレスの濾筒内に供給され、該濾筒内に配設されたスクリューの回転により当該濾筒内を搬送されつつ圧搾脱水されて脱水ケーキとなる。   The mixture of water, clay, silt, etc. (hereinafter referred to as “muddy water”) generated during dredging work in dam lakes, harbors and rivers, tunnel excavation work, etc. (hereinafter referred to as “muddy water”) is separated into dehydrated cake. In the agglomeration reaction tank, the muddy water and the aggregating agent are agitated and mixed so that the soil particles form flocs, and agglomerated muddy water is generated and supplied into the filter cylinder of the screw press. It is dehydrated while being transported through the filter cylinder by rotation to form a dehydrated cake.

凝集反応槽から凝集泥水をスクリュープレスに直接供給すると、水切りが不十分であり、スクリュープレスに供給される凝集泥水の含水率が高くなる。そのため、スクリュープレスの受入口にその付近の濾筒部で濾過しきれなかった水が溜り、スクリュープレスの処理効率が低下する。また、スクリュープレスの排出口まで凝集泥水中の水分が移送され、生成された脱水ケーキは、含水率が高く強度に劣り、再利用できないおそれもある。   When the coagulated mud water is directly supplied from the coagulation reaction tank to the screw press, draining is insufficient, and the moisture content of the coagulated mud water supplied to the screw press increases. As a result, water that could not be filtered by the filter cylinder in the vicinity of the inlet of the screw press accumulates, and the processing efficiency of the screw press decreases. Moreover, the water | moisture content in aggregation mud water is transferred to the discharge port of a screw press, and the produced | generated dehydrated cake has a high moisture content, is inferior in intensity | strength, and there exists a possibility that it cannot be reused.

そこで、特許文献1には、水切りコンベアで水切りした後に、凝集泥水をスクリュープレスに供給することが開示されている。   Therefore, Patent Document 1 discloses that the condensed mud water is supplied to the screw press after draining with a draining conveyor.

特許第3924738号公報Japanese Patent No. 3924738

しかしながら、発生地による泥水の濃度の変化によって、生成される脱水ケーキの含水率が変化し、一定強度の脱水ケーキを安定して得ることができない。   However, the moisture content of the generated dewatered cake changes due to the change in the concentration of muddy water depending on the place of occurrence, and it is not possible to stably obtain a dehydrated cake with a certain strength.

本発明は、以上の点に鑑み、一定強度の脱水ケーキを安定して得ることが可能な泥水の脱水処理方法及びシステムを提供することを目的とする。   An object of this invention is to provide the dehydration processing method and system of a muddy water which can obtain the dewatering cake of fixed intensity | strength stably in view of the above point.

第1発明は、凝集反応槽で泥水に生成される脱水ケーキの強度増加材を添加した混合物を生成し、該混合物に凝集剤を反応させて凝集泥水を生成し、該凝集泥水を回転するドラムスクリーンで水切りした後、スクリュープレスで圧搾脱水して所定の含水率を有する脱水ケーキを生成する泥水の脱水処理方法であって、前記強度増加材の含有率とスクリュープレスの仕様とから求めた前記脱水ケーキの限界含水率に基づき前記スクリュープレスのスクリューの最適回転速度を定め、該最適回転速度で前記スクリューが回転するときの前記スクリュープレスでの凝集泥水の単位時間当り処理量を求め、該単位時間当り処理量の凝集泥水が前記スクリュープレスに供給されるよう、前記強度増加材の含有率及び泥水濃度が異なる複数の混合物に前記凝集剤を反応させて生成した複数種の凝集泥水を前記ドラムスクリーンに供給し、当該凝集泥水の水切りに最適な前記ドラムスクリーンの最適回転速度を前記泥水の濃度毎にデータとして所得しておき、前記最適回転速度で回転するよう、前記スクリュープレスのスクリューの回転駆動を制御し、前記強度増加材の含有率及び泥水の濃度に応じた前記ドラムスクリーンの最適回転速度を、前記データを参照して決定し、該決定した最適回転速度で回転するよう、前記ドラムスクリーンの回転駆動を制御するとともに、前記最適回転速度で前記ドラムスクリーンを回転させたときの水切り割合と前記スクリュープレスを前記最適回転速度で回転させるときの凝集泥水の単位時間当り処理量とに基づき、前記凝集反応槽から前記ドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御することを特徴とする。   1st invention produces | generates the mixture which added the intensity | strength increasing material of the dewatering cake produced | generated to a muddy water in a coagulation reaction tank, reacts a coagulant | flocculant with this mixture, produces | generates the agglomerated muddy water, and the drum which rotates this agglomerated muddy water A muddy water dehydration method for producing a dehydrated cake having a predetermined moisture content by pressing and dewatering with a screw press after draining with a screen, the content determined from the content of the strength increasing material and the specifications of the screw press An optimum rotation speed of the screw of the screw press is determined based on the limit moisture content of the dewatered cake, and a throughput per unit time of the aggregated mud water in the screw press when the screw rotates at the optimum rotation speed is determined. In order to supply an agglomerated muddy water with a throughput per hour to the screw press, a mixture of different contents and muddy water concentrations of the strength increasing material Supplying a plurality of kinds of agglomerated muddy water produced by reacting the collecting agent to the drum screen, and obtaining the optimum rotation speed of the drum screen optimal for draining the agglomerated muddy water as data for each concentration of the muddy water, The rotation of the screw of the screw press is controlled to rotate at the optimum rotation speed, and the optimum rotation speed of the drum screen according to the content of the strength increasing material and the concentration of muddy water is referred to the data. The rotational drive of the drum screen is controlled so as to rotate at the determined optimum rotational speed, and the drainage ratio and the screw press when the drum screen is rotated at the optimum rotational speed are set to the optimum rotational speed. Based on the treatment amount per unit time of the coagulated mud water when rotating in the above, the drum screen from the coagulation reaction tank And controlling the unit time per supply amount of the aggregating mud supply.

第1発明によれば、強度増加材の含有率及び泥水の濃度に基づいてドラムスクリーンの回転駆動及び該ドラムスクリーンに供給する凝集泥水の単位時間当りの供給量を制御するので、強度増加材の含有率及び泥水の濃度の変化に拘らず、スクリュープレスに供給される凝集泥水の含水率を一定にすることが可能となる。よって、スクリュープレスから排出される脱水ケーキは、所定の含水率を有し、一定強度となる。   According to the first invention, since the rotational drive of the drum screen and the supply amount per unit time of the aggregated mud supplied to the drum screen are controlled based on the content of the strength increasing material and the concentration of the muddy water, Regardless of changes in the content rate and the concentration of muddy water, the moisture content of the aggregated muddy water supplied to the screw press can be made constant. Therefore, the dehydrated cake discharged from the screw press has a predetermined moisture content and a constant strength.

さらに、強度増加材の含有率及びスクリュープレスの仕様から脱水ケーキの限界含水率は一義的に求まり、該求めた脱水ケーキの限界含水率に基づきスクリュープレスのスクリューの最適回転速度が定める。そして、この求めた最適回転速度で回転するよう、スクリュープレスの回転駆動を制御するので、スクリュープレスから排出される脱水ケーキが必要強度を有し、好適に再利用することが可能となる。   Further, the limit moisture content of the dewatered cake is uniquely determined from the content of the strength increasing material and the specifications of the screw press, and the optimum rotational speed of the screw of the screw press is determined based on the determined limit moisture content of the dewatered cake. And since the rotational drive of a screw press is controlled so that it rotates with this calculated | required optimal rotational speed, the dewatering cake discharged | emitted from a screw press has required intensity | strength, and it becomes possible to reuse it suitably.

さらに、ドラムスクリーンの最適回転速度を決定する際に参照するデータは、強度増加材の含有率及び泥水濃度が異なる複数の混合物に凝集剤を反応させて生成した複数種の凝集泥水を実際にドラムスクリーンに供給して、当該凝集泥水の水切りに最適なドラムスクリーンの最適回転速度を泥水の濃度毎に予め取得しているので、泥水の濃度が変化しても、ドラムスクリーンの最適回転速度を容易に決定することができる。   Furthermore, the data to be referred to when determining the optimum rotation speed of the drum screen is actually the drums of multiple types of coagulated mud produced by reacting the coagulant with a plurality of mixtures having different contents of the strength increasing material and mud concentration. The optimal rotation speed of the drum screen that is supplied to the screen and optimal for draining the agglomerated muddy water is obtained in advance for each muddy water concentration, so that the optimum rotation speed of the drum screen is easy even if the muddy water concentration changes. Can be determined.

さらに、最適回転速度でドラムスクリーンを回転させたときの水切り割合とスクリュープレスを最適回転速度で回転させるときの凝集泥水の単位時間当り処理量とに基づき、凝集反応槽からドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御するので、処理能力を最大化することが可能となる。   Furthermore, the agglomeration supplied from the agglomeration reaction tank to the drum screen based on the draining rate when the drum screen is rotated at the optimum rotation speed and the treatment amount per unit time of the agglomerated mud water when the screw press is rotated at the optimum rotation speed. Since the amount of muddy water supplied per unit time is controlled, the processing capacity can be maximized.

また、第1発明において、前記凝集反応槽で、生成される前記脱水ケーキの強度増加材を泥水に添加した混合物を生成するので、生成される脱水ケーキの強度を適宜増加させることができ、再利用に適した強度を有する脱水ケーキを安定的に生成することが可能となる。   Further, in the first invention, since the mixture in which the strength increasing material of the dehydrated cake to be generated is added to the muddy water is generated in the aggregation reaction tank, the strength of the dehydrated cake to be generated can be appropriately increased, It becomes possible to stably produce a dehydrated cake having strength suitable for use.

また、第1発明において、前記強度増加材は、砂、フライアッシュ、スラグ、セメントのうちの少なくとも1つを含むことが好ましい。   In the first invention, the strength increasing material preferably includes at least one of sand, fly ash, slag, and cement.

第2発明は、泥水に生成される脱水ケーキの強度増加材を添加した混合物における、強度増加材の含有率及び泥水濃度の異なる複数の混合物に凝集剤を反応させて凝集泥水を生成する凝集反応槽と、前記泥水の濃度を検知する泥水濃度検知部と、前記混合物における強度増加材の含有率を検知する強度増加材含有率検知部と、 回転して、前記凝集反応槽で生成した凝集泥水を水切りするドラムスクリーンと、該泥水濃度検知部が検知した泥水の濃度に基づいて、前記ドラムスクリーンの回転駆動を制御するドラムスクリーン制御部と、前記凝集反応槽から前記ドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御する凝集泥水供給量制御部と、前記ドラムスクリーンで水切りした凝集泥水を圧搾脱水して所定の含水率を有する脱水ケーキを生成するスクリュープレスと、前記強度増加材の含有率とスクリュープレスの仕様とから求めた前記脱水ケーキの限界含水率に基づき前記スクリュープレスのスクリューの最適回転速度を定め、該最適回転速度で前記スクリューが回転するときの前記スクリュープレスでの凝集泥水の単位時間当り処理量を求め、該単位時間当り処理量の凝集泥水が前記スクリュープレスに供給されるよう、前記強度増加材の含有率及び泥水濃度が異なる複数の混合物に前記凝集剤を反応させて生成した複数種の凝集泥水を前記ドラムスクリーンに供給し、当該凝集泥水の水切りに最適な前記ドラムスクリーンの最適回転速度を前記泥水の濃度毎に取得したデータを蓄積するデータ蓄積部と、前記スクリュープレスの回転駆動を制御するスクリュープレス制御部とを備え、前記ドラムスクリーン制御部は、前記データ蓄積部が蓄積するデータを参照して、前記強度増加材含有率検知部で検知した強度増加材の含有率及び前記泥水濃度検知部で検知した前記泥水の濃度に応じた前記ドラムスクリーンの最適回転速度を決定し、該決定した最適回転速度で回転するように前記ドラムスクリーンの回転駆動を制御し、前記凝集泥水供給量制御部は、前記最適回転速度で前記ドラムスクリーンを回転させたときの水切り割合と前記スクリュープレスでの凝集泥水の単位時間当り処理容量とに基づき、前記凝集反応槽から前記ドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御することを特徴とする。   The second invention is a flocculation reaction in which a flocculant is reacted with a plurality of mixtures having different strength-increasing material contents and muddy water concentrations in a mixture to which a strength increasing material for a dehydrated cake produced in muddy water is added. A tank, a muddy water concentration detection unit for detecting the concentration of the muddy water, a strength increasing material content rate detection unit for detecting the content of the strength increasing material in the mixture, and the agglomerated mud water generated in the agglomeration reaction tank by rotating. A drum screen that drains water, a drum screen control unit that controls rotation of the drum screen based on the concentration of muddy water detected by the muddy water concentration detection unit, and agglomerated mud water that is supplied from the agglomeration reaction tank to the drum screen The agglomerated muddy water supply amount control unit for controlling the supply amount per unit time and the agglomerated muddy water drained by the drum screen have a predetermined water content A screw press for generating a water cake, and an optimum rotational speed of the screw of the screw press is determined based on a limit moisture content of the dehydrated cake determined from the content of the strength increasing material and the specification of the screw press, and the optimum rotational speed The amount of the agglomerated muddy water in the screw press when the screw rotates is determined per unit time, and the content of the strength increasing material so that the agglomerated muddy water in the unit time is supplied to the screw press. And a plurality of kinds of agglomerated mud produced by reacting the flocculant with a plurality of mixtures having different muddy water concentrations are supplied to the drum screen, and the optimum rotation speed of the drum screen is optimal for draining the agglomerated muddy water. A data storage unit for storing data acquired for each concentration, and a screw for controlling the rotational drive of the screw press A press control unit, wherein the drum screen control unit refers to the data stored in the data storage unit, the strength increasing material content rate detected by the strength increasing material content rate detection unit and the muddy water concentration detection unit Determining the optimum rotation speed of the drum screen according to the concentration of the muddy water detected in step (b), controlling the rotation drive of the drum screen so as to rotate at the determined optimum rotation speed, A unit of aggregated muddy water to be supplied from the aggregation reaction tank to the drum screen based on a draining rate when the drum screen is rotated at the optimum rotation speed and a processing capacity per unit time of the aggregated muddy water in the screw press. The supply amount per hour is controlled.

第2発明によれば、前記強度増加材含有率検知部で検知した強度増加材の含有率及び泥水濃度検知部で検知した泥水の濃度に基づいて、ドラムスクリーン制御部がドラムスクリーンの回転駆動を制御し、凝集泥水供給量制御部がドラムスクリーンに供給する凝集泥水の単位時間当りの供給量を制御するので、強度増加材の含有率及び泥水の濃度の変化に拘らず、スクリュープレスに供給される凝集泥水の含水率を一定にすることが可能となる。よって、スクリュープレスから排出される脱水ケーキは、所定の含水率を有し、一定強度となる。   According to the second invention, the drum screen controller drives the drum screen to rotate based on the content of the strength increasing material detected by the strength increasing material content detecting unit and the concentration of muddy water detected by the muddy water concentration detecting unit. Since the control unit controls the supply amount per unit time of the aggregated muddy water supplied to the drum screen by the aggregated muddy water supply control unit, it is supplied to the screw press regardless of the change in the content of the strength increasing material and the concentration of the muddy water. It is possible to keep the water content of the coagulated mud water constant. Therefore, the dehydrated cake discharged from the screw press has a predetermined moisture content and a constant strength.

さらに、強度増加材の含有率及びスクリュープレスの仕様から脱水ケーキの限界含水率は一義的に求まり、該求めた脱水ケーキの限界含水率に基づきスクリュープレスのスクリューの最適回転速度が定める。そして、この求めた最適回転速度で回転するよう、スクリュープレス制御部がスクリュープレスの回転駆動を制御するので、スクリュープレスから排出される脱水ケーキが必要強度を有し、好適に再利用することが可能となる。   Further, the limit moisture content of the dewatered cake is uniquely determined from the content of the strength increasing material and the specifications of the screw press, and the optimum rotational speed of the screw of the screw press is determined based on the determined limit moisture content of the dewatered cake. And since the screw press control part controls the rotational drive of the screw press so that it rotates at the obtained optimum rotational speed, the dewatered cake discharged from the screw press has the necessary strength and can be reused suitably. It becomes possible.

さらに、ドラムスクリーンの最適回転速度を決定する際に参照するデータは、強度増加材の含有率及び泥水濃度が異なる複数の泥水に凝集剤を反応させて生成した複数種の凝集泥水を実際にドラムスクリーンに供給して、当該凝集泥水の水切りに最適なドラムスクリーンの最適回転速度を泥水の濃度毎に予め取得してデータ蓄積部データに蓄積されているので、前記強度増加材含有率検知部で検知した強度増加材の含有率及泥水濃度検知部で検知した泥水の濃度が変化しても、ドラムスクリーン制御部はドラムスクリーンの最適回転速度を容易に決定することができる。   Furthermore, the data to be referred to when determining the optimum rotation speed of the drum screen is actually the drums of multiple types of coagulated mud produced by reacting the coagulant with a plurality of muddy water having different contents and mud concentrations of strength increasing materials. Since the optimum rotation speed of the drum screen that is optimal for draining the agglomerated muddy water is obtained in advance for each muddy water concentration and accumulated in the data accumulation unit data, the strength increasing material content rate detection unit Even if the content rate of the detected strength increasing material and the concentration of muddy water detected by the muddy water concentration detection unit change, the drum screen control unit can easily determine the optimum rotation speed of the drum screen.

さらに、凝集泥水供給量制御部は、最適回転速度でドラムスクリーンを回転させたときの水切り割合とスクリュープレスを最適回転速度で回転させるときの凝集泥水の単位時間当り処理量とに基づき、凝集反応槽からドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御するので、処理能力を最大化することが可能となる。   Furthermore, the agglomerated mud supply controller controls the agglomeration reaction based on the drainage rate when the drum screen is rotated at the optimum rotational speed and the throughput per unit time of the agglomerated mud when the screw press is rotated at the optimum rotational speed. Since the supply amount per unit time of the aggregated mud water supplied from the tank to the drum screen is controlled, the processing capacity can be maximized.

本発明の実施形態に係る泥水の脱水処理システムを説明する図。The figure explaining the dehydration processing system of the muddy water concerning the embodiment of the present invention. 泥水の濃度の相違によるドラムスクリーンの回転速度と水切り割合との関係を示すグラフ。The graph which shows the relationship between the rotation speed of a drum screen by the difference in the density of muddy water, and the draining rate. 泥水の脱水処理方法を示すフローチャート。The flowchart which shows the dehydration processing method of muddy water.

本発明の実施形態に係る泥水の脱水処理システムAについて説明する。図1を参照して、泥水の脱水処理装置Aは、主として、泥水貯留槽(原泥槽)1、混合物貯留槽2、凝集反応槽3、ホッパー4及びスクリュープレス5から構成されている。   A muddy water dewatering system A according to an embodiment of the present invention will be described. Referring to FIG. 1, a muddy water dewatering apparatus A mainly includes a muddy water storage tank (raw mud tank) 1, a mixture storage tank 2, an agglomeration reaction tank 3, a hopper 4, and a screw press 5.

泥水貯留槽1は、泥水を貯留する。泥水は、ダム湖・港湾・河川の浚渫工事、トンネル掘削工事等で発生した泥状物から礫や多くの砂が除去された、水、粘土、シルトなどからなる混合物である。泥水貯留槽1に貯留される泥水は、沈降防止のために、不図示のモータにより回転駆動する攪拌翼により攪拌される。泥水貯留槽1内に貯留される泥水は、ポンプP1により吐出されて、管路11を介して混合物貯留槽2に向けて圧送される。ポンプP1は、制御部12により駆動制御される。   The muddy water storage tank 1 stores muddy water. The muddy water is a mixture of water, clay, silt, etc., from which the gravel and a lot of sand have been removed from the mud generated from dredging work in dam lakes, harbors and rivers, tunnel excavation work, etc. The muddy water stored in the muddy water storage tank 1 is stirred by a stirring blade that is rotationally driven by a motor (not shown) in order to prevent sedimentation. The muddy water stored in the muddy water storage tank 1 is discharged by the pump P <b> 1 and is pumped toward the mixture storage tank 2 through the pipeline 11. The pump P1 is driven and controlled by the control unit 12.

泥水貯留槽1には、泥水貯留槽1内の泥水の濃度αを検知する泥水濃度検知部13が設けられている。泥水濃度検知部13は、泥水貯留槽1内の泥水の比重を測定して、この比重測定値と、予め測定により得た泥水の比重と濃度との相関関係を示すデータとに基づいて、泥水の濃度αを検知する。   The muddy water storage tank 1 is provided with a muddy water concentration detection unit 13 that detects the concentration α of muddy water in the muddy water storage tank 1. The muddy water concentration detection unit 13 measures the specific gravity of the muddy water in the muddy water storage tank 1, and based on the measured specific gravity and data indicating the correlation between the specific gravity and the concentration of muddy water obtained in advance. Is detected.

混合物貯留槽2は、泥水と砂との混合物を貯留する。泥水は、泥水貯留槽1からポンプP1により吐出されて、管路11を介して混合物貯留槽2内に供給される。砂は、泥水の脱水率向上と脱水ケーキの強度増加を目的として添加されるもので、不図示の砂置き場からベルトコンベア等を介して混合物貯留槽2内に供給される。混合物貯留槽2に貯留される混合物は、沈降防止のために、不図示のモータにより回転駆動する攪拌翼により攪拌される。混合物貯留槽2内に貯留される混合物は、ポンプP2により吐出されて、管路21を介して凝集反応槽3に向けて圧送される。ポンプP2は、制御部(凝集泥水供給制御部)22により駆動制御される。   The mixture storage tank 2 stores a mixture of muddy water and sand. The muddy water is discharged from the muddy water storage tank 1 by the pump P <b> 1 and supplied into the mixture storage tank 2 through the pipe line 11. Sand is added for the purpose of improving the dewatering rate of muddy water and increasing the strength of the dewatered cake, and is supplied into the mixture storage tank 2 from a sand storage place (not shown) via a belt conveyor or the like. The mixture stored in the mixture storage tank 2 is stirred by a stirring blade that is rotationally driven by a motor (not shown) in order to prevent sedimentation. The mixture stored in the mixture storage tank 2 is discharged by the pump P <b> 2 and is pumped toward the aggregation reaction tank 3 through the pipe line 21. The pump P <b> 2 is driven and controlled by a control unit (aggregated mud water supply control unit) 22.

混合物貯留槽2には、混合物貯留槽2内の乾物(泥水中の水以外の固形物)中の砂含有率Aを検知する砂含有率検知部23が設けられている。砂含有率検知部23は、混合物貯留槽2内の混合物の比重を測定して、この比重測定値と、泥水濃度検知部13で検知された泥水の濃度αの値とから、予め測定により得た混合物の比重と砂含有率との相関関係を示すデータとに基づいて、混合物貯留槽2内の乾物中の砂含有率Aを検知する。   The mixture reservoir 2 is provided with a sand content detector 23 that detects the sand content A in the dry matter (solid matter other than water in the muddy water) in the mixture reservoir 2. The sand content detection unit 23 measures the specific gravity of the mixture in the mixture storage tank 2 and obtains the specific gravity by measurement in advance from the measured specific gravity value and the value of the mud concentration α detected by the mud concentration detector 13. The sand content A in the dry matter in the mixture reservoir 2 is detected based on the data indicating the correlation between the specific gravity of the mixture and the sand content.

凝集反応槽3は、詳細は図示されていないが、攪拌翼が形成された回転軸が不図示のモータにより回転駆動することにより内部に滞留する滞留物を攪拌するとともに、滞留物を上流側から下流側に移送する二軸のパドルミキサーである。なお、この凝集反応槽3内に送り翼が形成された回転軸を設け、これをモータにより回転駆動することにより滞留物を移送するようにしてもよい。   Although the details of the agglomeration reaction tank 3 are not shown, the rotating shaft on which the stirring blades are formed is driven to rotate by a motor (not shown) to stir the staying matter staying inside, and the staying matter is removed from the upstream side. This is a biaxial paddle mixer that is transported downstream. In addition, a rotating shaft having a feeding blade formed in the agglomeration reaction tank 3 may be provided, and the staying material may be transferred by rotationally driving it with a motor.

混合物貯留槽2から吐出された混合物が、受入口31から凝集反応槽3内に供給される。凝集反応槽3内に供給された混合物は、滞留物として攪拌翼により攪拌されるとともに送り翼により下流側に移送されながら、投入口32から投入されたアニオン系やカチオン系等の凝集剤と混合されて反応することにより、土粒子が凝集されてフロックを形成し、凝集泥水となる。   The mixture discharged from the mixture storage tank 2 is supplied into the aggregation reaction tank 3 from the receiving port 31. The mixture supplied into the agglomeration reaction tank 3 is mixed with an aggregating agent such as an anionic or cationic one charged from the inlet 32 while being stirred by a stirring blade as a stagnant substance and transferred downstream by a feeding blade. By reacting, the soil particles are aggregated to form flocs and become agglomerated muddy water.

攪拌翼及び必要に応じて送り翼が回転する槽の下流側の側壁が堰33となっており、堰33を越えて溢れ出た凝集泥水が、排出口34を介してホッパー4に流れ込む。   The side wall on the downstream side of the tank where the agitating blade and, if necessary, the feed blade rotate is a weir 33, and the agglomerated muddy water overflowing over the weir 33 flows into the hopper 4 through the discharge port 34.

ホッパー4は、回転するドラムスクリーン41を内蔵している。ドラムスクリーン41は、細かい網目が多数形成された円筒状の水切り用のスクリーンであり、モータM1により回転駆動される。モータM1は、制御部(ドラムスクリーン制御部)42により回転駆動が制御される。ドラムスクリーン41の上方部が開口を介して露出している。回転するドラムスクリーン41の外筒表面に落下した凝集泥水は、ドラムスクリーン41の回転に伴い下流側に搬送されるが、凝集泥水の一部の水分は、ドラムスクリーン41の網目を通過して濾液として不図示の濾液処理槽に送られる。一方、ドラムスクリンーン41を通過した凝集泥水は、スクリュープレス5に供給される。また、水を噴きかけてドラムスクリーン41を洗浄する不図示の散水シャワーが設けられており、この水も同様に前記濾液処理槽に排出される。   The hopper 4 incorporates a rotating drum screen 41. The drum screen 41 is a cylindrical draining screen in which a large number of fine meshes are formed, and is driven to rotate by a motor M1. The motor M1 is rotationally controlled by a control unit (drum screen control unit) 42. The upper part of the drum screen 41 is exposed through the opening. The agglomerated muddy water dropped on the outer cylinder surface of the rotating drum screen 41 is transported downstream as the drum screen 41 rotates. However, a part of the agglomerated muddy water passes through the mesh of the drum screen 41 and passes through the filtrate. As shown in FIG. On the other hand, the agglomerated muddy water that has passed through the drum screen 41 is supplied to the screw press 5. Further, a watering shower (not shown) for spraying water to wash the drum screen 41 is provided, and this water is also discharged into the filtrate treatment tank.

砂含有率A及び泥水の濃度が異なる複数の混合物に凝集反応槽3で投入する凝集剤を反応させて生成した複数の凝集泥水を、ドラムスクリーン41で水切りしたときにおけるドラムスクリーン41の最適回転速度N及びこの最適回転速度Nでドラムスクリーン41を回転駆動させたときの水切り割合Sを示すデータがデータ蓄積部43に蓄積されている。これらのデータは、ドラムスクリーン41を用いて実験を行うこと等によって得たものである。なお、水切り割合Sは、ドラムスクリーン41に処理容量限近傍の凝集泥水を供給したとき、換言すれば、水切り割合がS程度となる量の凝集泥水を供給したときに得られたデータである。ドラムスクリーン41の最適回転速度N及び水切り割合Sは、ドラムスクリーン41の仕様、即ち径、幅、網目の大きさ、水切り部分の周長等によって定まり、ドラムスクリーン41に固有のものである。 Optimum rotation speed of the drum screen 41 when a plurality of agglomerated muds produced by reacting a flocculant charged in the agglomeration reaction tank 3 with a plurality of mixtures having different sand contents A and muddy water concentrations are drained by the drum screen 41 N D and the data indicating the draining rate S when the drum screen 41 were rotated at the optimum rotational speed N D is stored in the data storage unit 43. These data are obtained by conducting experiments using the drum screen 41. The drainage rate S is data obtained when aggregated muddy water in the vicinity of the processing capacity limit is supplied to the drum screen 41, in other words, when aggregated muddy water is supplied in such an amount that the drainage rate is about S. Optimum rotating speed N D, and draining the ratio S of the drum screen 41, the specifications of the drum screen 41, i.e. the diameter, width, of the mesh size, determined by the circumferential length and the like of the draining portions, is specific to the drum screen 41.

泥水の濃度が同じ凝集泥水を同じ時間当たりの供給量でもってドラムスクリーン41で水切りした場合、図2を参照して、ドラムスクリーン41の回転速度Nが低速であると、ドラムスクリーン41の外筒表面上に存する凝集泥水の上に後続する凝集泥水が落下するので、水切り割合Sが低い。一方、ドラムスクリーン41の回転速度Nが高速であると、凝集泥水がドラムスクリーン41の外筒表面上に存する時間が短いので、水切り割合Sが低い。よって、水切り割合Sが良好なドラムスクリーン41の回転速度Nの領域が存在する。 If the concentration of the muddy water is drained drum screen 41 have the same cohesive mud at a feed rate per the same time, with reference to FIG. 2, when the rotational speed N D of the drum screen 41 is at a low speed, outside of the drum screen 41 Since the subsequent agglomerated muddy water falls on the agglomerated muddy water existing on the cylinder surface, the draining rate S is low. On the other hand, when the rotational speed N D of the drum screen 41 is a high speed, aggregation muddy water is short time present on the outer cylinder surface of the drum screen 41, the lower draining rate S. Thus, draining the ratio S is present a region of the rotational speed N D good drum screen 41.

泥水が高濃度であると、図2中の実線で示す曲線を参照して、水切り割合Sは相対的に劣り、且つ水切り割合Sが良好なドラムスクリーン41の回転速度Nの領域D1が狭い。この水切り割合Sの良好な回転速度Nの領域自体を最適回転速度Nとすることができる。一方、泥水が低濃度であると、図2中の点線で示す曲線を参照して、水切り割合Sは相対的に高く、且つ水切り割合Sが良好なドラムスクリーン41の回転速度Nの領域D2が広い。そして、ドラムスクリーン41の駆動に要するエネルギー効率も考慮するならば、ドラムスクリーン41の最適回転速度Nは、水切り割合Sが良好な回転速度Nの領域D1又はD2内、最も低い回転速度となる。また、砂分の含有率が高いほど、水切り割合Sは良好となる。 When muddy water is high concentration, with reference to the curve shown by the solid line in FIG. 2, draining ratio S is relatively poor, and there is a narrow speed N D region D1 of good drum screen 41 draining ratio S . The area itself good rotational speed N D of the draining rate S can be optimized rotational speed N D. On the other hand, if muddy water is at low concentrations, with reference to the curve shown by a dotted line in FIG. 2, draining ratio S is relatively high, and the area of the rotational speed N D of the draining rate S good drum screen 41 D2 Is wide. Then, if the energy efficiency is also considered necessary for driving the drum screen 41, the optimum rotational speed N D of the drum screen 41, draining ratio S is within region D1 or D2 of the good rotational speed N D, and the lowest rotational speed Become. In addition, the higher the sand content, the better the draining rate S.

スクリュープレス5は、パンチングメタル等で形成された水平方向を長手とする円筒状の濾筒51と、該濾筒51内に回転自在に配設されたスクリュー52とを備え、濾筒51内に供給された凝集泥水をスクリュー52で下流側(図1中左側)に搬送させつつ圧搾脱水して、分離した水が濾筒51の隙間から落下する。   The screw press 5 includes a cylindrical filter cylinder 51 formed of punching metal or the like and extending in the horizontal direction, and a screw 52 rotatably disposed in the filter cylinder 51. The supplied agglomerated muddy water is squeezed and dewatered while being conveyed to the downstream side (left side in FIG. 1) by the screw 52, and the separated water falls from the gap between the filter tubes 51.

濾筒51には受入口53が開設されており、ホッパー4から供給される凝集泥水が受入口53から濾筒51内に投入される。スクリュー52は、濾筒51の上流側から下流側に向けて次第に拡径するテーパー状のスクリュー軸と、スクリュー軸の外周面に固定した螺旋状のスクリュー羽根とから構成されている。スクリュー52は、モータM2により回転駆動される。モータM2は、制御部(スクリュープレス制御部)54により回転駆動が制御される。   The filter tube 51 is provided with a receiving port 53, and the condensed mud supplied from the hopper 4 is introduced into the filter tube 51 from the receiving port 53. The screw 52 includes a tapered screw shaft whose diameter gradually increases from the upstream side to the downstream side of the filter tube 51, and a helical screw blade fixed to the outer peripheral surface of the screw shaft. The screw 52 is rotationally driven by the motor M2. The rotation drive of the motor M2 is controlled by a control unit (screw press control unit) 54.

スクリュー52を回転させると、受入口53から受け入れた凝集泥水がスクリュー羽根による送り作用で濾筒51の上流側から下流側に搬送される。濾筒51とスクリュー軸との間の空間は下流側に向けて次第に狭くなっているため、凝集泥水は濾筒51の下流側に向けて搬送されつつ圧搾される。凝集泥水の水分は濾筒51を通して搾り出され、濾液として落下し、底部に形成された集水枡55を介して、前記濾液処理槽に排出される。なお、図示しないが、水を噴きかけて濾筒51の外表面を洗浄する散水管が設けられており、この水も同様に前記濾液処理槽に排出される。濾筒51の下流側端部には排出口56が開設されている。脱水された凝集泥水である脱水ケーキCは、排出口56から外部に排出される。   When the screw 52 is rotated, the agglomerated muddy water received from the receiving port 53 is conveyed from the upstream side to the downstream side of the filter tube 51 by the feeding action by the screw blades. Since the space between the filter tube 51 and the screw shaft is gradually narrowed toward the downstream side, the aggregated mud is compressed while being conveyed toward the downstream side of the filter tube 51. The water of the aggregated mud water is squeezed out through the filter cylinder 51, falls as a filtrate, and is discharged to the filtrate treatment tank through a water collecting bowl 55 formed at the bottom. In addition, although not shown in figure, the watering pipe which sprays water and wash | cleans the outer surface of the filter cylinder 51 is provided, and this water is similarly discharged | emitted by the said filtrate treatment tank. A discharge port 56 is opened at the downstream end of the filter tube 51. The dewatered cake C that is the dewatered agglomerated muddy water is discharged to the outside from the discharge port 56.

以下、泥水の脱水処理システムAを用いた本発明の実施形態に係る泥水の脱水処理方法について、図3も参照して説明する。   Hereinafter, a method for dewatering muddy water according to an embodiment of the present invention using the muddy water dewatering system A will be described with reference to FIG.

最初に、スクリュープレス5への凝集泥水の単位時間当り供給量Xを決定する(S10)。単位時間当り供給量Xは、スクリュープレス5のスクリュー52の回転速度に応じて変化するが、ここでは、まず、脱水ケーキCの強度を決定する(S11)。脱水ケーキCは、その強度に応じて、盛土や埋め戻し土として再利用される。脱水ケーキCの強度は、例えば、JISA1228で規定されるコーン指数で評価される。コーン指数が800kN/m以上であれば第2種建設発生土、400kN/m以上であれば第3種建設発生土、200kN/m以上であれば第4種建設発生土に分類され、それぞれ再利用の用途が規定されている。 First, the supply amount X per unit time of the condensed mud water to the screw press 5 is determined (S10). Although the supply amount X per unit time changes according to the rotational speed of the screw 52 of the screw press 5, first, the strength of the dewatered cake C is determined (S11). The dewatered cake C is reused as embankment or backfill according to its strength. The strength of the dehydrated cake C is evaluated by, for example, the cone index defined by JISA1228. If the cone index is 800 kN / m 2 or higher, it is classified as Type 2 construction generated soil, if it is 400 kN / m 2 or higher, it is classified as Type 3 construction generated soil, and if it is 200 kN / m 2 or higher, it is classified as Type 4 construction generated soil. , The usage of reuse is specified respectively.

脱水ケーキCの強度は、その含水率と砂含有率Aとによって定まる。そして、この砂含有率Aと使用するスクリュープレス5の仕様によって更なる脱水が不能な限界含水率が定まる。これは、この種の含水率の高い泥水において、スクリュープレス5の濾筒51を介しての重力による自然濾過により脱水される割合が大きく、圧搾による脱水がその断面の開口面積の小さくなるスクリュープレス5の出口付近の短い区間のみに集中して行われるため、スクリュープレス5のスクリュー52の回転速度を変更しても、自然濾過から圧搾に転ずる時点での脱水率は、泥水の濃度に関係なくほぼ一定値となることによる。よって、脱水ケーキCの含水率は、スクリュー52の回転速度が所定の範囲内であればその高低に関係なく、限界含水率に近いほぼ一定値となる。このように、供給する泥水の濃度に関係なく、砂含有率Aと使用するスクリュープレス5の仕様に依存して、脱水ケーキCの含水率が定まるので、脱水ケーキCの必要強度を決定すると、要求強度に見合う泥水の乾物中の砂含有率A1が決定する(S12)。すなわち、種々の砂含有率Aでもってスクリュープレス4により限界含水率になるまで脱水し、そのとき、脱水ケーキCの強度が必要強度を満たす砂含有率Aのものを要求強度に見合う泥水の乾物中の砂含有率A1とするのである。そして、砂含有率検知部23が検知する砂含有率Aが、決定した砂含有率A1となるように、混合物貯留槽2内に貯留されている混合物中の含有率A1を調整する。具体的には、砂含有率Aが砂含有率A1より低いときには、不図示の砂置き場からベルトコンベア等を介して混合物貯留槽2内に砂を供給する。砂含有率Aが砂含有率A1より高いときには、ポンプP1を駆動させて、泥水貯留槽1から混合物貯留槽2内に泥水を供給する。   The strength of the dehydrated cake C is determined by its moisture content and sand content A. Then, the limit moisture content at which further dewatering is impossible is determined by the sand content A and the specifications of the screw press 5 to be used. In this type of muddy water having a high water content, the ratio of dewatering by gravity filtration through the filter cylinder 51 of the screw press 5 is large, and dehydration by pressing reduces the opening area of the cross section. Since the concentration is performed only in a short section near the outlet of 5, the dehydration rate at the time when the rotation of the screw 52 of the screw press 5 is changed from natural filtration to pressing is not related to the concentration of muddy water. This is because the value is almost constant. Therefore, the moisture content of the dewatered cake C is a substantially constant value close to the limit moisture content regardless of the height of the screw 52 as long as the rotational speed of the screw 52 is within a predetermined range. In this way, the moisture content of the dewatered cake C is determined depending on the sand content A and the specifications of the screw press 5 to be used, regardless of the concentration of the muddy water to be supplied. The sand content A1 in the dry matter of the muddy water corresponding to the required strength is determined (S12). That is, dewatering with various sand contents A by screw press 4 until the limit moisture content is reached. At that time, a muddy water dry matter having a sand content A satisfying the required strength with the strength of dewatered cake C satisfying the required strength. The sand content is A1. And the content rate A1 in the mixture currently stored in the mixture storage tank 2 is adjusted so that the sand content rate A which the sand content rate detection part 23 detects becomes the determined sand content rate A1. Specifically, when the sand content A is lower than the sand content A1, sand is supplied into the mixture storage tank 2 from a sand storage place (not shown) via a belt conveyor or the like. When the sand content A is higher than the sand content A1, the pump P1 is driven to supply muddy water from the muddy water storage tank 1 into the mixture storage tank 2.

決定した砂含有率Aとスクリュープレス5の仕様、即ちスクリュー52の径、全長、羽根ピッチ、排出口57の開口幅、濾筒51の目の大きさ等とに基づいて、スクリュー52の最適回転速度Nを決定する(S13)。例えば、スクリュープレス5での凝集泥水の処理量を優先すると、スクリュー52の最適回転速度Nは、脱水ケーキCの必要強度が得ることが可能な、換言すれば、限界含水率に達する最速の回転速度である。スクリュー52の最適回転速度Nが定まることにより、スクリュープレス5への凝集泥水の単位時間当り供給量Xが決定する(S10)。 Based on the determined sand content A and the specifications of the screw press 5, that is, the diameter, total length, blade pitch, opening width of the discharge port 57, the mesh size of the filter cylinder 51, etc., the optimum rotation of the screw 52 determines the speed N S (S13). For example, when priority is given to processing of aggregation mud in the screw press 5, the optimum rotational speed N S of the screw 52, which can be required strength of dehydrated cake C is obtained, in other words, the fastest to reach the critical moisture content Rotation speed. By optimum rotating speed N S of the screw 52 is determined, per unit time supply amount X of aggregation mud to a screw press 5 is determined (S10).

次に、ホッパー4への凝集泥水の単位時間当り供給量Yを決定する(S20)。ホッパー4へ供給された凝集泥水は、ドラムスクリーン41により水切りが行われるので、単位時間当り供給量Yは、単位時間当り供給量Xからドラムスクリーン41による水切り割合S分だけ増加させたものとなる。   Next, the supply amount Y per unit time of the condensed mud water to the hopper 4 is determined (S20). Since the aggregated mud supplied to the hopper 4 is drained by the drum screen 41, the supply amount Y per unit time is increased from the supply amount X per unit time by the draining rate S by the drum screen 41. .

泥水濃度検知部13により泥水の濃度αを検知する(S21)。S12で決定した砂含有率A1とS21で検知した泥水の濃度αとから、データ蓄積部43に蓄積されたデータを参照して、ドラムスクリーン41の最適回転速度N及び水切り割合Sを決定する(S22)。これにより、ホッパー4への凝集泥水の単位時間当り供給量Yが決定される(S20)。 The muddy water concentration detector 13 detects the muddy water concentration α (S21). Based on the sand content A1 determined in S12 and the muddy water concentration α detected in S21, the optimum rotational speed N D and draining rate S of the drum screen 41 are determined with reference to the data stored in the data storage unit 43. (S22). Thereby, the supply amount Y per unit time of the condensed mud water to the hopper 4 is determined (S20).

そして、混合物貯留槽2に貯留された混合物が、単位時間当り供給量Yだけ凝集反応槽3に供給されるように、制御部22によってポンプP2を駆動制御し、混合物貯留槽2に貯留される混合物が所定量となるように、制御部13によってポンプP1を駆動制御する。また、ドラムスクリーン41が最適回転速度Nで回転するように、制御部42によってモータM1の回転を駆動制御し、スクリュー52が最適回転速度Nで回転するように、制御部54によってモータM2の回転を駆動制御する。 Then, the control unit 22 drives and controls the pump P2 so that the mixture stored in the mixture storage tank 2 is supplied to the aggregation reaction tank 3 by the supply amount Y per unit time, and is stored in the mixture storage tank 2. The control unit 13 drives and controls the pump P1 so that the mixture becomes a predetermined amount. Moreover, as the drum screen 41 is rotated at optimal speed N D, drives and controls the rotation of the motor M1 by the control unit 42, so that the screw 52 is rotated at optimal speed N S, the motor M2 by the control unit 54 Drives and controls the rotation.

以上説明したように、泥水濃度検知部13が検知した泥水の濃度αに応じて、ドラムスクリーン41は最適回転速度Nで回転するともに、ドラムスクリーン41に供給される凝集泥水の単位時間当り供給量が制御されるので、泥水の濃度αの変化に拘らず、スクリュープレス5に供給される凝集泥水の含水率を一定にすることが可能となる。よって、スクリュープレス5から排出される脱水ケーキCは、所定の含水率を有し、一定強度となり、再利用性が優れたものとなる。 As described above, according to the density α of mud mud density detection unit 13 has detected, the drum screen 41 is optimum rotating speed N rotate together with D, per unit time supplied aggregation mud supplied to the drum screen 41 Since the amount is controlled, the moisture content of the aggregated mud water supplied to the screw press 5 can be made constant regardless of the change in the mud concentration α. Therefore, the dewatered cake C discharged from the screw press 5 has a predetermined moisture content, has a constant strength, and has excellent reusability.

また、脱水ケーキCの必要強度に基づき、混合物中の砂含有率を決定し、該決定した砂含有率に基づいて決定した最適回転速度Nでスクリュー52が回転する。そのため、スクリュープレス5から排出される脱水ケーキCが必要強度を有し、好適に再利用することが可能となる。さらに、データ蓄積部43に蓄積されたデータは、砂含有率及び泥水の濃度Aが異なる複数の複合物に応じたものであるので、脱水ケーキCの必要強度が変更されて砂含有率が変化しても、ドラムスクリーン41の最適回転速度Nを決定することができる。さらに、凝集泥水供給量制御部は、ドラムスクリーン41が最適回転速度Nで回転させたときの水切り割合Sとスクリュープレス5での凝集泥水の単位時間当り処理容量とに基づき、凝集反応槽3からドラムスクリーン41に供給する凝集泥水の単位時間当り供給量を制御するので、処理能力を最大化することが可能となる。 Further, based on the required strength of the dehydrated cake C, to determine the sand content in the mixture, the screw 52 is rotated at optimal speed N S determined on the basis of the determined sand content. Therefore, the dewatered cake C discharged from the screw press 5 has the required strength and can be reused suitably. Furthermore, since the data accumulated in the data accumulating unit 43 corresponds to a plurality of composites having different sand contents and muddy water concentrations A, the required strength of the dewatered cake C is changed and the sand contents change. also, it is possible to determine the optimum rotating speed N D of the drum screen 41. Further, the agglomerated muddy water supply amount controller controls the agglomeration reaction tank 3 based on the drainage rate S when the drum screen 41 is rotated at the optimum rotational speed N D and the treatment capacity per unit time of the agglomerated muddy water in the screw press 5. Since the supply amount per unit time of the aggregated mud water supplied to the drum screen 41 is controlled, the processing capacity can be maximized.

なお、泥水の脱水処理システムAとして、横型のスクリュープレス5を用いた場合を例に挙げて説明したが、縦型のスクリュープレスを用いるなど、システムの構成要素や配設順序等を適宜変更してもよい。   In addition, although the case where the horizontal screw press 5 was used as an example was explained as the muddy water dewatering treatment system A, the components of the system, the arrangement order, and the like were appropriately changed, such as using a vertical screw press. May be.

また、各制御部13,22,42,54は、自動制御を行うものであっても、スイッチ等を用いて作業者が制御を行うものであってもよい。さらに、データ蓄積部43は、パーソナルコンピュータのメモリ等にデータを蓄積するものであっても、書面等にデータやグラフ等を記載したものであってもよい。   Moreover, each control part 13,22,42,54 may perform an automatic control, or an operator may control using a switch etc. FIG. Further, the data storage unit 43 may store data in a memory or the like of a personal computer, or may describe data, a graph, or the like on a document.

さらに、脱水ケーキの強度増加のための強度増加材として砂を添加したが、本発明はこれに限らず、フライアッシュ、スラグ、セメント等の材料を単独又は砂と併用して用いるようにしてもよい。   Further, sand is added as a strength increasing material for increasing the strength of the dehydrated cake. However, the present invention is not limited to this, and materials such as fly ash, slag, cement and the like may be used alone or in combination with sand. Good.

なお、強度増加材の種類によっては、砂のように水切りを促進する効果があるとは限らず、ドラムスクリーン41の最適回転速度N及びスクリュープレス5の限界含水率は、強度増加材の種類及び含有率によって変化することは言うまでもない。 Depending on the kind of strength-increasing agent is not necessarily to be effective to promote drainage like sand, optimum rotating speed N D and critical moisture content of a screw press 5 the drum screen 41, the kind of strength-increasing agent Needless to say, it varies depending on the content.

1…泥水貯留槽、 2…混合物貯留槽、 3…凝集反応槽、 5…スクリュープレス、 13…泥水濃度検知部、 22…制御部(凝集泥水供給制御部)、 23…砂含有率検知部、 41…ドラムスクリーン、 42…制御部(ドラムスクリーン制御部)、 43…データ蓄積部、 51…濾筒、 52…スクリュー、 54…制御部(スクリュープレス制御部)、 A…泥水の脱水処理システム、 C…脱水ケーキ、 M1…モータ、 M2…モータ、 P2…ポンプ。   DESCRIPTION OF SYMBOLS 1 ... Muddy water storage tank, 2 ... Mixture storage tank, 3 ... Coagulation reaction tank, 5 ... Screw press, 13 ... Muddy water concentration detection part, 22 ... Control part (coagulation muddy water supply control part), 23 ... Sand content rate detection part, DESCRIPTION OF SYMBOLS 41 ... Drum screen 42 ... Control part (drum screen control part) 43 ... Data storage part 51 ... Filter cylinder 52 ... Screw 54 ... Control part (screw press control part) A ... Muddy water dehydration processing system, C ... dehydrated cake, M1 ... motor, M2 ... motor, P2 ... pump.

Claims (3)

凝集反応槽で泥水に生成される脱水ケーキの強度増加材を添加した混合物を生成し、該混合物に凝集剤を反応させて凝集泥水を生成し、該凝集泥水を回転するドラムスクリーンで水切りした後、スクリュープレスで圧搾脱水して所定の含水率を有する脱水ケーキを生成する泥水の脱水処理方法であって、
前記強度増加材の含有率とスクリュープレスの仕様とから求めた前記脱水ケーキの限界含水率に基づき前記スクリュープレスのスクリューの最適回転速度を定め、該最適回転速度で前記スクリューが回転するときの前記スクリュープレスでの凝集泥水の単位時間当り処理量を求め、該単位時間当り処理量の凝集泥水が前記スクリュープレスに供給されるよう、前記強度増加材の含有率及び泥水濃度が異なる複数の混合物に前記凝集剤を反応させて生成した複数種の凝集泥水を前記ドラムスクリーンに供給し、当該凝集泥水の水切りに最適な前記ドラムスクリーンの最適回転速度を前記泥水の濃度毎にデータとして所得しておき、
前記最適回転速度で回転するよう、前記スクリュープレスのスクリューの回転駆動を制御し、
前記強度増加材の含有率及び泥水の濃度に応じた前記ドラムスクリーンの最適回転速度を、前記データを参照して決定し、該決定した最適回転速度で回転するよう、前記ドラムスクリーンの回転駆動を制御するとともに、
前記最適回転速度で前記ドラムスクリーンを回転させたときの水切り割合と前記スクリュープレスを前記最適回転速度で回転させるときの凝集泥水の単位時間当り処理量とに基づき、前記凝集反応槽から前記ドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御することを特徴とする泥水の脱水処理方法。
After producing a mixture added with a strength increasing material for dehydrated cake produced in muddy water in the coagulation reaction tank, reacting the mixture with a coagulant to produce coagulated mud water, and draining the coagulated mud water with a rotating drum screen , A muddy water dehydration method for producing a dehydrated cake having a predetermined moisture content by pressing and dewatering with a screw press,
The optimum rotation speed of the screw of the screw press is determined based on the limit moisture content of the dehydrated cake determined from the content of the strength increasing material and the specifications of the screw press, and the screw is rotated at the optimum rotation speed. The amount of coagulated muddy water in the screw press is determined per unit time, and the mixture of the content of the strength increasing material and the muddy water concentration is different so that the amount of coagulated muddy water per unit time is supplied to the screw press. A plurality of types of agglomerated muddy water generated by reacting the aggregating agent is supplied to the drum screen, and the optimum rotation speed of the drum screen that is optimal for draining the agglomerated muddy water is obtained as data for each concentration of the muddy water. ,
Controlling the rotational drive of the screw of the screw press so as to rotate at the optimum rotational speed,
An optimum rotation speed of the drum screen according to the content of the strength increasing material and the concentration of muddy water is determined with reference to the data, and the drum screen is driven to rotate so as to rotate at the determined optimum rotation speed. As well as control
Based on the draining rate when the drum screen is rotated at the optimum rotation speed and the throughput per unit time of the agglomerated muddy water when the screw press is rotated at the optimum rotation speed, the drum screen is removed from the aggregation reaction tank. A method for dewatering muddy water, characterized in that the supply amount per unit time of agglomerated muddy water supplied to the water is controlled.
前記強度増加材は、砂、フライアッシュ、スラグ、セメントのうちの少なくとも1つを含むことを特徴とする請求項1に記載の泥水の脱水処理方法。   The method for dewatering muddy water according to claim 1, wherein the strength increasing material includes at least one of sand, fly ash, slag, and cement. 泥水に生成される脱水ケーキの強度増加材を添加した混合物における、強度増加材の含有率及び泥水濃度の異なる複数の混合物に凝集剤を反応させて凝集泥水を生成する凝集反応槽と、
前記泥水の濃度を検知する泥水濃度検知部と、
前記混合物における強度増加材の含有率を検知する強度増加材含有率検知部と、
回転して、前記凝集反応槽で生成した凝集泥水を水切りするドラムスクリーンと、
該泥水濃度検知部が検知した泥水の濃度に基づいて、前記ドラムスクリーンの回転駆動を制御するドラムスクリーン制御部と、
前記凝集反応槽から前記ドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御する凝集泥水供給量制御部と、
前記ドラムスクリーンで水切りした凝集泥水を圧搾脱水して所定の含水率を有する脱水ケーキを生成するスクリュープレスと、
前記強度増加材の含有率とスクリュープレスの仕様とから求めた前記脱水ケーキの限界含水率に基づき前記スクリュープレスのスクリューの最適回転速度を定め、該最適回転速度で前記スクリューが回転するときの前記スクリュープレスでの凝集泥水の単位時間当り処理量を求め、該単位時間当り処理量の凝集泥水が前記スクリュープレスに供給されるよう、前記強度増加材の含有率及び泥水濃度が異なる複数の混合物に前記凝集剤を反応させて生成した複数種の凝集泥水を前記ドラムスクリーンに供給し、当該凝集泥水の水切りに最適な前記ドラムスクリーンの最適回転速度を前記泥水の濃度毎に取得したデータを蓄積するデータ蓄積部と、
前記スクリュープレスの回転駆動を制御するスクリュープレス制御部と、を備え、
前記ドラムスクリーン制御部は、前記データ蓄積部が蓄積するデータを参照して、前記強度増加材含有率検知部で検知した強度増加材の含有率及び前記泥水濃度検知部で検知した前記泥水の濃度に応じた前記ドラムスクリーンの最適回転速度を決定し、該決定した最適回転速度で回転するように前記ドラムスクリーンの回転駆動を制御し、
前記凝集泥水供給量制御部は、前記最適回転速度で前記ドラムスクリーンを回転させたときの水切り割合と前記スクリュープレスでの凝集泥水の単位時間当り処理容量とに基づき、前記凝集反応槽から前記ドラムスクリーンに供給する凝集泥水の単位時間当り供給量を制御することを特徴とする泥水の脱水処理システム。
A coagulation reaction tank for producing coagulated mud water by reacting a coagulant with a plurality of mixtures having different contents and muddy water concentrations of the strength increasing material in the mixture to which the strength increasing material of the dewatered cake generated in the muddy water is added;
A muddy water concentration detector for detecting the muddy water concentration;
A strength increasing material content detection unit for detecting the content of the strength increasing material in the mixture;
A drum screen that rotates and drains the agglomerated muddy water generated in the agglomeration reaction tank;
A drum screen control unit that controls the rotational drive of the drum screen based on the concentration of muddy water detected by the muddy water concentration detection unit;
An agglomerated mud water supply control unit for controlling the amount of agglomerated mud supplied from the agglomeration reaction tank to the drum screen per unit time;
A screw press that produces a dehydrated cake having a predetermined moisture content by squeezing and dewatering the agglomerated muddy water drained by the drum screen;
The optimum rotation speed of the screw of the screw press is determined based on the limit moisture content of the dehydrated cake determined from the content of the strength increasing material and the specifications of the screw press, and the screw is rotated at the optimum rotation speed. The amount of coagulated muddy water in the screw press is determined per unit time, and the mixture of the content of the strength increasing material and the muddy water concentration is different so that the amount of coagulated muddy water per unit time is supplied to the screw press. A plurality of types of agglomerated muddy water generated by reacting the aggregating agent are supplied to the drum screen, and the data obtained for the optimum rotation speed of the drum screen optimal for draining the agglomerated muddy water is accumulated for each concentration of the muddy water. A data storage unit;
A screw press control unit for controlling the rotational drive of the screw press,
The drum screen control unit refers to the data accumulated by the data accumulation unit, the strength increase material content rate detected by the strength increase material content rate detection unit and the muddy water concentration detected by the muddy water concentration detection unit. Determining the optimum rotation speed of the drum screen according to the control, and controlling the rotation drive of the drum screen to rotate at the determined optimum rotation speed,
The agglomerated muddy water supply amount control unit is configured to remove the agglomerated reaction tank from the agglomeration reaction tank based on a draining rate when the drum screen is rotated at the optimum rotation speed and a processing capacity per unit time of the agglomerated muddy water in the screw press. A muddy water dewatering system that controls the amount of aggregated muddy water supplied to the screen per unit time.
JP2009160813A 2009-07-07 2009-07-07 Muddy water dewatering method and system Expired - Fee Related JP5087053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160813A JP5087053B2 (en) 2009-07-07 2009-07-07 Muddy water dewatering method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160813A JP5087053B2 (en) 2009-07-07 2009-07-07 Muddy water dewatering method and system

Publications (2)

Publication Number Publication Date
JP2011016042A true JP2011016042A (en) 2011-01-27
JP5087053B2 JP5087053B2 (en) 2012-11-28

Family

ID=43594259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160813A Expired - Fee Related JP5087053B2 (en) 2009-07-07 2009-07-07 Muddy water dewatering method and system

Country Status (1)

Country Link
JP (1) JP5087053B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424512A (en) * 2011-10-25 2012-04-25 苏州工业园区格瑞特泥科学与应用技术研究院有限公司 Sludge deep dehydration method comprising wall breaking-penetrating-press filtrating process
JP2016047506A (en) * 2014-08-28 2016-04-07 株式会社奥村組 Mobile muddy water treatment equipment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768300A (en) * 1993-09-01 1995-03-14 Yasuharu Sekishita Method for treating sludge and apparatus therefor
JPH09294998A (en) * 1996-05-02 1997-11-18 Mitsuharu Takasaki Method and apparatus for reutilizing sludge as resources
JP2002192200A (en) * 2000-12-27 2002-07-10 Penta Ocean Constr Co Ltd Method for recycling dredged soil
JP2003175400A (en) * 2001-12-13 2003-06-24 Ishigaki Co Ltd Method for treatment of sewage sludge
JP2005034774A (en) * 2003-07-16 2005-02-10 Yoshiro Aoyama Sludge dehydration method and apparatus therefor
JP2006181558A (en) * 2004-12-28 2006-07-13 Okumura Corp Method for dehydration of sediment in dam lake and its system
JP2006181557A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2006181560A (en) * 2004-12-28 2006-07-13 Okumura Corp Method for dehydration of sediment in dam lake and its system
JP2006181559A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2006181561A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2007136347A (en) * 2005-11-18 2007-06-07 Ishigaki Co Ltd Method for constant control of raw sludge supply amount of dehydrator and its control apparatus
JP2008055450A (en) * 2006-08-30 2008-03-13 Ishigaki Co Ltd Operation control method for screw press
JP2008221060A (en) * 2007-03-09 2008-09-25 Ishigaki Co Ltd Control method and control apparatus for constant cake water content in screw press
JP2009006319A (en) * 2008-06-19 2009-01-15 Okumura Corp Sludge dehydrator
JP2010058039A (en) * 2008-09-03 2010-03-18 Kurita Water Ind Ltd Sludge dewatering apparatus and sludge dewatering method
JP2010240519A (en) * 2009-04-01 2010-10-28 Daiyanitorikkusu Kk Method of treating water to be treated containing inorganic sludge
JP2010247044A (en) * 2009-04-14 2010-11-04 Ishigaki Co Ltd Operation control method for screw press provided continuously to concentrator

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768300A (en) * 1993-09-01 1995-03-14 Yasuharu Sekishita Method for treating sludge and apparatus therefor
JPH09294998A (en) * 1996-05-02 1997-11-18 Mitsuharu Takasaki Method and apparatus for reutilizing sludge as resources
JP2002192200A (en) * 2000-12-27 2002-07-10 Penta Ocean Constr Co Ltd Method for recycling dredged soil
JP3924738B2 (en) * 2000-12-27 2007-06-06 五洋建設株式会社 How to recycle dredged clay
JP2003175400A (en) * 2001-12-13 2003-06-24 Ishigaki Co Ltd Method for treatment of sewage sludge
JP2005034774A (en) * 2003-07-16 2005-02-10 Yoshiro Aoyama Sludge dehydration method and apparatus therefor
JP2006181559A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2006181560A (en) * 2004-12-28 2006-07-13 Okumura Corp Method for dehydration of sediment in dam lake and its system
JP2006181557A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2006181561A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2006181558A (en) * 2004-12-28 2006-07-13 Okumura Corp Method for dehydration of sediment in dam lake and its system
JP2007136347A (en) * 2005-11-18 2007-06-07 Ishigaki Co Ltd Method for constant control of raw sludge supply amount of dehydrator and its control apparatus
JP2008055450A (en) * 2006-08-30 2008-03-13 Ishigaki Co Ltd Operation control method for screw press
JP2008221060A (en) * 2007-03-09 2008-09-25 Ishigaki Co Ltd Control method and control apparatus for constant cake water content in screw press
JP2009006319A (en) * 2008-06-19 2009-01-15 Okumura Corp Sludge dehydrator
JP2010058039A (en) * 2008-09-03 2010-03-18 Kurita Water Ind Ltd Sludge dewatering apparatus and sludge dewatering method
JP2010240519A (en) * 2009-04-01 2010-10-28 Daiyanitorikkusu Kk Method of treating water to be treated containing inorganic sludge
JP2010247044A (en) * 2009-04-14 2010-11-04 Ishigaki Co Ltd Operation control method for screw press provided continuously to concentrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424512A (en) * 2011-10-25 2012-04-25 苏州工业园区格瑞特泥科学与应用技术研究院有限公司 Sludge deep dehydration method comprising wall breaking-penetrating-press filtrating process
JP2016047506A (en) * 2014-08-28 2016-04-07 株式会社奥村組 Mobile muddy water treatment equipment

Also Published As

Publication number Publication date
JP5087053B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5277152B2 (en) High alkali slurry processing method and system
JP4887335B2 (en) Sludge dewatering equipment
JP2011005362A (en) Slurry treatment apparatus
JP5087053B2 (en) Muddy water dewatering method and system
JPH07204657A (en) Portable turbid water treatment device
JP3150844B2 (en) Excavated waste soil treatment and regeneration plant
JP2007007551A (en) Kneader for sludge treatment and sludge treatment method using the same
WO2012093478A1 (en) Method and system for dehydration of muddy water
JP4588442B2 (en) Mud dehydration method and system
JP3924738B2 (en) How to recycle dredged clay
RU2395465C2 (en) Polygon for processing sewage sludge
JP5116327B2 (en) Construction sludge volume reduction device and construction sludge volume reduction method
KR20120091553A (en) A solid-and-liquid seperating apparatus for treating effluents, a screw dehydration apparatus and a treatment using them
JP2807657B2 (en) Method and apparatus for treating muddy water and industrial wastewater in muddy water drilling method
JP5187912B2 (en) Water circulation device and operation method
JP4588441B2 (en) Mud dehydration method and system
JP2004174305A (en) Method and apparatus for treating inorganic sludge
JPH07213827A (en) Solid-liquid separator
TWI539988B (en) Sludge dewatering treatment methods and systems
JP2002292400A (en) Dehydration equipment for low concentration slurry
JP3325049B2 (en) Sludge treatment method and sludge treatment apparatus therefor
JP4759593B2 (en) Sludge dewatering equipment
JP4837281B2 (en) Mud dehydration method and system
JP2011230019A (en) Control system, control device and control method
JPH1128311A (en) Powder mixing device and powder reaction tank provided with therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Ref document number: 5087053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees