JP4588442B2 - Mud dehydration method and system - Google Patents

Mud dehydration method and system Download PDF

Info

Publication number
JP4588442B2
JP4588442B2 JP2004381459A JP2004381459A JP4588442B2 JP 4588442 B2 JP4588442 B2 JP 4588442B2 JP 2004381459 A JP2004381459 A JP 2004381459A JP 2004381459 A JP2004381459 A JP 2004381459A JP 4588442 B2 JP4588442 B2 JP 4588442B2
Authority
JP
Japan
Prior art keywords
concentration
muddy water
sand
mud
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004381459A
Other languages
Japanese (ja)
Other versions
JP2006181561A (en
Inventor
則秀 石橋
安夫 米田
隆義 中山
清浩 戸澤
和人 田中
克司 門田
栄一 畑山
公二 西口
猛 佐々木
祐彰 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosawa Machinery Co., Ltd.
Fukoku Kogyo Co Ltd
Dia Nitrix Co Ltd
Okumura Corp
Original Assignee
Hirosawa Machinery Co., Ltd.
Fukoku Kogyo Co Ltd
Dia Nitrix Co Ltd
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosawa Machinery Co., Ltd., Fukoku Kogyo Co Ltd, Dia Nitrix Co Ltd, Okumura Corp filed Critical Hirosawa Machinery Co., Ltd.
Priority to JP2004381459A priority Critical patent/JP4588442B2/en
Publication of JP2006181561A publication Critical patent/JP2006181561A/en
Application granted granted Critical
Publication of JP4588442B2 publication Critical patent/JP4588442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、安定的かつ効率的に脱水処理を行うことができる泥状物の脱水処理方法およびそのシステムに関する。   The present invention relates to a method and system for dewatering a mud that can be stably and efficiently dewatered.

ダム湖の堆積物の浚渫や、トンネルの掘削などにともなって発生する水、粘土、シルト、砂、礫などの混合物(以下、「泥状物」という)を有効活用するための技術のひとつに、脱水技術がある。中でもスクリュウプレスなどの機械を用いた機械脱水は、泥状物の減容化や強度増加を図り、運搬や有効活用を行いやすいように処理する技術である。スクリュウプレスを用いて泥状物の脱水処理を行う技術として、例えば特許文献1に開示されたものが知られている。   One of the technologies to effectively use the mixture of water, clay, silt, sand, gravel, etc. (hereinafter referred to as “mud”) generated by dredging sediments in dam lakes and tunnel excavation There is dehydration technology. Among these, mechanical dehydration using a machine such as a screw press is a technique for reducing the volume and increasing the strength of the mud and making it easy to carry and effectively use. As a technique for performing a dehydration treatment of a mud using a screw press, for example, one disclosed in Patent Document 1 is known.

特許文献1は、浚渫によって発生した汚泥のリサイクル処理に関する技術であって、高濃度浚渫船により浚渫した泥状物を、まずふるいにかけて礫や夾雑物を除去し、次に凝集剤と反応させてフロック(凝集泥状物)を生成させた脱水原液とした上で、スクリュウプレスにより脱水処理して排水を分離し脱水ケーキとなす。さらにこの脱水ケーキに固化剤を添加混合して粒状土となす方法を開示している。   Patent document 1 is a technology related to recycling sludge generated by dredging. First, mud dredged by a high-concentration dredger is first screened to remove gravel and impurities, and then reacted with a flocculant to floc. After making a dehydrated undiluted solution in which (agglomerated mud) is produced, it is dehydrated by a screw press to separate the drainage to obtain a dehydrated cake. Furthermore, a method is disclosed in which a solidifying agent is added to and mixed with the dewatered cake to form a granular soil.

スクリュウプレスは一般的に、排水の透過性を有する円筒型あるいは円錐型の外筒(スクリーン)と、羽根が螺旋状に取り付けられたスクリュウ軸とから構成され、スクリュウ軸は外筒の両端面に回転自在に軸支されている。スクリュウ軸と外筒との間の空間の容積は、スクリュウ軸の軸径が脱水原液の投入口側から脱水ケーキの出口側に向かって徐々に大きくなるか、あるいは外筒の径が徐々に縮小することによって徐々に縮小する。その結果、泥状物は、羽根により出口側に送られながら徐々に強い圧力で圧搾され、その排水を外筒を通して排出しつつ、最終的に脱水ケーキとなってケーキ出口から排出される。
特開2002−192200号公報
A screw press is generally composed of a cylindrical or conical outer cylinder (screen) having drainage permeability and a screw shaft in which blades are attached in a spiral shape. The screw shaft is provided at both end faces of the outer cylinder. It is pivotally supported. The volume of the space between the screw shaft and the outer cylinder is such that the shaft diameter of the screw shaft gradually increases from the dehydrating stock solution inlet side toward the dehydrated cake outlet side, or the outer cylinder diameter gradually decreases. By gradually reducing. As a result, the mud is gradually squeezed with strong pressure while being sent to the outlet side by the blades, and finally discharged as a dehydrated cake and discharged from the cake outlet while discharging the drainage through the outer cylinder.
JP 2002-192200 A

ところで、上記従来の技術にあっては、採取される泥状物は場所などによってその性状がまちまちであるため、泥状物から生成される脱水原液をスクリュウプレスで安定的に脱水処理することができない、および効率的に行うことができないといった課題があった。   By the way, in the above-mentioned conventional technology, since the properties of the collected mud vary depending on the location, etc., it is possible to stably dewater the dehydrated stock solution generated from the mud with a screw press. There was a problem that it could not be done efficiently.

具体的には、脱水原液中における砂の含有割合や、泥水(脱水原液から砂を除いた成分、すなわち水、粘土、シルトからなる混合物)の濃度すなわち泥水中に含まれる細粒分(粘土、シルト)の割合などがまちまちであるため、例えば、脱水原液中の砂の含有割合が多く(泥水の含有割合が低く)泥水濃度も高いときは回転速度が低すぎてスクリュウプレス内で目詰まり(脱水処理の不安定)が生じ、他方、脱水原液中の砂の含有割合が低く(泥水の含有割合が高く)泥水濃度も低いときは回転速度が高すぎて脱水が不完全(脱水処理の不効率)となる場合があった。   Specifically, the content of sand in the dehydrated stock solution, the concentration of mud water (a component obtained by removing sand from the dehydrated stock solution, that is, a mixture of water, clay, and silt), that is, the fine particles contained in the mud water (clay, For example, when the content of sand in the dehydrated stock solution is large (low muddy water content) and the muddy water concentration is high, the rotational speed is too low and clogging occurs in the screw press ( On the other hand, when the content of sand in the dehydrated stock solution is low (high content of muddy water) and the concentration of muddy water is low, the rotational speed is too high and the dewatering is incomplete (incomplete dehydration). Efficiency).

本発明は上記従来の課題に鑑みて創案されたものであって、安定的かつ効率的に脱水処理を行うことができる泥状物の脱水処理方法およびそのシステムを提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method and system for dewatering a mud that can stably and efficiently perform dehydration.

本発明にかかる泥状物の脱水処理方法は、砂と泥水とを含む泥状物の脱水処理方法であって、泥状物を砂と泥水とに分離する分離ステップと、該分離された分離泥水をあらかじめ決められた濃度に調整し濃度調整泥水を生成する濃度調整ステップと、上記分離された砂と上記濃度調整泥水とを混合し、混合脱水原液を生成する混合ステップと、該混合脱水原液中の砂の含有割合を検知する砂割合検知ステップと、上記砂割合検知ステップにおいて検知された砂の含有割合に基づきスクリュウプレスの回転速度を制御しつつ、スクリュウプレスにより上記混合脱水原液を脱水する脱水ステップとを有することを特徴とする。   A method for dewatering a mud according to the present invention is a method for dewatering a mud containing sand and muddy water, a separation step for separating the muddy material into sand and muddy water, and the separated separation. A concentration adjusting step for adjusting the muddy water to a predetermined concentration to generate a concentration adjusted muddy water, a mixing step for mixing the separated sand and the concentration adjusted muddy water to generate a mixed dehydrated undiluted solution, and the mixed dehydrated undiluted solution The mixed dehydration stock solution is dehydrated by a screw press while controlling the rotation speed of the screw press based on the sand content detecting step for detecting the sand content ratio and the sand content detected in the sand ratio detecting step. And a dehydration step.

また、前記濃度調整ステップにおける前記濃度調整泥水の生成は、泥水の比重に基づき行うことを特徴とする。   The generation of the concentration-adjusted mud in the concentration adjustment step is performed based on the specific gravity of the muddy water.

また、前記砂割合検知ステップにおける砂の含有割合の検知は、前記混合脱水原液の比重に基づき行うことを特徴とする。   Moreover, the detection of the sand content ratio in the sand ratio detection step is performed based on the specific gravity of the mixed dehydrated undiluted solution.

また、前記砂割合検知ステップにおける砂の含有割合の検知は、あらかじめ測定された混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係に基づき行うことを特徴とする。   In addition, the detection of the sand content ratio in the sand ratio detection step is performed based on a correlation between the specific gravity of the mixed dehydrated stock solution measured in advance and the sand content ratio in the mixed dehydrated stock solution.

また、前記脱水ステップにおけるスクリュウプレスの回転速度の制御は、あらかじめ測定された混合脱水原液中の砂の含有割合とスクリュウプレスの最適回転速度との相関関係に基づき行うことを特徴とする。   In addition, the control of the rotation speed of the screw press in the dehydration step is performed based on the correlation between the sand content ratio in the mixed dehydration stock solution measured in advance and the optimum rotation speed of the screw press.

また、前記脱水ステップにおいて排出された排水を凝集沈殿させ凝集泥水を取り出す凝集分離ステップを有し、上記凝集泥水を前記分離泥水に混合することを特徴とする。   Further, the present invention has a coagulation and separation step of coagulating and precipitating the waste water discharged in the dehydration step and taking out the coagulated mud water, and mixing the coagulated mud water with the separated mud water.

また、本発明にかかる泥状物の脱水処理システムは、砂と泥水とを含む泥状物の脱水処理システムであって、泥状物を砂と泥水とに分離する分離部と、該分離部で分離された分離泥水をあらかじめ決められた濃度に調整し濃度調整泥水を生成する濃度調整部と、上記分離された砂と上記濃度調整泥水とを混合し、混合脱水原液を生成する混合部と、該混合脱水原液中の砂の含有割合を検知する砂割合検知部と、上記混合脱水原液を脱水するスクリュウプレスと、上記砂割合検知ステップにおいて検知された砂の含有割合に基づきスクリュウプレスの回転速度を制御する回転速度制御部とを有することを特徴とする。   Further, the dewatering treatment system for mud according to the present invention is a dewatering system for mud containing sand and muddy water, a separation unit for separating the muddy material into sand and muddy water, and the separation unit A concentration adjusting unit that adjusts the separated muddy water separated in step 1 to generate a concentration-adjusted muddy water, and a mixing unit that mixes the separated sand and the concentration-adjusted muddy water to generate a mixed dehydrated concentrate. A sand ratio detecting unit for detecting a sand content ratio in the mixed dehydrated undiluted solution, a screw press for dehydrating the mixed dehydrated concentrate solution, and a screw press rotation based on the sand content ratio detected in the sand ratio detecting step. And a rotational speed control unit for controlling the speed.

また、前記濃度調整部は、前記分離部で分離された分離泥水を受け入れる貯留槽と、該貯留槽に希釈水を供給する希釈水供給手段と、当該貯留槽に高濃度泥水を供給する高濃度泥水供給手段と、当該貯留槽内の泥水の濃度に応じ、該泥水があらかじめ決められた濃度となるよう上記希釈水供給手段および上記高濃度泥水供給手段を制御する濃度調整制御部とを有することを特徴とする。   The concentration adjusting unit includes a storage tank that receives the separated muddy water separated by the separation unit, a dilution water supply unit that supplies dilution water to the storage tank, and a high concentration that supplies high concentration mud water to the storage tank. A muddy water supply means, and a concentration adjustment control unit that controls the dilution water supply means and the high-concentration muddy water supply means so that the muddy water has a predetermined concentration according to the concentration of muddy water in the storage tank. It is characterized by.

また、前記スクリュウプレスにおける前記混合脱水原液の脱水時に排出された排水を凝集沈殿させ凝集泥水を取り出す凝集泥水生成部を有し、該凝集泥水が前記高濃度泥水であることを特徴とする。   Further, the present invention is characterized in that it has an agglomerated mud water generating unit for agglomerating and precipitating drainage discharged during dehydration of the mixed dehydrated undiluted solution in the screw press and taking out the agglomerated mud water, and the agglomerated mud water is the high-concentration mud water.

また、前記濃度調整部は、前記貯留槽内の泥水を前記分離部に返送する泥水返送手段と、上記貯留槽内の泥水量に応じ、上記泥水返送手段を制御する泥水量制御部とを有することを特徴とする。   The concentration adjusting unit includes a muddy water returning unit that returns muddy water in the storage tank to the separation unit, and a muddy water amount control unit that controls the muddy water returning unit according to the amount of muddy water in the storage tank. It is characterized by that.

本発明にかかる泥状物の脱水処理方法およびそのシステムにあっては、安定的かつ効率的に脱水処理を行うことができる。   In the method and system for dewatering a mud according to the present invention, dewatering can be performed stably and efficiently.

以下に、本発明にかかる泥状物の脱水処理方法およびそのシステムの好適な一実施形態を、添付図面を参照して詳細に説明する。本実施形態にかかる泥状物の脱水処理システム1は基本的には、図1に示すように、分離部2と、濃度調整部3と、混合部4と、スクリュウプレス5と、砂割合検知部100と、回転速度制御部110とから主に構成される。なお、本明細書および特許請求の範囲などにおいて「泥状物」とは、ダム湖の湖底の堆積物や、トンネルの掘削などにともなって発生する泥状の物質であって、水、粘土、シルト、砂、礫などを含む混合物を指す。また、「泥水」とは、泥状物から砂や礫を除いた成分、すなわち水、粘土、シルトからなる混合物を指す。また、「細粒分」とは、砂より小さな粒子分、すなわち粘土およびシルトを指す。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a method and system for dewatering a mud according to the present invention will be described in detail with reference to the accompanying drawings. As shown in FIG. 1, the dewatering treatment system 1 for mud according to the present embodiment basically includes a separation unit 2, a concentration adjustment unit 3, a mixing unit 4, a screw press 5, and a sand ratio detection. The unit 100 and the rotation speed control unit 110 are mainly configured. In the present specification and claims, the “mud” is a muddy substance that is generated by sediments on the bottom of a dam lake, excavation of a tunnel, etc. A mixture containing silt, sand, gravel, etc. The “muddy water” refers to a mixture of water, clay and silt obtained by removing sand and gravel from mud. “Fine granule” refers to particles smaller than sand, that is, clay and silt.

分離部2には、泥状物を礫と砂と泥水とに分離する振動ふるい21が設けられている。図示例にあっては、ダム湖の湖底から浚渫船などにより採取された泥状物が送られてきて、分離部2の振動ふるい21の受け入れ口22に投入される。振動ふるい21では、投入された泥状物から礫、および砂が分離される。泥状物からこれら礫と砂とが分離された残りの混合物、すなわち分離泥水は、振動ふるい21の泥水出口23からポンプP1によりサイクロン分級機24に投入されて遠心分離された後、濃度調整部3の貯留槽31に送られる。サイクロン分級機24では、遠心分離により壁面に付着した粒子を再度振動ふるい21へと戻すことによって、分離泥水中に残存する礫や砂を、より確実に分離泥水から除去する。本図示例にあっては、径が3mm以上の粒子を礫、径が74μm以上3mm未満の粒子を砂、74μm未満の細粒と水からなる混合物を泥水と分類している。   The separation unit 2 is provided with a vibrating screen 21 that separates the muddy material into gravel, sand, and muddy water. In the illustrated example, a muddy substance collected by a dredger or the like is sent from the bottom of the dam lake and is put into the receiving port 22 of the vibrating screen 21 of the separation unit 2. In the vibrating screen 21, gravel and sand are separated from the introduced mud. The remaining mixture in which the gravel and sand are separated from the mud, that is, the separated mud, is introduced into the cyclone classifier 24 from the mud outlet 23 of the vibrating screen 21 by the pump P1 and centrifuged, and then the concentration adjusting unit. 3 storage tanks 31. In the cyclone classifier 24, the particles adhering to the wall surface by centrifugal separation are returned to the vibrating screen 21 again, thereby more reliably removing gravel and sand remaining in the separated mud water from the separated mud water. In the illustrated example, particles having a diameter of 3 mm or more are classified as gravel, particles having a diameter of 74 μm or more and less than 3 mm are classified as sand, and a mixture of fine particles less than 74 μm and water is classified as muddy water.

分離部2において分離された礫と砂とは、土砂ピット6に蓄積される。土砂ピット6では、礫は礫置き場61、砂は砂置き場62に蓄積され、このうち砂は随時バックホー7およびブルドーザー8などにより運び出されて、図示しないベルトコンベアーやロードセルなどを経由して、後段の混合部4へと送られる。   The gravel and sand separated in the separation unit 2 are accumulated in the earth and sand pit 6. In the earth and sand pit 6, gravel is accumulated in the gravel yard 61 and sand is accumulated in the sand yard 62. Of these, the sand is carried by the backhoe 7 and the bulldozer 8 at any time, via a belt conveyor or load cell (not shown), and the like. It is sent to the mixing unit 4.

濃度調整部3には、貯留槽31が設けられている。貯留槽31には、分離部2で分離された分離泥水が投入されその濃度が調節される。貯留槽31には、希釈水供給手段32と高濃度泥水供給手段33とが接続されており、貯留槽31内の泥水の濃度を薄める場合には希釈水供給手段32から希釈水が供給され、濃度を高める場合には高濃度泥水供給手段33から高濃度泥水が供給され、最終的に、あらかじめ決められた濃度を有する濃度調整泥水が生成される。以上のような、泥水の濃度調整に関する各部の動作は、濃度調整制御部34によって制御される。図示例にあっては、濃度調整制御部34は、第1制御部39の一部として構成されている。   A storage tank 31 is provided in the concentration adjusting unit 3. The storage tank 31 is supplied with the separated muddy water separated by the separation unit 2 and its concentration is adjusted. Dilution water supply means 32 and high-concentration mud water supply means 33 are connected to the storage tank 31, and when diluting the concentration of muddy water in the storage tank 31, dilution water is supplied from the dilution water supply means 32, In the case of increasing the concentration, the high-concentration mud water is supplied from the high-concentration mud water supply means 33, and finally, the concentration-adjusted mud water having a predetermined concentration is generated. The operation of each unit relating to the muddy water concentration adjustment as described above is controlled by the concentration adjustment control unit 34. In the illustrated example, the density adjustment control unit 34 is configured as a part of the first control unit 39.

ここで、あらかじめ決められた濃度とは、本脱水処理システム1において使用されるスクリュウプレス5の仕様(例えばスクリュウプレス5の外筒とスクリュウ軸との間の容積など)、およびスクリュウプレス5の運転条件の一つであるスクリュウ軸の回転速度に応じて決定される、最適な泥水濃度(泥水中の、粘土やシルトなど細粒分の含有率)のことであって、その値は前もって第1制御部34にデータとして入力されている。   Here, the predetermined concentration is the specification of the screw press 5 used in the dehydration processing system 1 (for example, the volume between the outer cylinder of the screw press 5 and the screw shaft), and the operation of the screw press 5. It is the optimum mud concentration (content of fine particles such as clay and silt in the mud) determined according to the rotation speed of the screw shaft, which is one of the conditions. The data is input to the control unit 34 as data.

また、貯留槽31には貯留槽31内の泥水(濃度調整済みの場合は濃度調整泥水)を吐出するための吐出管35と吐出ポンプP2が設けられている。これら泥水、あるいは濃度調整泥水の吐出および搬送に関する各部の動作は、後述する泥水量制御部38によって制御される。   Further, the storage tank 31 is provided with a discharge pipe 35 and a discharge pump P2 for discharging the muddy water in the storage tank 31 (concentration-adjusted muddy water when the concentration is adjusted). The operation of each part relating to the discharge and conveyance of these muddy water or concentration-adjusted muddy water is controlled by a muddy water control unit 38 which will be described later.

また、貯留槽31には比重測定器36が接続されており、貯留槽31内の泥水の濃度調整は、当該泥水の比重に基づき実行される。具体的には、比重測定器36において測定された泥水比重測定値が、泥水の濃度調整制御を実行する濃度調整制御部34へと出力され、濃度調整制御部34では、前もって入力された泥水の比重と泥水濃度との関連を示すグラフのデータに基づいて、入力された泥水比重測定値から現在の泥水濃度を判断する。そして、現在の泥水濃度があらかじめ決められた濃度よりも濃い場合には、希釈水供給手段32のポンプP3が作動し貯留槽31に希釈水が供給され、あるいは現在の泥水濃度があらかじめ決められた濃度よりも薄い場合には、高濃度泥水供給手段33のポンプP4が作動し貯留槽31に高濃度泥水が供給されて、貯留槽31内の泥水があらかじめ決められた濃度となるよう調整され、最終的に、濃度調整泥水となる。   Moreover, the specific gravity measuring device 36 is connected to the storage tank 31, and the concentration adjustment of the muddy water in the storage tank 31 is executed based on the specific gravity of the muddy water. Specifically, the muddy water specific gravity measurement value measured by the specific gravity measuring device 36 is output to the concentration adjustment control unit 34 for executing the muddy water concentration adjustment control, and the concentration adjustment control unit 34 inputs the muddy water previously input. Based on the graph data indicating the relationship between the specific gravity and the muddy water concentration, the current muddy water concentration is determined from the input muddy water specific gravity measurement value. When the current mud concentration is higher than a predetermined concentration, the pump P3 of the dilution water supply means 32 is operated to supply the dilution water to the storage tank 31, or the current mud concentration is predetermined. When the concentration is lower than the concentration, the pump P4 of the high concentration mud supply means 33 is operated to supply the high concentration mud to the storage tank 31, and the mud in the storage tank 31 is adjusted to have a predetermined concentration. Ultimately, it becomes the concentration-adjusted mud.

また、本実施形態における濃度調整部3には、貯留槽31内の泥水量の調節を行うために、泥水返送手段37と、泥水量制御部38とが設けられている。泥水量制御部38は、図示例にあっては、第1制御部39の一部として構成されている。すなわち図示例にあっては、第1制御部39は上述の濃度調整制御部34と泥水量制御部38とを含んでいる。泥水返送手段37は、貯留槽31の吐出管35から分岐させ、振動ふるい21の受け入れ口22まで接続された泥水返送管37aと、泥水返送管37aの中途に設けられた開閉制御可能なバルブV1と、貯留槽31に設けられた泥水量測定器37bなどから構成され、貯留槽31内の泥水量が基準値を超えてしまうような場合には、この泥水返送手段37を介して適宜な量の泥水を、分離部2の振動ふるい21へと返送する。具体的には、まず泥水量測定器37bにおいて測定された泥水量測定値が泥水量制御部38へと出力され、泥水量制御部38で泥水量測定値が基準値以上に達したと判断された場合、泥水量制御部38では、バルブV1を開放するとともに、後述する濃度調整泥水搬送管9a、9bの中途に設けられたバルブV2、V3を閉止させた上で、貯留槽31の吐出ポンプP2を作動させる。その結果、貯留槽31内の泥水が振動ふるい21への受け入れ口22へと返送される。   Moreover, in order to adjust the amount of muddy water in the storage tank 31, the concentration adjusting unit 3 in the present embodiment is provided with a muddy water returning means 37 and a muddy water amount control unit 38. The muddy water amount control unit 38 is configured as a part of the first control unit 39 in the illustrated example. That is, in the illustrated example, the first control unit 39 includes the above-described concentration adjustment control unit 34 and the muddy water amount control unit 38. The muddy water return means 37 is branched from the discharge pipe 35 of the storage tank 31, and is connected to the receiving port 22 of the vibrating screen 21, and a valve V1 that can be opened and closed provided in the middle of the muddy water return pipe 37a. When the amount of muddy water in the storage tank 31 exceeds a reference value, an appropriate amount is returned via the muddy water return means 37. Is returned to the vibrating screen 21 of the separation unit 2. Specifically, first, the muddy water amount measured value measured by the muddy water amount measuring device 37b is output to the muddy water amount control unit 38, and the muddy water amount control unit 38 determines that the muddy water amount measured value has reached the reference value or more. In this case, the muddy water amount control unit 38 opens the valve V1, closes valves V2 and V3 provided in the middle of concentration adjusting muddy water conveyance pipes 9a and 9b, which will be described later, and then discharges the discharge pump of the storage tank 31. Activate P2. As a result, the muddy water in the storage tank 31 is returned to the receiving port 22 for the vibrating screen 21.

泥水量制御部38は、あらかじめ決められた期間、泥水を返送した後自動的に泥水の返送を終了する。あるいは、泥水量測定器37bから出力される泥水量測定値があらかじめ決められた一定値まで低下したことをもって返送を終了することとしてもよい。   The muddy water amount control unit 38 automatically returns the muddy water after returning the muddy water for a predetermined period. Alternatively, the return may be terminated when the measured amount of muddy water output from the muddy water measuring device 37b has decreased to a predetermined value.

また、貯留槽31の吐出管35には、後段の混合部4へ濃度調整泥水を送るための濃度調整泥水搬送管9a、9bが接続されている。濃度調整泥水搬送管9a、9bはそれぞれ後述する混合部4の混合槽41a、41bに接続されており、それぞれの中途には開閉制御可能なバルブV2、V3が設けられている。上述の泥水量制御部38において、比重測定器36から出力された泥水比重測定値に基づき、濃度調整泥水が生成されたと判断された場合には、当該濃度調整泥水を貯留槽31から混合部4へと搬送するために、バルブV2、V3を開放するとともに、泥水返送手段37のバルブV1を閉止させた上で、吐出ポンプP2を作動させる。その結果、貯留槽31内で生成された濃度調整泥水が混合部4へと搬送される。   Concentration adjusting mud transport pipes 9 a and 9 b for sending the concentration adjusting mud water to the subsequent mixing unit 4 are connected to the discharge pipe 35 of the storage tank 31. The concentration adjusting mud transport pipes 9a and 9b are respectively connected to mixing tanks 41a and 41b of the mixing unit 4 described later, and valves V2 and V3 that can be controlled to open and close are provided in the middle. In the above-described muddy water amount control unit 38, when it is determined that the concentration-adjusted muddy water is generated based on the muddy water specific gravity measurement value output from the specific gravity measuring device 36, the concentration-adjusted muddy water is supplied from the storage tank 31 to the mixing unit 4. In order to convey the air to the water, the valves V2 and V3 are opened, and the discharge pump P2 is operated after the valve V1 of the muddy water return means 37 is closed. As a result, the concentration-adjusted mud generated in the storage tank 31 is conveyed to the mixing unit 4.

混合部4は、土砂ピット6の砂置き場62から運ばれる砂を受け入れるベルトコンベアー42と、このベルトコンベアーに並列に接続された2つの混合槽41a、41bなどから構成される。正逆反転可能なベルトコンベアー42は、受け入れた砂を混合槽41aあるいは混合槽41bへと投入する。また各混合槽41a、41bは、泥水を貯留槽31から受け入れる濃度調整泥水搬送管9a、9bに接続されており、各混合槽41a、41bでは上記の砂と濃度調整泥水搬送管9a、9bからの濃度調整泥水とが混合されて混合脱水原液が生成される。   The mixing unit 4 includes a belt conveyor 42 that receives sand conveyed from the sand storage place 62 of the earth and sand pit 6, and two mixing tanks 41a and 41b connected in parallel to the belt conveyor. The belt conveyor 42 capable of reversing forward and reverse throws the received sand into the mixing tank 41a or the mixing tank 41b. Moreover, each mixing tank 41a, 41b is connected to the density | concentration adjustment muddy water conveyance pipe | tube 9a, 9b which receives muddy water from the storage tank 31, and in each mixing tank 41a, 41b from said sand and concentration adjustment muddy water conveyance pipe | tube 9a, 9b. A mixed dehydrated undiluted solution is produced by mixing with the concentration-adjusted mud.

また、各混合槽41a、41bには砂割合検知部100が接続されており、各混合槽41a、41b内の混合脱水原液に含まれる、砂の含有割合(=砂と濃度調整泥水との混合割合)が検知される。具体的には、各混合槽41a、41bにそれぞれ接続された比重測定器44a、44bで混合脱水原液の比重測定値が測定され、この比重測定値が砂割合検知部100へと出力される。砂割合検知部100ではこの比重測定値と、あらかじめ測定された、混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係を示すデータに基づいて、混合脱水原液中の砂の含有割合を判断する。   Moreover, the sand ratio detection part 100 is connected to each mixing tank 41a, 41b, and the content rate (= mixing of sand and density | concentration adjustment mud water) contained in the mixing dehydration stock solution in each mixing tank 41a, 41b. Ratio) is detected. Specifically, the specific gravity measurement value of the mixed dehydrated stock solution is measured by the specific gravity measuring devices 44 a and 44 b respectively connected to the mixing tanks 41 a and 41 b, and this specific gravity measurement value is output to the sand ratio detection unit 100. Based on the measured specific gravity value and the data indicating the correlation between the specific gravity of the mixed dehydrated stock solution and the content ratio of the sand in the mixed dehydrated stock solution, the sand ratio detecting unit 100 preliminarily measures the sand in the mixed dehydrated stock solution. Determine the content.

混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係とは、例えば図2に示すようなグラフで表される。すなわち、砂は泥水に比して比重が大きいので、砂の含有割合が高いほど、砂を含む混合脱水原液の比重が大きくなる(その結果グラフが右上がりとなる)。実際の検知を示す例として、比重測定器44a、44bで測定された混合脱水原液の比重測定値が、図中、丸付き数字1で示す点であった場合、砂割合検知部100ではこのグラフに基づいて砂の含有割合をα(%)と判断する。   The correlation between the specific gravity of the mixed dehydrated undiluted solution and the content ratio of sand in the mixed dehydrated undiluted solution is represented by a graph as shown in FIG. 2, for example. That is, since the specific gravity of sand is larger than that of muddy water, the higher the content ratio of sand, the larger the specific gravity of the mixed dehydrated stock solution containing sand (as a result, the graph goes up to the right). As an example showing actual detection, when the specific gravity measurement value of the mixed dehydrated stock solution measured by the specific gravity measuring devices 44a and 44b is a point indicated by a circled number 1 in the figure, the sand ratio detection unit 100 displays this graph. Based on the above, the sand content is determined to be α (%).

なお、混合脱水原液中の泥水濃度が異なれば、図2のグラフの形は異なるが、本脱水処理システムでは、前述の濃度調整ステップにおいて、一定の濃度を有するよう調整した濃度調整泥水を用いて混合脱水原液を生成しているので、グラフの形は常に一定である。   If the muddy water concentration in the mixed dehydrated undiluted solution is different, the shape of the graph in FIG. 2 is different. In this dehydration processing system, the concentration adjusting muddy water adjusted to have a constant concentration is used in the concentration adjusting step described above. Since the mixed dehydrated stock solution is produced, the shape of the graph is always constant.

2つの並列する混合槽41a、41bでは、混合脱水原液の生成と混合脱水原液中の砂割合の検知とが交互に行われ、検知済みの混合脱水原液が順次、後段のパドル型反応器10へと送られる。   In the two parallel mixing tanks 41a and 41b, the generation of the mixed dehydrated stock solution and the detection of the sand ratio in the mixed dehydrated stock solution are alternately performed, and the detected mixed dehydrated stock solution is sequentially transferred to the paddle reactor 10 at the subsequent stage. Sent.

パドル型反応器10に投入された混合脱水原液は、アニオンやカチオンなどの適宜な1種ないし複数種の凝集剤11と反応させられフロックを生成させ、混合脱水原液中の粒子がスクリュウプレス5の外筒から排出されにくいよう調整した後、スクリュウプレス5に投入される。   The mixed dehydrated stock solution charged into the paddle reactor 10 is reacted with one or more suitable flocculants 11 such as anions and cations to generate flocs, and the particles in the mixed dehydrated stock solution are contained in the screw press 5. After adjusting so that it is difficult to be discharged from the outer cylinder, it is put into the screw press 5.

スクリュウプレス5は、排水の透過性を有する円筒型あるいは円錐型の外筒(スクリーン)と、羽根が螺旋状に取り付けられたスクリュウ軸とから構成され、スクリュウ軸は外筒の両端面に回転自在に軸支されている。スクリュウ軸と外筒との間の空間の容積は、スクリュウ軸の軸径が混合脱水原液の投入口51側から脱水ケーキの出口52側に向かって徐々に大きくなるか、あるいは外筒の径が徐々に縮小することによって徐々に縮小する。その結果、混合脱水原液は、羽根により出口52側に送られながら徐々に強い圧力で圧搾され、その排水を外筒を通して排出しつつ、最終的に脱水ケーキとなってケーキ出口52から排出される。   The screw press 5 includes a cylindrical or conical outer cylinder (screen) having drainage permeability, and a screw shaft on which blades are spirally attached. The screw shaft is freely rotatable on both end faces of the outer cylinder. Is pivotally supported. The volume of the space between the screw shaft and the outer cylinder is such that the shaft diameter of the screw shaft gradually increases from the mixed dehydrating stock solution inlet 51 side toward the dehydrated cake outlet 52 side, or the outer cylinder diameter increases. Reduce gradually by gradually reducing. As a result, the mixed dehydrated undiluted solution is gradually squeezed with a strong pressure while being sent to the outlet 52 side by the blades, and finally discharged as a dehydrated cake and discharged from the cake outlet 52 while discharging the drainage through the outer cylinder. .

その際、スクリュウプレス5のスクリュウ軸の回転速度は、スクリュウプレス5に接続された回転速度制御部110によって、常に最適な回転速度となるよう制御される。具体的には、回転速度制御部110で、砂割合検知部100において検知された混合脱水原液中の砂の含有割合の値と、あらかじめ測定された、混合脱水原液中の砂の含有割合とスクリュウプレスの最適回転速度との相関関係を示すデータに基づいて、スクリュウプレス5の最適回転速度を決定する。   At that time, the rotational speed of the screw shaft of the screw press 5 is controlled by the rotational speed control unit 110 connected to the screw press 5 so as to be always the optimum rotational speed. Specifically, the rotational speed control unit 110 detects the sand content ratio in the mixed dehydrated stock solution detected by the sand ratio detection unit 100, the sand content ratio and screw in the mixed dehydrated stock solution measured in advance. The optimum rotation speed of the screw press 5 is determined based on the data indicating the correlation with the optimum rotation speed of the press.

混合脱水原液中の砂の含有割合とスクリュウプレスの最適回転速度との相関関係とは、例えば図3に示すようなグラフで表される。すなわち、混合脱水原液中の砂の含有割合が高い場合ほど、脱水は速く完了するので、スクリュウプレス5を高速で回転させないと、脱水され流動性が低下した原液が途中で目詰まりを起こしてしまう。従って、砂の含有割合が高いほど、スクリュウプレス5の最適回転速度は高くなる(その結果グラフが右上がりとなる)。   The correlation between the content ratio of sand in the mixed dehydrated stock solution and the optimum rotation speed of the screw press is represented by a graph as shown in FIG. 3, for example. In other words, the higher the content ratio of sand in the mixed dehydrated stock solution, the faster the dehydration is completed. Therefore, if the screw press 5 is not rotated at a high speed, the dehydrated and reduced fluidity will clog in the middle. . Accordingly, the higher the sand content ratio, the higher the optimum rotation speed of the screw press 5 (as a result, the graph increases to the right).

実際に最適回転速度を決定する例として、砂割合検知部100で判断された混合脱水原液中の砂の含有割合の値が、図中、丸付き数字2で示す点であった場合、回転速度制御部110では、グラフに基づいてスクリュウプレス5の最適回転速度をβと決定する。   As an example of actually determining the optimum rotation speed, when the value of the sand content ratio in the mixed dehydrated stock solution determined by the sand ratio detection unit 100 is a point indicated by a circled numeral 2 in the figure, the rotation speed In the control part 110, the optimal rotational speed of the screw press 5 is determined as (beta) based on a graph.

なお、混合脱水原液中の泥水濃度が異なれば、図3のグラフの形は異なるが、本脱水処理システムでは、前述の濃度調整ステップにおいて、一定の濃度を有するよう調整した濃度調整泥水を用いて混合脱水原液を生成しているので、グラフの形は常に一定である。   If the muddy water concentration in the mixed dehydrated undiluted solution is different, the shape of the graph in FIG. 3 is different. In this dehydration processing system, the concentration adjusting muddy water adjusted to have a constant concentration is used in the concentration adjusting step described above. Since the mixed dehydrated stock solution is produced, the shape of the graph is always constant.

スクリュウプレス5の後段には、凝集泥水生成部12としてのシックナー12a、およびベルトコンベアー13を介してスラッジ置き場14が設けられている。スラッジ置き場14には脱水ケーキが蓄積される。   In the subsequent stage of the screw press 5, a sludge storage 14 is provided via a thickener 12 a as a condensed mud water generating unit 12 and a belt conveyor 13. The dewatered cake is accumulated in the sludge storage 14.

シックナー12aでは、スクリュウプレス5の外筒から排出された排水を受け入れ、ポリ塩化ナトリウム(PAC)や有機高分子系凝集剤などの適宜な1種ないし複数種の凝集剤15により凝集処理を施す。その結果、排水中に若干残存する粘土やシリカなどの細粒分が凝集沈殿するので、この沈殿を含む液体をシックナー12a下部の吐出口12bから取り出す。図示例にあっては、この液体(凝集泥水)は、濃度調整部3において生成された濃度調整泥水よりも濃度の高い泥水であり、また、シックナーの吐出口12bは高濃度泥水供給手段33に接続されていて、この凝集泥水を濃度調整部3の高濃度泥水供給手段33において供給される高濃度泥水として使用する。すなわち、貯留槽31内の泥水の濃度を濃くする場合に、当該泥水に混合する。なお、シックナー12aにおける凝集処理の残余分である上澄み液は、ダム湖に戻すなど適宜放流される。   In the thickener 12a, the waste water discharged from the outer cylinder of the screw press 5 is received and subjected to agglomeration treatment with one or more kinds of suitable aggregating agents 15 such as polysodium chloride (PAC) and organic polymer type aggregating agent. As a result, fine particles such as clay and silica slightly remaining in the wastewater agglomerate and settle, and the liquid containing the precipitate is taken out from the discharge port 12b below the thickener 12a. In the illustrated example, this liquid (aggregated muddy water) is muddy water having a higher concentration than the concentration adjusted muddy water generated in the concentration adjusting unit 3, and the discharge port 12 b of the thickener is connected to the high concentration muddy water supply means 33. It is connected and this agglomerated mud is used as the high-concentration mud supplied by the high-concentration mud supply means 33 of the concentration adjusting unit 3. That is, when the concentration of the muddy water in the storage tank 31 is increased, the muddy water is mixed with the muddy water. In addition, the supernatant liquid which is the remainder of the aggregation process in the thickener 12a is discharged | emitted suitably, such as returning to a dam lake.

次に、このような泥状物の脱水処理方法について、上記脱水処理システム1を例にとって説明する。ダム湖から採取された泥状物は、分離部2の振動ふるい21の受け入れ口22に投入されて、分離ステップが行われる。すなわち、振動ふるい21にてふるい分けされ、礫、砂、およびそれ以外の泥水とが分離される。このうち、礫と砂は、土砂ピット6の礫置き場61、砂置き場62にそれぞれ蓄積される。分離された分離泥水は、サイクロン分級機24において遠心分離され、分離された粒子が再度振動ふるい21に戻される。   Next, a method for dewatering such a mud will be described using the dewatering system 1 as an example. The mud collected from the dam lake is put into the receiving port 22 of the vibrating screen 21 of the separation unit 2 and a separation step is performed. That is, it is screened by the vibration sieve 21 and separated from gravel, sand, and other muddy water. Among these, gravel and sand are accumulated in the gravel place 61 and the sand place 62 of the earth and sand pit 6, respectively. The separated muddy water is centrifuged in the cyclone classifier 24, and the separated particles are returned to the vibrating screen 21 again.

次いで、サイクロン分級機24を通過した分離泥水は、濃度調整部3の貯留槽31に投入され、あらかじめ決められた濃度に調整される。この濃度調整部3において、濃度調整ステップが行われる。すなわち、貯留槽31内の泥水の濃度が、あらかじめ決められた濃度よりも濃い場合には、希釈水供給手段32から希釈水が供給され、あらかじめ決められた濃度よりも薄い場合には、シックナー12aの吐出口12bに接続された高濃度泥水供給手段33から高濃度泥水である凝集泥水が供給される。   Next, the separated muddy water that has passed through the cyclone classifier 24 is charged into the storage tank 31 of the concentration adjusting unit 3 and adjusted to a predetermined concentration. In the density adjusting unit 3, a density adjusting step is performed. That is, when the concentration of the muddy water in the storage tank 31 is higher than a predetermined concentration, the dilution water is supplied from the dilution water supply means 32, and when the concentration is lower than the predetermined concentration, the thickener 12a. Aggregated mud water, which is high-concentration mud water, is supplied from the high-concentration mud water supply means 33 connected to the discharge port 12b.

このような泥水の濃度調整は、貯留槽31内の泥水の比重に基づき行われる。また、希釈水供給手段32や高濃度泥水供給手段33の動作は、第1制御部39に含まれる濃度調整制御部34により制御される。具体的には、濃度調整制御部34は、貯留槽31に接続された比重測定器36から出力された泥水比重測定値に基づいてまず現在の泥水の濃度を決定し、次いでその濃度をあらかじめ決められた濃度と比較し、現在の泥水の濃度を濃くするべきか薄くするべきかを判断する。そして濃くする場合には、高濃度泥水供給手段33のポンプP4を作動させて凝集泥水を供給し、薄くする場合には希釈水供給手段32のポンプP3を作動させて希釈水を供給する。そして現在の泥水の濃度が、あらかじめ決められた濃度と一致し、濃度調整泥水が生成されたところでそれらの供給を停止する。   Such muddy water concentration adjustment is performed based on the specific gravity of the muddy water in the storage tank 31. The operations of the dilution water supply means 32 and the high-concentration mud water supply means 33 are controlled by the concentration adjustment control unit 34 included in the first control unit 39. Specifically, the concentration adjustment control unit 34 first determines the current mud concentration based on the measured mud specific gravity output from the specific gravity measuring device 36 connected to the storage tank 31, and then determines the concentration in advance. Compared with the determined concentration, it is judged whether the current mud concentration should be increased or decreased. In the case of increasing the concentration, the pump P4 of the high-concentration mud supply means 33 is operated to supply the aggregated mud water, and in the case of reducing the thickness, the pump P3 of the dilution water supply means 32 is operated to supply the dilution water. And the density | concentration of the present muddy water corresponds with the density | concentration decided beforehand, and those supply will be stopped when density | concentration adjustment muddy water is produced | generated.

ここで、貯留槽31内の泥水量が基準値を超え、多くなりすぎてしまいそうな場合には、泥水返送手段37により適宜な量の泥水が分離部2に返送される。すなわち、第1制御部39に含まれる泥水量制御部38では、貯留槽31に接続された泥水量測定器37bから出力された泥水量測定値に基づいてまず現在の泥水の量を決定し、次いでその量をあらかじめ決められた基準値と比較し、現在の泥水の量を減少させるべきか否かを判断する。そして減少させると判断した場合には、泥水返送管37aの中途に設けられたバルブV1を開放するとともに、濃度調整泥水搬送管9a、9bの中途に設けられたバルブV2、V3を閉止させた上で、貯留槽31の吐出ポンプP2を作動させ、所定の期間が経過した後、あるいは泥水量測定値が所定の値まで低下した時点で返送を停止する。その結果、適宜な量の泥水が泥水返送管37aを介して振動ふるい21の受け入れ口22へと返送される。   Here, when the amount of muddy water in the storage tank 31 exceeds the reference value and is likely to increase too much, an appropriate amount of muddy water is returned to the separation unit 2 by the muddy water returning means 37. That is, in the muddy water amount control unit 38 included in the first control unit 39, the current muddy water amount is first determined based on the muddy water amount measurement value output from the muddy water amount measuring device 37b connected to the storage tank 31, The amount is then compared with a predetermined reference value to determine whether the current amount of mud should be reduced. If it is determined that the value is to be decreased, the valve V1 provided in the middle of the mud return pipe 37a is opened, and the valves V2 and V3 provided in the middle of the concentration adjusting mud transport pipes 9a and 9b are closed. Then, the discharge pump P2 of the storage tank 31 is operated, and the return is stopped after a predetermined period has elapsed or when the muddy water measurement value has decreased to a predetermined value. As a result, an appropriate amount of muddy water is returned to the receiving port 22 of the vibrating screen 21 through the muddy water return pipe 37a.

あらかじめ決められた濃度と一致する濃度の泥水、すなわち濃度調整泥水が生成された場合には、濃度調整泥水搬送管9a、9bを介し、混合部4の混合槽41a、41bに搬送される。その際、泥水量制御部38は、濃度調整泥水搬送管9a、9bの中途に設けられたバルブV2、V3を開放するとともに、泥水返送管37aの中途に設けられたバルブV1を閉止させた上で、貯留槽31の吐出ポンプP2を作動させる。その結果、貯留槽31で生成された濃度調整泥水が混合部4へと送られる。   When muddy water having a concentration that matches a predetermined concentration, that is, concentration-adjusted muddy water is generated, it is conveyed to the mixing tanks 41a and 41b of the mixing unit 4 via the concentration-adjusted muddy water conveying pipes 9a and 9b. At that time, the muddy water amount control unit 38 opens the valves V2 and V3 provided in the middle of the concentration adjusting muddy water transport pipes 9a and 9b, and closes the valve V1 provided in the middle of the muddy water return pipe 37a. Then, the discharge pump P2 of the storage tank 31 is operated. As a result, the concentration-adjusted mud generated in the storage tank 31 is sent to the mixing unit 4.

次いで、混合部4では混合ステップが行われる。すなわち、混合部4の混合槽41a、41bに、濃度調整泥水と、分離部2において分離された砂がベルトコンベアー42から投入され、混合されて、混合脱水原液が生成される。   Next, a mixing step is performed in the mixing unit 4. That is, the concentration-adjusted mud water and the sand separated in the separation unit 2 are introduced into the mixing tanks 41a and 41b of the mixing unit 4 from the belt conveyor 42 and mixed to generate a mixed dehydrated stock solution.

次いで、砂割合検知部100は、砂割合検知ステップを実行し、混合脱水原液中の砂の含有割合を検知する。砂割合検知ステップでは、まず混合脱水原液の比重を測定し、その比重測定値と、あらかじめ測定された、混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係とに基づいて、砂の含有割合を判断する。   Next, the sand ratio detection unit 100 executes a sand ratio detection step to detect the content ratio of sand in the mixed dehydrated stock solution. In the sand ratio detection step, first, the specific gravity of the mixed dehydrated stock solution is measured, and based on the measured value of the specific gravity and the correlation between the specific gravity of the mixed dehydrated stock solution and the content of sand in the mixed dehydrated stock solution measured in advance. Determine the sand content.

次いで、混合脱水原液はパドル型反応器10に投入される。パドル型反応器10では、混合脱水原液を凝集剤11と反応させ、フロックを生成させる。   Next, the mixed dehydrated stock solution is charged into the paddle reactor 10. In the paddle reactor 10, the mixed dehydrated stock solution is reacted with the flocculant 11 to generate floc.

次いで、フロックが生成された混合脱水原液を、スクリュウプレス5に投入し、脱水ステップが行われる。その際、回転速度制御部110では、砂割合検知ステップにおいて検知された砂の含有割合からスクリュウプレス5の回転速度を決定し、スクリュウプレス5の回転速度が常に最適となるよう制御する。この回転速度の決定は、あらかじめ測定された、混合脱水原液中の砂の含有割合とスクリュウプレスの最適回転速度との相関関係に基づいて行われる。その結果スクリュウプレス5では、投入された混合脱水原液が、スクリュウ軸の回転により圧搾されつつケーキ出口52側に送られ、ケーキ出口52から脱水ケーキが排出される。   Next, the mixed dehydrated stock solution in which flocks are generated is put into the screw press 5 and a dehydration step is performed. At that time, the rotation speed control unit 110 determines the rotation speed of the screw press 5 from the sand content ratio detected in the sand ratio detection step, and performs control so that the rotation speed of the screw press 5 is always optimum. The determination of the rotational speed is performed based on the correlation between the sand content ratio in the mixed dehydrated stock solution and the optimum rotational speed of the screw press measured in advance. As a result, in the screw press 5, the charged mixed dehydrated stock solution is sent to the cake outlet 52 side while being compressed by the rotation of the screw shaft, and the dehydrated cake is discharged from the cake outlet 52.

脱水ステップにおいて、スクリュウプレス5の外筒から排出された排水は、凝集泥水生成部12としてのシックナー12aに送られる。シックナー12aでは凝集分離ステップが行われる。すなわち、シックナー12aでは、上述の排水に凝集剤15を添加混合し凝集処理を施す。その結果、排水中に残存していた細粒分が凝集沈殿し、この沈殿を含む液体(凝集泥水)がシックナー12aの吐出口12bから取り出され、吐出口12bに接続された高濃度泥水供給手段33により、濃度調整部3に送られる。濃度調整部3では、貯留槽31に貯留された分離泥水を高濃度化する際に、この凝集泥水を高濃度泥水として使用し、貯留槽31内の泥水に混合する。   In the dehydration step, the drainage discharged from the outer cylinder of the screw press 5 is sent to a thickener 12a as the agglomerated muddy water generating unit 12. In the thickener 12a, a coagulation separation step is performed. That is, in the thickener 12a, the flocculant 15 is added to and mixed with the above-mentioned wastewater to perform the agglomeration treatment. As a result, the fine particles remaining in the wastewater are agglomerated and precipitated, and a liquid (aggregated muddy water) containing this precipitate is taken out from the discharge port 12b of the thickener 12a and connected to the discharge port 12b. 33 is sent to the density adjusting unit 3. In the concentration adjusting unit 3, when increasing the concentration of the separated mud stored in the storage tank 31, this aggregated mud is used as the high concentration mud and mixed with the mud in the storage tank 31.

以上説明した本実施形態にかかる泥状物の脱水処理方法およびそのシステムにあっては、分離部2での分離ステップで泥状物を砂と泥水とに分離し、濃度調整部3での濃度調整ステップで、分離ステップで分離された分離泥水をあらかじめ決められた濃度に調整し濃度調整泥水を生成し、混合部4での混合ステップで、分離された砂と濃度調整泥水とを混合し混合脱水原液を生成した上で、砂割合検知部100での砂割合検知ステップで混合脱水原液中の砂の含有割合を検知し、この検知された砂の含有割合に基づいて、回転速度制御部110で回転速度を制御しつつ、スクリュウプレス5での脱水ステップで脱水することとしたので、スクリュウプレス5を、混合部4から混合脱水原液が投入されるごとに、その混合脱水原液中の砂の含有割合に応じ最適な回転速度で運転されるよう適切に制御することができる。その結果、スクリュウプレス5で目詰まりが発生したり、脱水が不完全となったりすることなく、安定的かつ効率的に脱水処理を行うことができる。   In the mud dehydration method and system according to the present embodiment described above, the mud is separated into sand and muddy water in the separation step in the separation unit 2, and the concentration in the concentration adjustment unit 3 is obtained. In the adjustment step, the separation mud separated in the separation step is adjusted to a predetermined concentration to generate a concentration adjustment mud, and in the mixing step in the mixing unit 4, the separated sand and the concentration adjustment mud are mixed and mixed. After the dehydrated stock solution is generated, the sand content detection step in the sand rate detection unit 100 detects the content ratio of the sand in the mixed dehydrated stock solution, and based on the detected sand content rate, the rotation speed control unit 110. Therefore, each time the mixed dehydrated stock solution is fed from the mixing unit 4, the screw of the sand in the mixed dehydrated stock solution is controlled. Contains It can be appropriately controlled to be operated at an optimal rotational speed depending on the case. As a result, the screw press 5 can be stably and efficiently dehydrated without causing clogging or incomplete dehydration.

また、濃度調整部3での濃度調整ステップでは、濃度調整泥水の生成を、分離泥水の比重に基づいて行うこととしたので、貯留槽31内の泥水の量に基づいて濃度調整を行う場合に比して、当該泥水の全量を測定する必要もないため、泥水の濃度判断および濃度調整を容易に行うことができる。   In addition, in the concentration adjustment step in the concentration adjustment unit 3, since the generation of the concentration adjustment mud is performed based on the specific gravity of the separated muddy water, the concentration adjustment is performed based on the amount of the muddy water in the storage tank 31. In comparison, since it is not necessary to measure the total amount of the muddy water, the concentration judgment and concentration adjustment of the muddy water can be easily performed.

また、砂割合検知部100での砂割合検知ステップでは、砂の含有割合の検知を、混合脱水原液の比重に基づいて行うこととしたので、混合槽41a、41bに投入される砂および濃度調整泥水の量に基づいて混合を行う場合に比して、砂や濃度調整泥水の全量を測定する必要もなく、その検知を容易に行うことができる。   Moreover, in the sand ratio detection step in the sand ratio detection unit 100, since the detection of the sand content ratio is performed based on the specific gravity of the mixed dehydrated stock solution, the sand and concentration adjustment to be added to the mixing tanks 41a and 41b Compared to the case of mixing based on the amount of muddy water, it is not necessary to measure the total amount of sand or concentration-adjusted muddy water, and the detection can be easily performed.

また、砂割合検知部100での砂割合検知ステップでは、砂の含有割合の検知を、あらかじめ測定された、混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係に基づき行うこととしたので、比重測定器44a、44bで測定された混合脱水原液の比重測定値を利用し、簡単かつ確実な方法で混合脱水原液中の砂の含有割合を判断することができる。   In the sand ratio detection step in the sand ratio detection unit 100, the detection of the sand content ratio is performed based on the correlation between the specific gravity of the mixed dehydrated stock solution and the sand content ratio in the mixed dehydrated stock solution measured in advance. Therefore, the specific gravity measurement value of the mixed dehydrated stock solution measured by the specific gravity measuring devices 44a and 44b can be used to determine the sand content ratio in the mixed dehydrated stock solution by a simple and reliable method.

また、脱水ステップにおける、回転速度制御部110でのスクリュウプレス5の回転速度の制御は、あらかじめ測定された、混合脱水原液中の砂の含有割合とスクリュウプレス5の最適回転速度との相関関係に基づいて行うことこととしたので、砂割合検知部100で検知された混合脱水原液中の砂の含有割合の値を利用して、簡単かつ確実な方法でスクリュウプレス5の最適回転速度を決定することができる。   In the dehydration step, the rotation speed control unit 110 controls the rotation speed of the screw press 5 based on the correlation between the sand content ratio in the mixed dehydration stock solution and the optimum rotation speed of the screw press 5 measured in advance. Therefore, the optimum rotation speed of the screw press 5 is determined by a simple and reliable method using the value of the sand content ratio in the mixed dehydrated stock solution detected by the sand ratio detection unit 100. be able to.

また、凝集泥水生成部12での凝集分離ステップでは、スクリュウプレス5から排出された排水を凝集沈殿させ凝集泥水を取り出し、当該凝集泥水を分離泥水に混合することとした、より具体的には濃度調整部3での濃度調整ステップで、濃度調整泥水を生成するために高濃度泥水として使用することとしたので、スクリュウプレス5からの排水を再度、本脱水処理システム1内に循環させることによって、排水中に若干残存する粒子分をより確実に、かつ効率よく除去することができるとともに、高濃度泥水を外部から調達する場合に比して、本脱水処理システム1の構成の簡単化、低コスト化を図ることができる。   Further, in the aggregating and separating step in the agglomerated mud water generating unit 12, the drainage discharged from the screw press 5 is agglomerated and precipitated, the agglomerated muddy water is taken out, and the agglomerated muddy water is mixed with the separated muddy water. In the concentration adjustment step in the adjustment unit 3, since it was decided to use as high concentration muddy water to generate concentration adjusted muddy water, by circulating the drainage from the screw press 5 again in the dehydration processing system 1, Some particles remaining in the waste water can be removed more reliably and efficiently, and the configuration of the dehydration treatment system 1 can be simplified and the cost can be reduced as compared with the case where high-concentration mud is procured from the outside. Can be achieved.

また、濃度調整部3は、分離部2で分離された分離泥水を受け入れる貯留槽31と、貯留槽31に希釈水を供給する希釈水供給手段32と、貯留槽31に高濃度泥水を供給する高濃度泥水供給手段33と、貯留槽31内の泥水の濃度に応じあらかじめ決められた濃度となるよう希釈水供給手段32および高濃度泥水供給手段33を制御する濃度調整制御部34とを有する構成としたので、簡単な構成によって確実に貯留槽31内の泥水の濃度調整を行うことができる。   The concentration adjusting unit 3 also receives a storage tank 31 that receives the separated muddy water separated by the separation unit 2, dilution water supply means 32 that supplies the dilution water to the storage tank 31, and supplies high concentration mud water to the storage tank 31. A configuration having a high-concentration mud supply unit 33 and a concentration adjustment control unit 34 for controlling the dilution water supply unit 32 and the high-concentration mud supply unit 33 so as to have a predetermined concentration according to the concentration of the mud in the storage tank 31. Therefore, the concentration of muddy water in the storage tank 31 can be reliably adjusted with a simple configuration.

また、濃度調整部3は、貯留槽31内の泥水を分離部2に返送する泥水返送手段37と、貯留槽31内の泥水量に応じて、泥水返送手段37を制御する泥水量制御部38とを有する構成としたので、貯留槽31内の泥水が溢れたりすることはなく、適切に一定量以内に抑えられるとともに、貯留槽31内の泥水を再度、本脱水処理システム1内に循環させることによって、返送された泥水中に若干残存する砂や礫をより確実に、かつ効率よく除去することができる。   Further, the concentration adjusting unit 3 returns the muddy water returning means 37 for returning the muddy water in the storage tank 31 to the separating unit 2, and the muddy water amount control part 38 for controlling the muddy water returning means 37 according to the amount of muddy water in the storage tank 31. Therefore, the muddy water in the storage tank 31 does not overflow and is appropriately suppressed within a certain amount, and the muddy water in the storage tank 31 is circulated again in the dehydration processing system 1. As a result, it is possible to more reliably and efficiently remove sand and gravel slightly remaining in the returned muddy water.

なお、上記実施形態にあっては、泥状物としてダム湖からの浚渫物を例として説明したが、これに限定されるものではなく、例えばトンネルの掘削にともなって発生する泥状物など、あらゆる泥状物に適用しうる。   In addition, in the above-described embodiment, as an example, the mud from the dam lake was described as an example, but is not limited to this, for example, the mud generated by excavation of the tunnel, Applicable to any mud.

また、上記実施形態にあっては、各ステップの処理を、バッチ的に行われるものとして説明したが、いずれも連続的に処理されることとしてもよい。その場合、具体的には例えば、砂割合検知ステップにおける各混合槽41a、41b内の混合脱水原液中の砂の含有割合の検知は、時々刻々実行され、回転制御部110ではこれらの情報を受け、スクリュウプレス5の回転速度をフィードフォワード制御する。   Moreover, in the said embodiment, although the process of each step was demonstrated as what is performed batchwise, all are good also as processing continuously. In that case, specifically, for example, the detection of the sand content ratio in the mixed dehydrated undiluted solution in each mixing tank 41a, 41b in the sand ratio detection step is executed every moment, and the rotation control unit 110 receives these information. The feedforward control of the rotational speed of the screw press 5 is performed.

本発明にかかる泥状物の脱水処理方法を実施するための脱水処理システムの好適な一実施形態を示す説明図である。It is explanatory drawing which shows suitable one Embodiment of the dehydration processing system for enforcing the dehydration processing method of the sludge concerning this invention. 図1の脱水処理方法の砂割合検知ステップにおいて使用される、混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係の一例を示すグラフである。It is a graph which shows an example of correlation with the specific gravity of mixed dehydration stock solution, and the content rate of the sand in mixed dehydration stock solution used in the sand ratio detection step of the dehydration processing method of FIG. 図1の脱水処理方法の脱水ステップにおいて使用される、混合脱水原液中の砂の含有割合とスクリュウプレスの最適回転速度との相関関係の一例を示すグラフである。It is a graph which shows an example of the correlation with the content rate of the sand in mixed dehydration stock solution and the optimal rotational speed of a screw press used in the spin-drying | dehydration step of the spin-drying | dehydration processing method of FIG.

符号の説明Explanation of symbols

1 脱水処理システム
2 分離部
3 濃度調整部
4 混合部
5 スクリュウプレス
12 凝集泥水生成部
31 貯留槽
32 希釈水供給手段
33 高濃度泥水供給手段
34 濃度調整制御部
37 泥水返送手段
38 泥水量制御部
100 砂割合検知部
110 回転速度制御部
DESCRIPTION OF SYMBOLS 1 Dehydration processing system 2 Separation part 3 Concentration adjustment part 4 Mixing part 5 Screw press 12 Agglomerated mud water generation part 31 Reservoir 32 Dilution water supply means 33 High concentration mud water supply means 34 Concentration adjustment control part 37 Mud water return means 38 Mud water amount control part 100 sand ratio detection unit 110 rotation speed control unit

Claims (10)

砂と泥水とを含む泥状物の脱水処理方法であって、
泥状物を砂と泥水とに分離する分離ステップと、
該分離された分離泥水をあらかじめ決められた濃度に調整し濃度調整泥水を生成する濃度調整ステップと、
上記分離された砂と上記濃度調整泥水とを混合し、混合脱水原液を生成する混合ステップと、
該混合脱水原液中の砂の含有割合を検知する砂割合検知ステップと、
上記砂割合検知ステップにおいて検知された砂の含有割合に基づきスクリュウプレスの回転速度を制御しつつ、スクリュウプレスにより上記混合脱水原液を脱水する脱水ステップと
を有することを特徴とする泥状物の脱水処理方法。
A method of dewatering a mud containing sand and muddy water,
A separation step for separating the mud into sand and muddy water;
A concentration adjusting step for adjusting the separated separated muddy water to a predetermined concentration to generate a concentration adjusted muddy water;
Mixing the separated sand and the concentration-adjusted mud water to produce a mixed dehydrated stock solution; and
A sand ratio detecting step for detecting a content ratio of sand in the mixed dehydrated undiluted solution;
A dehydration step of dehydrating the mixed dehydration stock solution with a screw press while controlling the rotational speed of the screw press based on the sand content ratio detected in the sand ratio detection step. Processing method.
前記濃度調整ステップにおける前記濃度調整泥水の生成は、泥水の比重に基づき行うことを特徴とする請求項1に記載の泥状物の脱水処理方法。   The method for dewatering a mud according to claim 1, wherein the generation of the concentration-adjusted mud in the concentration adjustment step is performed based on the specific gravity of the muddy water. 前記砂割合検知ステップにおける砂の含有割合の検知は、前記混合脱水原液の比重に基づき行うことを特徴とする請求項1または2に記載の泥状物の脱水処理方法。   The method for dewatering a mud according to claim 1 or 2, wherein the detection of the sand content ratio in the sand ratio detection step is performed based on a specific gravity of the mixed dehydrated stock solution. 前記砂割合検知ステップにおける砂の含有割合の検知は、あらかじめ測定された混合脱水原液の比重と混合脱水原液中の砂の含有割合との相関関係に基づき行うことを特徴とする請求項3に記載の泥状物の脱水処理方法。   4. The detection of the sand content ratio in the sand ratio detection step is performed based on a correlation between a pre-measured specific gravity of the mixed dehydrated stock solution and a sand content ratio in the mixed dehydrated stock solution. Of dehydration treatment of sludge. 前記脱水ステップにおけるスクリュウプレスの回転速度の制御は、あらかじめ測定された混合脱水原液中の砂の含有割合とスクリュウプレスの最適回転速度との相関関係に基づき行うことを特徴とする請求項1〜4に記載の泥状物の脱水処理方法。   The control of the rotational speed of the screw press in the dewatering step is performed based on the correlation between the sand content ratio in the mixed dehydrated stock solution measured in advance and the optimum rotational speed of the screw press. 2. A method for dehydrating a mud according to item 2. 前記脱水ステップにおいて排出された排水を凝集沈殿させ凝集泥水を取り出す凝集分離ステップを有し、上記凝集泥水を前記分離泥水に混合することを特徴とする請求項1〜5いずれかの項に記載の泥状物の脱水処理方法。   6. The method according to claim 1, further comprising a coagulation separation step of coagulating and sedimenting the waste water discharged in the dehydration step and taking out the coagulated mud water, and mixing the coagulated mud water with the separation mud water. A dehydration method for mud. 砂と泥水とを含む泥状物の脱水処理システムであって、
泥状物を砂と泥水とに分離する分離部と、
該分離部で分離された分離泥水をあらかじめ決められた濃度に調整し濃度調整泥水を生成する濃度調整部と、
上記分離された砂と上記濃度調整泥水とを混合し、混合脱水原液を生成する混合部と、
該混合脱水原液中の砂の含有割合を検知する砂割合検知部と、
上記混合脱水原液を脱水するスクリュウプレスと、
上記砂割合検知ステップにおいて検知された砂の含有割合に基づきスクリュウプレスの回転速度を制御する回転速度制御部と
を有することを特徴とする泥状物の脱水処理システム。
A dewatering system for mud containing sand and muddy water,
A separation unit for separating the mud into sand and muddy water;
A concentration adjusting unit that adjusts the separated mud separated by the separating unit to a predetermined concentration to generate a concentration-adjusted mud,
Mixing the separated sand and the concentration-adjusted mud water, and generating a mixed dehydrated stock solution; and
A sand ratio detector for detecting the content ratio of sand in the mixed dehydrated undiluted solution;
A screw press for dehydrating the mixed dehydrated stock solution;
And a rotation speed control unit for controlling the rotation speed of the screw press based on the sand content ratio detected in the sand ratio detection step.
前記濃度調整部は、前記分離部で分離された分離泥水を受け入れる貯留槽と、該貯留槽に希釈水を供給する希釈水供給手段と、当該貯留槽に高濃度泥水を供給する高濃度泥水供給手段と、当該貯留槽内の泥水の濃度に応じ、該泥水があらかじめ決められた濃度となるよう上記希釈水供給手段および上記高濃度泥水供給手段を制御する濃度調整制御部とを有することを特徴とする請求項7に記載の泥状物の脱水処理システム。   The concentration adjusting unit includes a storage tank that receives the separated muddy water separated by the separation unit, a dilution water supply unit that supplies dilution water to the storage tank, and a high concentration muddy water supply that supplies high concentration muddy water to the storage tank. And a concentration adjustment control unit for controlling the dilution water supply means and the high-concentration mud water supply means so that the muddy water has a predetermined concentration according to the concentration of the muddy water in the storage tank. The sludge dehydration system according to claim 7. 前記スクリュウプレスにおける前記混合脱水原液の脱水時に排出された排水を凝集沈殿させ凝集泥水を取り出す凝集泥水生成部を有し、該凝集泥水が前記高濃度泥水であることを特徴とする請求項8に記載の泥状物の脱水処理システム。   9. The agglomerated muddy water generating unit for aggregating and precipitating drainage discharged during dehydration of the mixed dehydrated undiluted solution in the screw press to extract agglomerated muddy water, wherein the agglomerated muddy water is the high-concentration muddy water. The dehydration processing system for the described muddy matter. 前記濃度調整部は、前記貯留槽内の泥水を前記分離部に返送する泥水返送手段と、上記貯留槽内の泥水量に応じ、上記泥水返送手段を制御する泥水量制御部とを有することを特徴とする請求項8または9に記載の泥状物の脱水処理システム。   The concentration adjusting unit includes a muddy water returning unit that returns muddy water in the storage tank to the separation unit, and a muddy water amount control unit that controls the muddy water returning unit according to the amount of muddy water in the storage tank. The dewatering treatment system for mud according to claim 8 or 9, characterized in that
JP2004381459A 2004-12-28 2004-12-28 Mud dehydration method and system Expired - Fee Related JP4588442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381459A JP4588442B2 (en) 2004-12-28 2004-12-28 Mud dehydration method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381459A JP4588442B2 (en) 2004-12-28 2004-12-28 Mud dehydration method and system

Publications (2)

Publication Number Publication Date
JP2006181561A JP2006181561A (en) 2006-07-13
JP4588442B2 true JP4588442B2 (en) 2010-12-01

Family

ID=36735045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381459A Expired - Fee Related JP4588442B2 (en) 2004-12-28 2004-12-28 Mud dehydration method and system

Country Status (1)

Country Link
JP (1) JP4588442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517285B1 (en) * 2013-07-09 2015-05-15 현병선 A Sludge turnkey treatment system for a basin

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827245B2 (en) * 2006-06-16 2011-11-30 ミノワ工機株式会社 Water circulation device and operation method
JP4728987B2 (en) * 2007-03-19 2011-07-20 株式会社奥村組 Turbid water treatment equipment
JP2010089016A (en) * 2008-10-08 2010-04-22 Daiho Constr Co Ltd Method and apparatus for treating dredged soil
JP5087053B2 (en) * 2009-07-07 2012-11-28 株式会社奥村組 Muddy water dewatering method and system
JP2015077579A (en) * 2013-10-18 2015-04-23 鈴木 孝行 Manufacturing method and manufacturing system of recycled sand
JP7424892B2 (en) 2020-04-01 2024-01-30 水ing株式会社 Screw press and how to operate it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063500U (en) * 1992-06-08 1994-01-18 エレポン化工機株式会社 Sludge dewatering device
JP2000015018A (en) * 1998-07-01 2000-01-18 Ohbayashi Corp Sludge treatment method and facility
JP2001070997A (en) * 1999-09-08 2001-03-21 Hitachi Kiden Kogyo Ltd Treatment method for filtrate and washing waste water in sludge dehydrator
JP2002160092A (en) * 2000-11-28 2002-06-04 Mitsubishi Kakoki Kaisha Ltd Screw press
JP2002192200A (en) * 2000-12-27 2002-07-10 Penta Ocean Constr Co Ltd Method for recycling dredged soil
JP2003126826A (en) * 2001-10-25 2003-05-07 Mitsubishi Heavy Ind Ltd Device for method of treating generated soil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410562A (en) * 1977-06-25 1979-01-26 Hitachi Zosen Corp Method of treating muddy water used for muddy-water shielding excavator
JP2845718B2 (en) * 1993-04-09 1999-01-13 日立造船株式会社 Screw dehydrator
JP3150844B2 (en) * 1994-05-16 2001-03-26 カワセインダストリィー株式会社 Excavated waste soil treatment and regeneration plant
JP3408979B2 (en) * 1997-12-26 2003-05-19 株式会社日平トヤマ Slurry management system
JP3457531B2 (en) * 1998-03-10 2003-10-20 株式会社大林組 Mud water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063500U (en) * 1992-06-08 1994-01-18 エレポン化工機株式会社 Sludge dewatering device
JP2000015018A (en) * 1998-07-01 2000-01-18 Ohbayashi Corp Sludge treatment method and facility
JP2001070997A (en) * 1999-09-08 2001-03-21 Hitachi Kiden Kogyo Ltd Treatment method for filtrate and washing waste water in sludge dehydrator
JP2002160092A (en) * 2000-11-28 2002-06-04 Mitsubishi Kakoki Kaisha Ltd Screw press
JP2002192200A (en) * 2000-12-27 2002-07-10 Penta Ocean Constr Co Ltd Method for recycling dredged soil
JP2003126826A (en) * 2001-10-25 2003-05-07 Mitsubishi Heavy Ind Ltd Device for method of treating generated soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517285B1 (en) * 2013-07-09 2015-05-15 현병선 A Sludge turnkey treatment system for a basin

Also Published As

Publication number Publication date
JP2006181561A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP2011131129A (en) Method and system for treating highly alkaline slurry
JP4887335B2 (en) Sludge dewatering equipment
JP2011005362A (en) Slurry treatment apparatus
JP4588442B2 (en) Mud dehydration method and system
JP2013017989A (en) Method and system for dredging sludge
JP4588441B2 (en) Mud dehydration method and system
JP5295178B2 (en) Muddy water treatment method
JP2010089016A (en) Method and apparatus for treating dredged soil
JP4837281B2 (en) Mud dehydration method and system
JP4837282B2 (en) Method and system for dewatering sediment from dam lake
JP4688332B2 (en) Low concentration slurry dewatering equipment
JP2006016934A (en) Shield excavator
KR100440197B1 (en) The System of for the using Recycled of Dredged Soils
JP4600848B2 (en) Mud mud treatment system and apparatus therefor
JP5087053B2 (en) Muddy water dewatering method and system
JP2000015018A (en) Sludge treatment method and facility
JP4637570B2 (en) Method and system for dewatering sediment from dam lake
WO2012093478A1 (en) Method and system for dehydration of muddy water
JP4332080B2 (en) Excavation soil treatment equipment in shield excavator
JPH07213827A (en) Solid-liquid separator
JP2008229487A (en) Construction sludge volume reduction device, and construction sludge volume reduction method
JP2005155154A (en) Mud treatment device and dredge mud treatment system
JP2008296163A (en) Solid-liquid separating apparatus for suspension water using flocculant
TWI539988B (en) Sludge dewatering treatment methods and systems
JP2003326110A (en) Flocculation and separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees