JP2011012316A - Soft high-carbon steel sheet superior in punchability and method for manufacturing the same - Google Patents

Soft high-carbon steel sheet superior in punchability and method for manufacturing the same Download PDF

Info

Publication number
JP2011012316A
JP2011012316A JP2009158173A JP2009158173A JP2011012316A JP 2011012316 A JP2011012316 A JP 2011012316A JP 2009158173 A JP2009158173 A JP 2009158173A JP 2009158173 A JP2009158173 A JP 2009158173A JP 2011012316 A JP2011012316 A JP 2011012316A
Authority
JP
Japan
Prior art keywords
less
punchability
steel sheet
carbon steel
soft high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158173A
Other languages
Japanese (ja)
Other versions
JP4903839B2 (en
Inventor
Kengo Takeda
健悟 竹田
Masayuki Abe
阿部  雅之
Hisanari Yato
久斉 矢頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009158173A priority Critical patent/JP4903839B2/en
Publication of JP2011012316A publication Critical patent/JP2011012316A/en
Application granted granted Critical
Publication of JP4903839B2 publication Critical patent/JP4903839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To soften the material and enhance the punchability of a high-carbon steel sheet which contains 0.70-0.95 mass% C.SOLUTION: The soft high-carbon steel sheet superior in punchability includes, by mass%, 0.70-0.95% C, 0.05-0.4% Si, 0.5-2.0% Mn, 0.005-0.03% P, 0.0001-0.006% S, 0.005-0.10% Al, 0.001-0.01% N and the balance Fe with unavoidable impurities, and has a structure which includes 100 pieces or more of voids per 1 mmof the observed structure.

Description

本発明は、打抜き性に優れた軟質高炭素鋼板とその製造方法関するものである。   The present invention relates to a soft high carbon steel sheet excellent in punchability and a method for producing the same.

高炭素鋼板は、チェーン、ギヤー、クラッチ、鋸、刃物等の素材として広く用いられている。高炭素鋼板から製品を製造する場合、通常、成形後、焼入れ焼戻し等の熱処理を施して硬化させる。それ故、高炭素鋼板には、複雑で過酷な加工に耐える加工性が要求される。   High carbon steel plates are widely used as materials for chains, gears, clutches, saws, blades and the like. When a product is produced from a high carbon steel plate, it is usually cured after forming by heat treatment such as quenching and tempering. Therefore, high carbon steel sheets are required to have workability that can withstand complicated and severe processing.

通常、高炭素鋼板に所要の加工性を付与するためには、炭化物を球状化する焼鈍を採用する(例えば、特許文献1〜5、参照)が、近年、高炭素鋼板には、用途の多様化に伴い、打抜き性も要求されるようになり、材質の軟質化を図る炭化物球状化焼鈍では、該要求に対処できないのが実情である。   Usually, in order to impart required workability to a high-carbon steel sheet, annealing to spheroidize carbide is employed (see, for example, Patent Documents 1 to 5). As a result, punching properties are also required, and it is the actual situation that carbide spheroidizing annealing for softening the material cannot cope with the requirements.

例えば、特許文献1には、C:0.50〜0.70質量%、Si:0.5質量%以下、Mn:1.0〜2.0質量%、P:0.02%質量以下、S:0.02質量%、Al:0.001〜0.10質量%、さらに、V:0.05〜0.50質量%、Ti:0.02〜0.20%、Nb:0.01〜0.50質量%の1種又は2種以上を含み、残部がFe及び不可避的不純物からなり、炭化物の球状化率が95%以上で、最大粒径が2.5μm以下の炭化物が分散した焼入れ性、疲労特性、靭性に優れた高炭素鋼板が開示されているが、該高炭素鋼板において、打抜き性の向上は図られていない。   For example, in Patent Document 1, C: 0.50 to 0.70% by mass, Si: 0.5% by mass or less, Mn: 1.0 to 2.0% by mass, P: 0.02% by mass or less, S: 0.02% by mass, Al: 0.001 to 0.10% by mass, V: 0.05 to 0.50% by mass, Ti: 0.02 to 0.20%, Nb: 0.01 1 to 2 or more of 0.50 mass%, the balance is Fe and inevitable impurities, the spheroidization rate of the carbide is 95% or more, the carbide having a maximum particle size of 2.5 μm or less dispersed Although a high carbon steel sheet excellent in hardenability, fatigue characteristics, and toughness is disclosed, the punchability of the high carbon steel sheet is not improved.

高炭素鋼板は、高炭素であるが故、本来、硬度が高く、打抜き性に優れているが、軟質化により、打抜き性は低下する。   A high carbon steel plate is high carbon, and thus has a high hardness and excellent punchability. However, the punchability is lowered due to softening.

特に、Cを0.70質量%以上含有する高炭素鋼板において、材質の軟質化と打抜き性の向上を両立させることは難しい。   In particular, in a high carbon steel plate containing 0.70% by mass or more of C, it is difficult to achieve both softening of the material and improvement of punchability.

特開2009−024233号公報JP 2009-024233 A 特開2008−303415号公報JP 2008-303415 A 特開2008−156712号公報JP 2008-156712 A 特開2008−069452号公報JP 2008-069452 A 特開2007−291495号公報JP 2007-291495 A

前述したように、Cを0.70質量%以上含有する高炭素鋼板において、材質の軟質化と打抜き性の向上を両立させることは難しいところ、本発明は、Cを0.70質量%以上0.95質量%以下含有する高炭素鋼板において、材質の軟質化と打抜き性の向上を図ることを課題とし、該課題を解決する高炭素鋼板とその製造方法を提供することを目的とする。   As described above, in a high carbon steel sheet containing 0.70% by mass or more of C, it is difficult to achieve both softening of the material and improvement of punchability. An object of the present invention is to provide a high carbon steel sheet and a method for producing the same, which are intended to improve the softness of the material and improve the punchability in a high carbon steel sheet containing .95% by mass or less.

本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、焼鈍条件と冷却条件の組合せで、鋼組織にボイドを導入すると、打抜き性が格段に向上することを見いだした。   The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, it has been found that the punchability is remarkably improved when voids are introduced into the steel structure by a combination of annealing conditions and cooling conditions.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 質量%で、C:0.70〜0.95%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、かつ、組織が、観察組織1mm2当り100個以上のボイドを有することを特徴とする打抜き性に優れた軟質高炭素鋼板。 (1) By mass%, C: 0.70 to 0.95%, Si: 0.05 to 0.4%, Mn: 0.5 to 2.0%, P: 0.005 to 0.03% , S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, with the balance being Fe and inevitable impurities, and A soft high-carbon steel sheet having excellent punchability, wherein the structure has 100 or more voids per 1 mm 2 of the observed structure.

(2) 質量%で、さらに、Cr:0.05〜1.0%、Ni:0.01〜1.0%、Cu:0.05〜0.5%、及び、Mo:0.01〜1.0%の1種又は2種以上を含有することを特徴とする前記(1)に記載の打抜き性に優れた軟質高炭素鋼板。   (2) In mass%, Cr: 0.05 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.05 to 0.5%, and Mo: 0.01 to The soft high-carbon steel sheet having excellent punchability according to (1) above, containing 1.0% or one or more of 1.0%.

(3) 質量%で、さらに、Nb:0.01〜0.5%、V:0.01〜0.5%、Ta:0.01〜0.5%、B:0.001〜0.01%、Ti:0.005〜0.2%、及び、W:0.01〜0.5%の1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の打抜き性に優れた軟質高炭素鋼板。   (3) By mass%, Nb: 0.01-0.5%, V: 0.01-0.5%, Ta: 0.01-0.5%, B: 0.001-0. (1) or (2) characterized by containing one or more of 01%, Ti: 0.005 to 0.2%, and W: 0.01 to 0.5% A soft high carbon steel plate with excellent punchability as described.

(4) 質量%で、さらに、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の打抜き性に優れた軟質高炭素鋼板。   (4) By mass%, Sn: 0.003-0.03%, Sb: 0.003-0.03%, and As: 0.003-0.03%, or one or more The soft high carbon steel plate excellent in the punchability according to any one of the above (1) to (3).

(5) 前記(1)〜(4)のいずれかに記載の成分組成を満たす連続鋳造鋳片を、鋳造後、直接、又は、1300℃以下、90分以下加熱して熱間圧延に供し、800〜940℃で仕上圧延を終了し、次いで、熱延鋼板を、650℃まで30℃/s以上で強冷却し、その後、巻取りまで20℃/s以下で緩冷却して、400〜650℃未満で捲き取り、酸洗の後、軟質化箱焼鈍を施すことを特徴とする打抜き性に優れた軟質高炭素鋼板の製造方法。   (5) The continuous cast slab satisfying the component composition according to any one of (1) to (4) is subjected to hot rolling directly after casting or heated to 1300 ° C. or less and 90 minutes or less, Finish rolling at 800 to 940 ° C., and then hot-rolled steel sheet is strongly cooled to 650 ° C. at 30 ° C./s or more, and then slowly cooled to 20 ° C. or less until winding up to 400 to 650 A method for producing a soft high-carbon steel sheet having excellent punchability, characterized by scoring at a temperature lower than 0 ° C., pickling, and softening box annealing.

(6) 前記軟質化箱焼鈍を、室温からAc〜Ac+50℃まで加熱後、5時間以上保持して行い、次いで、100℃/hr以下で冷却した後、Ar〜Aeの温度範囲で3時間以上保持し、その後、Ar以下まで10℃/hr以下で緩冷却し、組織中に、0.5μm以上のラメラー間隔を有するパーライトブロックを、面積率で10%以上形成することを特徴とする前記(5)に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。 (6) the softening box annealing, carried and held at room temperature from Ac 1 to Ac 1 + After heating to 50 ° C., 5 hours or more, then, after cooling below 100 ° C. / hr, the temperature of the Ar 1 ~Ae 1 Hold for 3 hours or more in the range, and then slowly cool down to Ar 1 or less at 10 ° C./hr or less to form a pearlite block having a lamellar spacing of 0.5 μm or more in the structure with an area ratio of 10% or more. The manufacturing method of the soft high carbon steel plate excellent in the punchability as described in said (5) characterized by these.

(7) 前記軟質化箱焼鈍を施した鋼板に圧下率30%以下の冷間圧延を施し、次いで、Ac以下の温度範囲で3時間以上の箱焼鈍を施すことを特徴とする前記(5)又は(6)に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。 (7) The steel sheet subjected to the softening box annealing is subjected to cold rolling with a reduction ratio of 30% or less, and then subjected to box annealing for 3 hours or more in a temperature range of Ac 1 or less (5 ) Or (6), the manufacturing method of the soft high carbon steel plate excellent in the punchability.

(8) 前記箱焼鈍を施した鋼板に、圧下率30%以下の冷間圧延と、Ac以下の温度範囲で3時間以上保持する箱焼鈍を、1回以上施すことを特徴とする前記(7)に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。 (8) The steel sheet subjected to box annealing is subjected to cold rolling with a reduction rate of 30% or less and box annealing that is held for 3 hours or more in a temperature range of Ac 1 or less once or more ( The manufacturing method of the soft high carbon steel plate excellent in the punchability as described in 7).

(9) 前記箱焼鈍を、水素95%以上で、かつ、400℃までの露点が−20℃未満で、400℃超における露点が−40℃未満の雰囲気で行うことを特徴とする前記(7)又は(8)に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。   (9) The box annealing is performed in an atmosphere of 95% or more of hydrogen, a dew point of less than −20 ° C. up to 400 ° C., and a dew point of more than 400 ° C. of less than −40 ° C. (7 ) Or (8), a method for producing a soft high carbon steel sheet having excellent punchability.

本発明によれば、鋼組織にボイドを導入した打抜き性に優れた軟質高炭素鋼板とその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the soft high carbon steel plate excellent in the punchability which introduce | transduced the void into steel structure, and its manufacturing method can be provided.

熱延板を焼鈍した後、冷間圧延を施した鋼組織中にボイドが存在する態様を示す図である。It is a figure which shows the aspect in which a void exists in the steel structure which gave the cold rolling after annealing a hot-rolled sheet. 冷延板に焼鈍を施した後の鋼組織中にボイド(白矢印)が存在する態様を示す図である。It is a figure which shows the aspect in which a void (white arrow) exists in the steel structure after annealing a cold-rolled sheet. 本発明製造方法における熱処理の態様を示す図である。It is a figure which shows the aspect of the heat processing in this invention manufacturing method. 本発明鋼と比較鋼の硬度と打抜き性の関係を示す図である。It is a figure which shows the relationship between the hardness of this invention steel, and comparative steel, and punchability.

本発明の軟質高炭素鋼板は、質量%で、C:0.70〜0.95%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.0010〜0.01%を含有し、残部がFe及び不可避的不純物からなる鋼板において、組織が、観察組織1mm2当り100個以上のボイドを有することを特徴とする。 The soft high carbon steel sheet of the present invention is in mass%, C: 0.70 to 0.95%, Si: 0.05 to 0.4%, Mn: 0.5 to 2.0%, P: 0.00. 005 to 0.03%, S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.0010 to 0.01%, the balance being Fe and inevitable In a steel plate made of mechanical impurities, the structure has 100 or more voids per 1 mm 2 of the observed structure.

まず、本発明の軟質高炭素鋼板(以下「本発明鋼板」ということがある。)の成分組成に係る限定理由について説明する。なお、以下、「%」は「質量%」を意味する。   First, the reason for limitation relating to the component composition of the soft high carbon steel sheet of the present invention (hereinafter sometimes referred to as “the present invention steel sheet”) will be described. Hereinafter, “%” means “mass%”.

C:0.70〜0.95%
Cは、鋼板の強度を確保するうえで重要な元素であり、0.70%以上添加し、所要の強度を確保する。0.70%未満では、焼入れ性が低下し、機械構造用高強度鋼板としての強度が得られないので、下限を0.70%とする。0.95%を超えると、靭性や加工性を確保する熱処理に長時間を要することになるので、上限を0.95%とする。好ましくは、0.75〜0.85%である。
C: 0.70 to 0.95%
C is an important element for ensuring the strength of the steel sheet, and is added at 0.70% or more to ensure the required strength. If it is less than 0.70%, the hardenability is lowered and the strength as a high-strength steel sheet for machine structures cannot be obtained, so the lower limit is made 0.70%. If it exceeds 0.95%, it takes a long time for heat treatment to ensure toughness and workability, so the upper limit is made 0.95%. Preferably, it is 0.75 to 0.85%.

Si:0.05〜0.4%
Siは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。0.05%未満では、添加効果が得られないので、下限を0.05%とする。0.4%を超えると、熱間圧延時のスケール疵に起因する表面性状の劣化を招くので、上限を0.4%とする。好ましくは、0.10〜0.3%である。
Si: 0.05-0.4%
Si acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.05%, the effect of addition cannot be obtained, so the lower limit is made 0.05%. If it exceeds 0.4%, the surface properties are deteriorated due to scale wrinkling during hot rolling, so the upper limit is made 0.4%. Preferably, it is 0.10 to 0.3%.

Mn:0.5〜2.0%
Mnは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。0.5%未満では、添加効果が得られないので、下限を0.5%とする。2.0%を超えると、焼入れ、焼戻し後の衝撃特性を助長するので、上限を2.0%とする。好ましくは、0.5〜1.5%である。
Mn: 0.5 to 2.0%
Mn acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.5%, the effect of addition cannot be obtained, so the lower limit is made 0.5%. If it exceeds 2.0%, impact characteristics after quenching and tempering are promoted, so the upper limit is made 2.0%. Preferably, it is 0.5 to 1.5%.

P:0.005〜0.03%
Pは、固溶強化元素であり、鋼板の強度に有効な元素である。過剰な含有は、靭性を阻害するので、上限を0.03%とする。0.005%未満に低減することは、精錬コストの上昇を招くので、下限を0.005%とする。好ましくは、0.007〜0.02%である。
P: 0.005 to 0.03%
P is a solid solution strengthening element and is an element effective for the strength of the steel sheet. Since excessive inclusion will inhibit toughness, the upper limit is made 0.03%. Reduction to less than 0.005% causes an increase in refining cost, so the lower limit is made 0.005%. Preferably, it is 0.007 to 0.02%.

S:0.0001〜0.006%
Sは、非金属介在物を形成し、加工性や、熱処理後の靭性を阻害する原因となるので、上限を0.006%とする。0.0001%未満に低減することは、精錬コストの大幅な上昇を招くので、下限を0.0001%とする。好ましくは、0.001〜0.004%である。
S: 0.0001 to 0.006%
S forms a non-metallic inclusion and causes a deterioration in workability and toughness after heat treatment, so the upper limit is made 0.006%. Reducing to less than 0.0001% causes a significant increase in refining costs, so the lower limit is made 0.0001%. Preferably, it is 0.001 to 0.004%.

Al:0.005〜0.10%
Alは、脱酸剤として作用し、また、Nの固定に有効な元素である。0.005%未満では、添加効果が十分に得られないので、下限を0.005%とする。0.10%を超えると、添加効果は飽和し、また、表面疵が発生し易くなるので、上限を0.10%とする。好ましくは、0.01〜0.05%である。
Al: 0.005-0.10%
Al acts as a deoxidizing agent and is an element effective for fixing N. If it is less than 0.005%, the effect of addition cannot be sufficiently obtained, so the lower limit is made 0.005%. If it exceeds 0.10%, the effect of addition is saturated and surface flaws are likely to occur, so the upper limit is made 0.10%. Preferably, it is 0.01 to 0.05%.

N:0.001〜0.01%
Nは、Nは窒化物を形成する元素である。湾曲型連続鋳造における鋳片曲げ矯正時に窒化物が析出すると、鋳片が割れることがあるので、上限を0.01%とする。少ないほど好ましいが、0.001%未満に低減するのは、精錬コストの増加を招くので、下限を0.001%とする。好ましくは、0.004〜0.007%である。
N: 0.001 to 0.01%
N is an element that forms a nitride. If nitride precipitates during slab bending correction in curved continuous casting, the slab may crack, so the upper limit is made 0.01%. A smaller amount is preferable, but a reduction to less than 0.001% leads to an increase in refining costs, so the lower limit is made 0.001%. Preferably, it is 0.004 to 0.007%.

本発明鋼板の機械特性を強化するため、Cr、Ni、Cu、及び、Moの1種又は2種以上を、所要量、添加してもよい。   In order to enhance the mechanical properties of the steel sheet of the present invention, a required amount of one or more of Cr, Ni, Cu, and Mo may be added.

Cr:0.05〜1.0%
Crは、焼入れ性の向上に有効な元素である。0.05%未満では、添加効果がないので、下限を0.05%とする。1.0%を超えると、添加効果は飽和するので、上限を1.0%とする。好ましくは、0.07〜0.7%である。
Cr: 0.05-1.0%
Cr is an element effective for improving hardenability. If it is less than 0.05%, there is no effect of addition, so the lower limit is made 0.05%. If it exceeds 1.0%, the effect of addition is saturated, so the upper limit is made 1.0%. Preferably, it is 0.07 to 0.7%.

Ni:0.01〜1.0%
Niは、靭性の向上や、焼入れ性の向上に有効な元素である。0.01%未満では、添加効果がないので、下限を0.01%とする。1.0%を超えると、添加効果は飽和するし、また、コスト増を招くので、上限を1.0%とする。好ましくは、0.05〜0.5%である。
Ni: 0.01 to 1.0%
Ni is an element effective for improving toughness and hardenability. If it is less than 0.01%, there is no effect of addition, so the lower limit is made 0.01%. If it exceeds 1.0%, the effect of addition is saturated and the cost is increased, so the upper limit is made 1.0%. Preferably, it is 0.05 to 0.5%.

Cu:0.05〜0.5%
Cuは、焼入れ性の確保に有効な元素である。0.05%未満では、添加効果が不十分であるので、下限を0.05%とする。0.5%を超えると、硬くなり過ぎ、冷間加工性が劣化するので、上限を0.5%とする。好ましくは、0.08〜0.2%である。
Cu: 0.05 to 0.5%
Cu is an element effective for ensuring hardenability. If it is less than 0.05%, the effect of addition is insufficient, so the lower limit is made 0.05%. If it exceeds 0.5%, it becomes too hard and the cold workability deteriorates, so the upper limit is made 0.5%. Preferably, it is 0.08 to 0.2%.

Mo:0.01〜1.0%
Moは、焼入れ性の向上と、焼戻し軟化抵抗性の向上に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。1.0%を超えると、添加効果は飽和するので、上限を1.0%とする。好ましくは、0.05〜0.5%である。
Mo: 0.01 to 1.0%
Mo is an element effective for improving hardenability and improving resistance to temper softening. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 1.0%, the effect of addition is saturated, so the upper limit is made 1.0%. Preferably, it is 0.05 to 0.5%.

本発明鋼板の機械特性を、さらに強化するため、Nb、V、Ta、B、及び、Wの1種又は2種以上を、所要量、添加してもよい。   In order to further enhance the mechanical properties of the steel sheet of the present invention, one or more of Nb, V, Ta, B, and W may be added in a required amount.

Nb:0.01〜0.5%
Nbは、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果は充分に発現しないので、下限を0.01%とする。0.5%を超えると、添加効果が飽和するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
Nb: 0.01 to 0.5%
Nb is an element that forms carbonitride and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is not sufficiently exhibited, so the lower limit is made 0.01%. If it exceeds 0.5%, the effect of addition is saturated, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

V:0.01〜0.5%
Vは、Nbと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
V: 0.01 to 0.5%
V, like Nb, is an element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

Ta:0.01〜0.5%
Taは、Nb、Vと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
Ta: 0.01 to 0.5%
Ta, like Nb and V, is an element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

B:0.001〜0.01%
Bは、微量の添加で、焼入れ性を高めるのに有効な元素である。0.001%未満では、添加効果がないので、下限を0.001%とする。0.01%を超えると、鋳造性が低下し、また、B系化合物が生成して靭性が低下するので、上限を0.01%とする。好ましくは、0.003〜0.007%である。
B: 0.001 to 0.01%
B is an element effective for enhancing the hardenability by adding a small amount. If it is less than 0.001%, there is no effect of addition, so the lower limit is made 0.001%. If it exceeds 0.01%, the castability deteriorates, and a B-based compound is generated to reduce toughness. Therefore, the upper limit is made 0.01%. Preferably, it is 0.003 to 0.007%.

Ti:0.005〜0.2%
Tiは、脱酸剤として作用し、また、Nの固定に有効な元素である。N量との関係から、0.005%以上の添加が必要である。0.2%を超えてTiを添加しても、添加効果は飽和し、コストも増加するだけでなく、製造工程中の吸窒の促進、炭化物形成による有効炭素量の低減等によるTi系析出物量の増加を招き、焼入れ熱処理時のオーステナイト粒の粒成長を阻害し、焼入れ性を劣化させるので、上限を0.2%とする。好ましくは、0.01〜0.4%である。
Ti: 0.005 to 0.2%
Ti acts as a deoxidizer and is an element effective for fixing N. From the relationship with the amount of N, addition of 0.005% or more is necessary. Even if Ti is added in excess of 0.2%, the effect of addition is saturated and the cost is not only increased, but also Ti-based precipitation due to promotion of nitrogen absorption during the production process, reduction of effective carbon amount due to carbide formation, etc. This increases the amount of material, inhibits the growth of austenite grains during quenching heat treatment, and deteriorates the hardenability, so the upper limit is made 0.2%. Preferably, it is 0.01 to 0.4%.

W:0.01〜0.5%
Wは、鋼板の強化に有効な元素である。0.01%未満では、添加効果が発現しないので、下限を0.01%とする。0.5%を超えると、加工性が低下するので、上限を0.5%にする。好ましくは、0.04〜0.2%である。
W: 0.01-0.5%
W is an element effective for strengthening a steel sheet. If it is less than 0.01%, the effect of addition does not appear, so the lower limit is made 0.01%. If it exceeds 0.5%, the workability deteriorates, so the upper limit is made 0.5%. Preferably, it is 0.04 to 0.2%.

本発明鋼板の原料としてスクラップを用いた場合、不可避的にSn、Sb、及び、Asの1種又は2種以上が、0.003%以上混入するが、いずれも、0.03%以下であれば、本発明鋼板の打抜き性及び焼入れ性を阻害しないので、本発明鋼板においては、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上の含有を許容する。   When scrap is used as a raw material for the steel sheet of the present invention, one or more of Sn, Sb, and As are inevitably mixed in by 0.003% or more, and any of them may be 0.03% or less. For example, since the punchability and hardenability of the steel sheet of the present invention are not hindered, Sn: 0.003-0.03%, Sb: 0.003-0.03%, and As: 0.0. Inclusion of one or more of 003 to 0.03% is allowed.

本発明鋼板において、O量は規定していないが、酸化物が凝集して粗大化すると、延性が低下するので、Oは、0.0025%以下が好ましい。Oは、少ないほうが好ましいが、0.0001%未満に低減することは、技術的に困難であるので、0.0001%以上の含有は許容される。   In the steel sheet of the present invention, the amount of O is not specified, but when the oxide aggregates and coarsens, the ductility decreases, so O is preferably 0.0025% or less. A smaller amount of O is preferable, but since it is technically difficult to reduce it to less than 0.0001%, a content of 0.0001% or more is allowed.

本発明鋼板の溶製原料としてスクラップを用いた場合、Zn、Zr等の元素が、不可避的不純物として混入するが、本発明鋼板においては、本発明鋼板の特性を阻害しない範囲で、上記元素の混入を許容する。なお、Zn、Zr等以外の元素でも、本発明鋼板の特性を阻害しない範囲で、混入を許容する。   When scrap is used as a melting raw material of the steel sheet of the present invention, elements such as Zn and Zr are mixed as unavoidable impurities. Allow mixing. In addition, elements other than Zn, Zr and the like are allowed to be mixed as long as the characteristics of the steel sheet of the present invention are not impaired.

本発明鋼板は、前述したように、成分組成に加え、組織が、観察組織1mm2当り100個以上のボイドを有することを特徴とする。 As described above, the steel sheet of the present invention is characterized in that, in addition to the component composition, the structure has 100 or more voids per 1 mm 2 of the observed structure.

本発明鋼板は、焼鈍条件と冷却条件の組み合せで、組織中に、炭化物に隣接してボイドが、観察組織1mm2当り100個以上のボイドが導入されたものである。 The steel sheet of the present invention is a combination of annealing conditions and cooling conditions, in which 100 or more voids are introduced in the structure adjacent to the carbide and 1 mm 2 of the observed structure.

組織中に、観察組織1mm2当り100個以上のボイドが存在することにより、鋼板の打抜き性が顕著に向上することは、本発明者らが見いだした新規な知見である。なお、組織にボイドを導入する焼鈍条件と冷却条件については後述する。 It is a novel finding that the present inventors have found that the punchability of the steel sheet is remarkably improved by the presence of 100 or more voids per 1 mm 2 of the observed structure in the structure. An annealing condition and a cooling condition for introducing a void into the structure will be described later.

組織の観察は、走査型電子顕微鏡で行なうのが好ましい。観察組織1mm2当りのボイド数を数えて、100個以上存在することを確認する。ボイドの数が、観察組織1mm2当り100個未満であると、所要の打抜き性を確保するのが難しくなる。 The observation of the tissue is preferably performed with a scanning electron microscope. Count the number of voids per 1 mm 2 of the observed tissue and confirm that there are at least 100 voids. If the number of voids is less than 100 per 1 mm 2 of the observed tissue, it becomes difficult to ensure the required punchability.

図1に、熱延板を焼鈍した後、冷間圧延を施した鋼組織中にボイドが存在する態様を示す。ボイドを導入する前の組織は、0.5μm以上のラメラー間隔を有するパーライトブロックの面積率が10%以上の組織が好ましい。   FIG. 1 shows an embodiment in which voids are present in a steel structure subjected to cold rolling after annealing a hot-rolled sheet. The structure before introducing the void is preferably a structure in which the area ratio of the pearlite block having a lamellar spacing of 0.5 μm or more is 10% or more.

ボイドは、球状化炭化物よりも、針状炭化物上に生成する。ラメラー間隔が0.5μm未満であると、間隔が細かくなりすぎ、後の冷間加工で、炭化物が細かく分断され、軟質化を阻害する要因となる。ラメラー間隔が0.5μm以上であれば、分断後の炭化物も比較的大きいので、軟質化を阻害する要因にならない。   Voids are generated on acicular carbides rather than spheroidized carbides. When the lamellar interval is less than 0.5 μm, the interval becomes too fine, and the carbide is finely divided in the subsequent cold working, which becomes a factor for inhibiting softening. If the lamellar spacing is 0.5 μm or more, the carbide after the division is also relatively large, so that it does not become a factor that hinders softening.

0.5μm以上のラメラー間隔を有するパーライトブロックの面積率は、10%以上が好ましい。10%未満であると、ラメラー上へのボイドの形成頻度が減少し、ボイド形成頻度が充分でなくなるため、好ましくない。パーライトブロックの面積率は、20%以上が、より好ましい。   The area ratio of a pearlite block having a lamellar spacing of 0.5 μm or more is preferably 10% or more. If it is less than 10%, the formation frequency of voids on the lamellar decreases, and the formation frequency of voids becomes insufficient. The area ratio of the pearlite block is more preferably 20% or more.

図2に、冷延板に焼鈍を施した鋼組織中にボイドが存在する態様を示す。ボイドは、炭化物に隣接して形成されていることが解る(図中、白矢印、参照)。ボイドは、鋼組織において、通常、疲労破壊の起点となり得るので、構造材料では回避すべき存在であるが、打抜き時においては、ボイドの連結効果により、破断面の形成が促進されて、打抜き性が向上する。   FIG. 2 shows a mode in which voids exist in a steel structure obtained by annealing a cold-rolled sheet. It can be seen that the void is formed adjacent to the carbide (see white arrow in the figure). Since voids can usually be the starting point of fatigue fracture in steel structures, they should be avoided in structural materials, but at the time of punching, the formation of fractured surfaces is promoted by the effect of void connection, and punchability is improved. Will improve.

次に、本発明鋼板の製造方法(以下「本発明製造方法」という。)について説明する。   Next, a manufacturing method of the steel sheet of the present invention (hereinafter referred to as “the manufacturing method of the present invention”) will be described.

熱間圧延に供する連続鋳造鋳片(冷片)を、1300℃以下、90分以下加熱する。加熱温度が1300℃を超えたり、加熱時間が90分を超えると、加熱工程で、スラブ表層部における脱Cが顕著となり、鋼板表面の焼入れ性が劣化するので、加熱温度は1300℃以下、加熱時間は90分以下とする。脱Cを抑制するとの観点から、加熱時間は、1200℃以下が好ましく、加熱時間は、60分以下が好ましい。   A continuously cast slab (cold slab) to be subjected to hot rolling is heated to 1300 ° C. or less and 90 minutes or less. If the heating temperature exceeds 1300 ° C. or the heating time exceeds 90 minutes, de-C in the surface portion of the slab becomes prominent in the heating step, and the hardenability of the steel sheet surface deteriorates. Therefore, the heating temperature is 1300 ° C. or less. The time is 90 minutes or less. From the viewpoint of suppressing de-C, the heating time is preferably 1200 ° C. or less, and the heating time is preferably 60 minutes or less.

なお、連続鋳造鋳片を、直接、又は、再加熱して熱間圧延に供するが、直接、熱間圧延に供した場合と、再加熱後、熱間圧延に供した場合において、鋼板特性に差は殆どない。   In addition, the continuous cast slab is directly or reheated and subjected to hot rolling, but when directly subjected to hot rolling and after reheating and subjected to hot rolling, the steel sheet characteristics are improved. There is almost no difference.

熱間圧延は、通常の熱間圧延、及び、仕上圧延においてスラブを接合する連続化熱間圧延のどちらでもよい。熱間圧延の終了温度(熱延終了温度)は、生産性や板厚精度、異方性改善の観点に加え、表面疵の観点で、下限を800℃とする。熱延終了温度が800℃未満であると、焼付による疵が多発する。一方、熱延終了温度が940℃を超えると、スケール起因の疵の発生頻度が高くなり、製品歩留りが低下して、コストが上昇する。それ故、熱延終了温度は、800〜940℃とする。   Hot rolling may be either normal hot rolling or continuous hot rolling in which slabs are joined in finish rolling. The lower limit of the hot rolling end temperature (hot rolling end temperature) is set to 800 ° C. in terms of surface defects in addition to productivity, sheet thickness accuracy, and anisotropy improvement. If the hot rolling end temperature is lower than 800 ° C., wrinkles due to baking frequently occur. On the other hand, when the hot rolling end temperature exceeds 940 ° C., the occurrence frequency of wrinkles due to scale increases, the product yield decreases, and the cost increases. Therefore, the hot rolling end temperature is set to 800 to 940 ° C.

熱間圧延後の鋼板の冷却は、仕上圧延後、30℃/秒以上の冷却速度で、650℃まで冷却し、続いて、20℃/秒以下の冷却速度で、巻取温度400〜600℃まで緩冷却する。   The steel sheet after hot rolling is cooled to 650 ° C. at a cooling rate of 30 ° C./second or more after the finish rolling, and subsequently, at a cooling rate of 20 ° C./second or less, at a coiling temperature of 400 to 600 ° C. Allow to cool slowly.

熱間圧延後、650℃までの冷却速度を30℃/秒以上とする理由は、冷却速度が30℃/秒未満であると、偏析に伴うパーライトバンドが生成し、焼鈍後も、粗大な炭化物が存在し易く、加工性の劣化に繋がるからである。加工性の劣化を抑制するため、仕上圧延後、熱延鋼板を30℃/秒以上の冷却速度で冷却する。   The reason why the cooling rate to 650 ° C. is 30 ° C./second or more after hot rolling is that if the cooling rate is less than 30 ° C./second, a pearlite band is generated due to segregation, and coarse carbides are present even after annealing. This is because it tends to exist and leads to deterioration of workability. In order to suppress deterioration of workability, the hot-rolled steel sheet is cooled at a cooling rate of 30 ° C./second or more after finish rolling.

巻取温度400〜650℃未満までの冷却速度を20℃/秒以下として緩冷却する理由は、パーライト組織の均一なパーライト変態やベイナイト変態を促進するためである。熱延鋼板を400〜650℃未満まで急冷すると、過冷オーステナイトが生じ、過冷オーステナイトに起因してコイルの巻き形状が乱れて、鋼板表面に疵が発生する。鋼板表面に疵が発生すると、歩留りが大きく低下する。   The reason why the cooling rate at a coiling temperature of 400 to 650 ° C. is set to 20 ° C./second or less is to promote uniform pearlite transformation and bainite transformation of the pearlite structure. When the hot-rolled steel sheet is rapidly cooled to less than 400 to 650 ° C., supercooled austenite is generated, the coiled shape is disturbed due to the supercooled austenite, and wrinkles are generated on the steel sheet surface. When wrinkles occur on the surface of the steel sheet, the yield greatly decreases.

熱延鋼板を、400〜650℃未満の巻取温度で巻き取る理由は、400℃未満であると、一部、マルテンサイト変態が生じて鋼板の強度が上昇し、ハンドリングが困難になったり、冷間圧延を行う際、組織の不均一に起因してゲージハンチングが起きたりして、歩留りが低下するからである。   The reason why the hot-rolled steel sheet is wound at a coiling temperature of less than 400 to 650 ° C. is that when it is less than 400 ° C., the martensitic transformation occurs in part and the strength of the steel sheet increases, making handling difficult. This is because, when cold rolling is performed, gauge hunting occurs due to non-uniform structure, resulting in a decrease in yield.

一方、650℃以上の温度で巻き取ると、熱延鋼板のスケールが厚くなり、酸洗性が低下するばかりでなく、表層部の酸化進行や粒界酸化が進展する。それ故、熱延鋼板は、400〜650℃未満の巻取温度で巻き取る。   On the other hand, when it winds at the temperature of 650 degreeC or more, the scale of a hot-rolled steel plate will become thick and pickling property will fall, and the oxidation progress of a surface layer part and grain boundary oxidation will advance. Therefore, the hot-rolled steel sheet is wound at a winding temperature of 400 to less than 650 ° C.

鋼板を酸洗し、表面を清浄化した後、鋼板に軟質化箱焼鈍を施す。本発明製造方法においては、鋼板に軟質化箱焼鈍を施し、粗大ラメラー炭化物の形成を図る。ここで、図3に、本発明製造方法における熱処理の態様を示す。   After pickling the steel plate and cleaning the surface, the steel plate is subjected to softening box annealing. In the production method of the present invention, the steel plate is subjected to softening box annealing to form coarse lamellar carbide. Here, in FIG. 3, the aspect of the heat processing in this invention manufacturing method is shown.

軟質化箱焼鈍は、図3中(1)に示すように、鋼板を、室温からAc〜Ac+50℃まで加熱した後、5時間以上保持して行う。この5時間以上の保持により、炭化物の球状化を促進するとともに、微細ラメラーを、オーステナイト中に溶解させる。 As shown in (1) in FIG. 3, the softening box annealing is performed by heating the steel sheet from room temperature to Ac 1 to Ac 1 + 50 ° C. and holding it for 5 hours or more. The holding for 5 hours or more promotes the spheroidization of the carbide and dissolves the fine lamellar in the austenite.

上記5時間以上の保持後、鋼板を、図3中(2)に示すように、好ましくは、100℃/hr以下で冷却し、次いで、図3中(3)に示すように、Ar〜Aeの温度範囲で3時間以上保持する。この保持の後、鋼板を冷却するが(図3中(4)及び(5)、参照)コイル内の温度分布を均一に保持しつつ、高精度に冷却することが可能であれば、冷却速度は100℃/hr超でもよい。 After holding for 5 hours or longer, the steel sheet is preferably cooled at 100 ° C./hr or less, as shown in (2) in FIG. 3, and then, Ar 1 to Ar as shown in (3) in FIG. 3. Hold at Ae 1 temperature range for 3 hours or more. After this holding, the steel plate is cooled (see (4) and (5) in FIG. 3). If it is possible to cool the steel plate with high accuracy while keeping the temperature distribution in the coil uniform, the cooling rate May exceed 100 ° C./hr.

冷却後の鋼板を、Ar〜Aeの温度範囲で3時間以上保持して、間隔の粗いラメラー組織を形成する。ラメラー間隔が粗いと、次の冷延工程にて、ボイドの導入量が増加する。上記温度範囲に3時間以上保持した直後、鋼板を、10℃/hr超の冷却速度で冷却すると、ラメラー間隔の狭いパーライトが生成するので、保持直後の冷却速度は、10℃/hr以下が好ましい(図3中(4)、参照)。 The steel sheet after cooling is held in the temperature range of Ar 1 to Ae 1 for 3 hours or more to form a lamellar structure with a coarse interval. If the lamellar spacing is coarse, the amount of voids introduced increases in the next cold rolling process. Immediately after holding in the above temperature range for 3 hours or more, when the steel sheet is cooled at a cooling rate of more than 10 ° C./hr, pearlite with a narrow lamellar spacing is generated. Therefore, the cooling rate immediately after holding is preferably 10 ° C./hr or less. (See (4) in FIG. 3).

パーライトブロックの面積率が10%未満であると、冷間圧延時のボイド生成が促進されないので、パーライトブロックの面積率は10%以上が好ましい。   If the area ratio of the pearlite block is less than 10%, void generation during cold rolling is not promoted, so the area ratio of the pearlite block is preferably 10% or more.

軟質化箱焼鈍を施した鋼板に、圧下率30%以下の冷間圧延を施して、針状θ上に、多数のボイドを形成する(図3中(6)、参照)。鋼板に圧下率30%超の冷間圧延を施すと、フェライトが再結晶し、再結晶時にボイドが消滅するので、冷間圧延の圧下率は、30%以下が好ましい。   The steel sheet subjected to softening box annealing is subjected to cold rolling with a reduction rate of 30% or less to form a large number of voids on the needle-like θ (see (6) in FIG. 3). When cold rolling with a rolling reduction of more than 30% is applied to the steel sheet, ferrite recrystallizes and voids disappear during the recrystallization. Therefore, the rolling reduction of cold rolling is preferably 30% or less.

次いで、冷間圧延後の鋼板に、Ac以下の温度範囲で3時間以上の箱焼鈍を施す(図3中(7)、参照)。この箱焼鈍により、マトリックス中にボイドを残存させたまま、フェライトの粒成長が促進される。箱焼鈍が3時間未満であれば、軟質化が充分に進行しない。 Next, the steel sheet after cold rolling is subjected to box annealing for 3 hours or more in a temperature range of Ac 1 or less (see (7) in FIG. 3). This box annealing promotes ferrite grain growth while leaving voids in the matrix. If the box annealing is less than 3 hours, the softening does not proceed sufficiently.

焼鈍温度がAc超であると、フェライトからオーステナイトへの相変態時にボイドが消滅するので、箱焼鈍温度はAc以下が好ましい。 If the annealing temperature is greater than Ac 1 , voids disappear during the phase transformation from ferrite to austenite, so the box annealing temperature is preferably Ac 1 or less.

圧下率30%以下の冷間圧延と、Ac以下の温度範囲で3時間以上保持する箱焼鈍を、1回以上施すことが好ましい。上記冷間圧延と箱焼鈍を繰り返すことにより、ボイド形成とフェライト粒の成長を効果的に促進することができる。 It is preferable to perform cold rolling with a rolling reduction of 30% or less and box annealing that is held for 3 hours or more in a temperature range of Ac 1 or less at least once. By repeating the cold rolling and box annealing, void formation and ferrite grain growth can be effectively promoted.

箱焼鈍は、水素95%以上で、かつ、400℃までの露点が−20℃未満で、400℃超における露点が−40℃未満の雰囲気で行うことが好ましい。   The box annealing is preferably performed in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of less than −20 ° C., and a dew point of over 400 ° C. of less than −40 ° C.

コイル内の温度分布を均一化することに加え、窒素侵入による焼入れ性の低下を抑制するため、水素95%以上の雰囲気中で焼鈍を行う。焼鈍中の脱炭を抑制するため、400℃までの露点を−20℃未満とし、400℃超における露点を−40℃未満とする。   In addition to uniformizing the temperature distribution in the coil, annealing is performed in an atmosphere of 95% or more of hydrogen in order to suppress a decrease in hardenability due to nitrogen penetration. In order to suppress decarburization during annealing, the dew point up to 400 ° C is set to less than -20 ° C, and the dew point above 400 ° C is set to less than -40 ° C.

打抜き性に優れた本発明鋼板は、打ち抜き後、容体化処理を施して、焼入れ処理をする。この焼入れ処理により、打ち抜き後の本発明鋼板は、所要の強度を備えることになる。   The steel sheet of the present invention having excellent punchability is subjected to a solidification treatment after punching, and is subjected to a quenching treatment. By this quenching treatment, the steel sheet of the present invention after punching has a required strength.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表1に示す成分組成を有する鋼板に、表2に示す焼鈍条件で焼鈍を施し、組織中のボイド数と製品特性(硬度と打抜き性)を調査した。結果を、表2に併せて示す。なお、表2中、焼鈍条件の(1)〜(7)は、図3中の(1)〜(7)に対応する。
(Example)
The steel sheet having the component composition shown in Table 1 was annealed under the annealing conditions shown in Table 2, and the number of voids in the structure and product characteristics (hardness and punchability) were investigated. The results are also shown in Table 2. In Table 2, the annealing conditions (1) to (7) correspond to (1) to (7) in FIG.

表2中、「バリ発生高さ」は、表3に示す基準で評価した。   In Table 2, “burr generation height” was evaluated according to the criteria shown in Table 3.

表2中、No.1A(表1のNo.1の鋼板を用いた)は、炭化物量が充分でなく、冷間圧延時のボイドの形成が小さい比較例である。No.2Aは、炭化物量が充分でなく、冷間圧延時のボイドの形成が小さい比較例である。   In Table 2, No. 1A (using the steel plate No. 1 in Table 1) is a comparative example in which the amount of carbide is not sufficient and void formation during cold rolling is small. No. 2A is a comparative example in which the amount of carbide is not sufficient and the formation of voids during cold rolling is small.

No.3Bは、工程(1)で温度が不足して、針状炭化物が残存して、硬度が高く、強加工で、微細な(α+θ)が生成した比較例である。No.4Bは、工程(3)で保持温度が低く、微細なラメラー間隔を有するパーライトが生成し、軟質化し難かった比較例である。   No. 3B is a comparative example in which the temperature is insufficient in step (1), acicular carbides remain, the hardness is high, and fine (α + θ) is generated by strong processing. No. 4B is a comparative example in which a pearlite having a low lamellar spacing was generated in step (3), and it was difficult to soften.

No.5Aは、工程(1)〜(4)で、炭化物の球状化が進行しすぎ、工程(7)で、2相焼鈍となり、冷間圧延で導入したボイドが消滅して、打抜き性が低下した比較例である。No.6Aは、工程(4)で冷却速度が大きく、微細なラメラー間隔を有するパーライトが新たに生成し、ボイド導入が低下した比較例である。   No. 5A is a process (1) to (4) in which the spheroidization of the carbide progresses too much, and in step (7), the two-phase annealing is performed, voids introduced by cold rolling disappear, and the punchability is reduced. It is a comparative example. No. 6A is a comparative example in which pearlite having a high cooling rate and a fine lamellar spacing was newly generated in step (4), and void introduction was reduced.

No.7Aは、工程(1)で温度が不足して、針状炭化物が残存して、硬度が高く、強加工で、微細な(α+θ)が生成した比較例である。No.7C”は、1回目の冷延板焼鈍で本発明の組織を形成しつつも、2回目の冷間圧延の強加工で、微細な(α+θ)が生成した比較例である。   No. 7A is a comparative example in which the temperature is insufficient in step (1), acicular carbides remain, the hardness is high, and fine (α + θ) is generated by strong processing. No. 7C ″ is a comparative example in which fine (α + θ) is generated by the strong processing of the second cold rolling while forming the structure of the present invention by the first cold rolling annealing.

No.9Bは、工程(7)で2相焼鈍となり、冷間圧延で導入したボイドが消滅し、打抜き性が低下した比較例である。   No. 9B is a comparative example in which two-phase annealing was performed in step (7), voids introduced by cold rolling disappeared, and punchability was reduced.

No.10Aは、工程(1)で温度が不足して、針状炭化物が残存して、硬度が高く、強加工で、微細な(α+θ)が生成した比較例である。No.10Bは、強加工で、微細な(α+θ)が生成した比較例である。No.10C”は、1回目の冷延板焼鈍で本発明の組織を形成しつつも、2回目の冷間圧延の強加工で、微細な(α+θ)が生成し、2回目の焼鈍が2相焼鈍となり、冷間圧延で導入したボイドが消滅して、稜抜き性が低下した比較例である。   No. 10A is a comparative example in which the temperature is insufficient in step (1), acicular carbides remain, the hardness is high, and fine (α + θ) is generated by strong processing. No. 10B is a comparative example in which fine (α + θ) is generated by strong processing. No. 10C ″ is the first cold-rolled sheet annealing to form the structure of the present invention, but the second cold rolling is a strong work, and fine (α + θ) is generated, and the second annealing is a two-phase annealing. Thus, this is a comparative example in which voids introduced by cold rolling disappear and ridge removal performance is reduced.

No.11Aは、高Mnのため炭化物の安定性が高く、工業的に軟化し難い比較例である。No.12Aは、工程(7)で2相焼鈍となり、冷間圧延で導入したボイドが消滅して、打抜き性が低下した比較例である。No.12Bは、1回目の冷延板焼鈍で本発明の組織を形成しつつも、2回目の焼鈍が2相焼鈍となり、冷間圧延で導入したボイドが消滅して、稜抜き性が低下した比較例である。   No. 11A is a comparative example in which the carbide is highly stable due to its high Mn and is not easily softened industrially. No. 12A is a comparative example in which two-phase annealing was performed in step (7), voids introduced by cold rolling disappeared, and punchability was reduced. No. 12B is a comparison in which, while forming the structure of the present invention by the first cold-rolled sheet annealing, the second annealing became a two-phase annealing, voids introduced by cold rolling disappeared, and the ridge removal performance decreased. It is an example.

N0.15Aは、炭化物量が多く、ボイドは生成し易いが、軟質化し難い比較例である。これらに対し、No.3A、No.4A、No.6B、No.6B’、No.6C、No.6C’、No.7B、No.7C、No.7C’、No.8A、No.9A、No.10C、No.10C’、No.12B、No.12B’、No.12C、No.13A、及び、No.14Aは、発明例である。   N0.15A is a comparative example in which the amount of carbide is large and voids are easily generated, but it is difficult to soften. In contrast, no. 3A, no. 4A, no. 6B, no. 6B ', no. 6C, no. 6C ', no. 7B, no. 7C, no. 7C ', no. 8A, no. 9A, no. 10C, no. 10C ', no. 12B, no. 12B ', no. 12C, no. 13A and No. 14A is an invention example.

図4に、バリ高さの評価(1〜6)と硬度(HV)の関係を示す。図中、○印及び●印が発明例であり、◇印及び◆印が比較例である。発明例は、図中、左上に位置していて、比較例に比べ、顕著に、打抜き性に優れていることが解る。   FIG. 4 shows the relationship between the burr height evaluation (1 to 6) and the hardness (HV). In the figure, ◯ and ● marks are invention examples, and ◇ and ♦ marks are comparative examples. The invention example is located in the upper left in the figure, and it can be seen that the punchability is remarkably superior to the comparative example.

前述したように、本発明によれば、鋼組織にボイドを導入した打抜き性に優れた軟質高炭素鋼板とその製造方法を提供することができる。よって、本発明は、高炭素鋼板の用途を大きく拡大するので、鋼製品製造産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a soft high carbon steel sheet excellent in punchability in which voids are introduced into the steel structure and a method for producing the same. Therefore, since this invention expands the use of a high carbon steel plate greatly, its applicability is high in the steel product manufacturing industry.

Claims (9)

質量%で、C:0.70〜0.95%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、かつ、組織が、観察組織1mm2当り100個以上のボイドを有することを特徴とする打抜き性に優れた軟質高炭素鋼板。 In mass%, C: 0.70 to 0.95%, Si: 0.05 to 0.4%, Mn: 0.5 to 2.0%, P: 0.005 to 0.03%, S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, the balance is made of Fe and inevitable impurities, and the structure is A soft high-carbon steel sheet having excellent punchability, characterized by having 100 or more voids per 1 mm 2 of the observation structure. 質量%で、さらに、Cr:0.05〜1.0%、Ni:0.01〜1.0%、Cu:0.05〜0.5%、及び、Mo:0.01〜1.0%の1種又は2種以上を含有することを特徴とする請求項1に記載の打抜き性に優れた軟質高炭素鋼板。   Further, Cr: 0.05-1.0%, Ni: 0.01-1.0%, Cu: 0.05-0.5%, and Mo: 0.01-1.0 The soft high-carbon steel sheet having excellent punchability according to claim 1, comprising: 質量%で、さらに、Nb:0.01〜0.5%、V:0.01〜0.5%、Ta:0.01〜0.5%、B:0.001〜0.01%、Ti:0.005〜0.2%、及び、W:0.01〜0.5%の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の打抜き性に優れた軟質高炭素鋼板。   % By mass, Nb: 0.01 to 0.5%, V: 0.01 to 0.5%, Ta: 0.01 to 0.5%, B: 0.001 to 0.01%, It contains one or more of Ti: 0.005 to 0.2% and W: 0.01 to 0.5%, and is excellent in punchability according to claim 1 or 2. Soft high carbon steel plate. 質量%で、さらに、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の打抜き性に優れた軟質高炭素鋼板。   In addition, it contains one or more of Sn: 0.003 to 0.03%, Sb: 0.003 to 0.03%, and As: 0.003 to 0.03%. The soft high carbon steel plate excellent in punching property according to any one of claims 1 to 3. 請求項1〜4のいずれか1項に記載の成分組成を満たす連続鋳造鋳片を、鋳造後、直接、又は、1300℃以下、90分以下加熱して熱間圧延に供し、800〜940℃で仕上圧延を終了し、次いで、熱延鋼板を、650℃まで30℃/s以上で強冷却し、その後、巻取りまで20℃/s以下で緩冷却して、400〜650℃未満で捲き取り、酸洗の後、軟質化箱焼鈍を施すことを特徴とする打抜き性に優れた軟質高炭素鋼板の製造方法。   The continuous cast slab satisfying the component composition according to any one of claims 1 to 4 is subjected to hot rolling directly after casting, or 1300 ° C or less and 90 minutes or less, and 800 to 940 ° C. Then, finish rolling is finished, and then the hot-rolled steel sheet is strongly cooled to 650 ° C. at 30 ° C./s or more, and then slowly cooled to 20 ° C./s or less until winding, and then rolled at 400 to less than 650 ° C. The manufacturing method of the soft high carbon steel plate excellent in the punchability characterized by performing softening box annealing after taking and pickling. 前記軟質化箱焼鈍を、室温からAc〜Ac+50℃まで加熱後、5時間以上保持して行い、次いで、100℃/hr以下で冷却した後、Ar〜Aeの温度範囲で3時間以上保持し、その後、Ar以下まで10℃/hr以下で緩冷却し、組織中に、0.5μm以上のラメラー間隔を有するパーライトブロックを、面積率で10%以上形成することを特徴とする請求項5に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。 The softening box annealing, after heating from room temperature to Ac 1 ~Ac 1 + 50 ℃, carried and held over 5 hours, then, after cooling below 100 ° C. / hr, 3 in a temperature range of Ar 1 ~Ae 1 It is held for a period of time or more, and then slowly cooled to 10 ° C./hr or less to Ar 1 or less, and a pearlite block having a lamellar spacing of 0.5 μm or more is formed in the structure by 10% or more by area ratio. The manufacturing method of the soft high carbon steel plate excellent in the punchability of Claim 5. 前記軟質化箱焼鈍を施した鋼板に圧下率30%以下の冷間圧延を施し、次いで、Ac以下の温度範囲で3時間以上の箱焼鈍を施すことを特徴とする請求項5又は6に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。 The steel sheet subjected to the softening box annealing is subjected to cold rolling with a reduction rate of 30% or less, and then subjected to box annealing for 3 hours or more in a temperature range of Ac 1 or less. The manufacturing method of the soft high carbon steel plate excellent in the punchability of description. 前記箱焼鈍を施した鋼板に、圧下率30%以下の冷間圧延と、Ac以下の温度範囲で3時間以上保持する箱焼鈍を、1回以上施すことを特徴とする請求項7に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。 The steel sheet subjected to box annealing is subjected to cold rolling with a reduction rate of 30% or less and box annealing that is held for 3 hours or more in a temperature range of Ac 1 or less once or more. A method for producing a soft high carbon steel sheet having excellent punchability. 前記箱焼鈍を、水素95%以上で、かつ、400℃までの露点が−20℃未満で、400℃超における露点が−40℃未満の雰囲気で行うことを特徴とする請求項7又は8に記載の打抜き性に優れた軟質高炭素鋼板の製造方法。   The box annealing is performed in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C of less than -20 ° C, and a dew point of over 400 ° C of less than -40 ° C. The manufacturing method of the soft high carbon steel plate excellent in the punchability of description.
JP2009158173A 2009-07-02 2009-07-02 Soft high carbon steel plate excellent in punchability and manufacturing method thereof Expired - Fee Related JP4903839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158173A JP4903839B2 (en) 2009-07-02 2009-07-02 Soft high carbon steel plate excellent in punchability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158173A JP4903839B2 (en) 2009-07-02 2009-07-02 Soft high carbon steel plate excellent in punchability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011012316A true JP2011012316A (en) 2011-01-20
JP4903839B2 JP4903839B2 (en) 2012-03-28

Family

ID=43591498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158173A Expired - Fee Related JP4903839B2 (en) 2009-07-02 2009-07-02 Soft high carbon steel plate excellent in punchability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4903839B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461717B1 (en) 2012-09-27 2014-11-14 주식회사 포스코 Steel wire rod and steel wire for ultra-high strength tirecord and method for manufacturing thereof
CN104213021A (en) * 2014-08-05 2014-12-17 安徽荣达阀门有限公司 Wear resistant high-carbon steel pump valve material and preparation method thereof
CN104264038A (en) * 2014-09-23 2015-01-07 攀钢集团西昌钢钒有限公司 440 MPa-grade continuous-annealed and cold-rolled structural steel plate and production process thereof
WO2015020028A1 (en) * 2013-08-07 2015-02-12 株式会社神戸製鋼所 Soft high-carbon steel sheet
WO2015076384A1 (en) 2013-11-22 2015-05-28 新日鐵住金株式会社 High-carbon steel sheet and method for producing same
CN105369114A (en) * 2015-12-03 2016-03-02 武汉钢铁(集团)公司 Production method for thin pickling and annealing tool steel
JP2017190494A (en) * 2016-04-13 2017-10-19 日新製鋼株式会社 Wear resistant steel sheet excellent in toughness
KR101830551B1 (en) 2016-12-14 2018-02-20 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
CN109280847A (en) * 2018-10-08 2019-01-29 鞍钢股份有限公司 A kind of high carbon alloy chain tool steel and its manufacturing method
WO2019038923A1 (en) * 2017-08-25 2019-02-28 日新製鋼株式会社 Wear-resistant steel sheet having excellent toughness
KR101968013B1 (en) * 2017-11-07 2019-04-10 주식회사 포스코 High strength and low toughness hot-rolled steel sheet having good fracture characteristics, and method for manufacturing same
KR20190068064A (en) * 2017-12-08 2019-06-18 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
WO2020179737A1 (en) 2019-03-06 2020-09-10 日本製鉄株式会社 Hot-rolled steel sheet and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441618A (en) * 1990-06-07 1992-02-12 Sumitomo Metal Ind Ltd Production of cold rolled high carbon steel sheet
JPH06108158A (en) * 1992-09-29 1994-04-19 Sumitomo Metal Ind Ltd Production of high carbon steel strip good in formability
JPH08269541A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of hot rolled high carbon steel plate excellent in hardenability and workability
JPH0987805A (en) * 1995-09-26 1997-03-31 Sumitomo Metal Ind Ltd High carbon steel sheet and its production
JPH11269552A (en) * 1998-03-25 1999-10-05 Nisshin Steel Co Ltd Manufacture of medium/high carbon steel sheet excellent in stretch-flange formability
JP2007291495A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Hot-rolled ultrasoft high-carbon steel plate and process for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441618A (en) * 1990-06-07 1992-02-12 Sumitomo Metal Ind Ltd Production of cold rolled high carbon steel sheet
JPH06108158A (en) * 1992-09-29 1994-04-19 Sumitomo Metal Ind Ltd Production of high carbon steel strip good in formability
JPH08269541A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of hot rolled high carbon steel plate excellent in hardenability and workability
JPH0987805A (en) * 1995-09-26 1997-03-31 Sumitomo Metal Ind Ltd High carbon steel sheet and its production
JPH11269552A (en) * 1998-03-25 1999-10-05 Nisshin Steel Co Ltd Manufacture of medium/high carbon steel sheet excellent in stretch-flange formability
JP2007291495A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Hot-rolled ultrasoft high-carbon steel plate and process for production thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461717B1 (en) 2012-09-27 2014-11-14 주식회사 포스코 Steel wire rod and steel wire for ultra-high strength tirecord and method for manufacturing thereof
WO2015020028A1 (en) * 2013-08-07 2015-02-12 株式会社神戸製鋼所 Soft high-carbon steel sheet
JP2015034307A (en) * 2013-08-07 2015-02-19 株式会社神戸製鋼所 Soft high carbon steel sheet
US10407748B2 (en) 2013-11-22 2019-09-10 Nippon Steel Corporation High-carbon steel sheet and method of manufacturing the same
WO2015076384A1 (en) 2013-11-22 2015-05-28 新日鐵住金株式会社 High-carbon steel sheet and method for producing same
KR20160072233A (en) 2013-11-22 2016-06-22 신닛테츠스미킨 카부시키카이샤 High-carbon steel sheet and method for producing same
CN104213021A (en) * 2014-08-05 2014-12-17 安徽荣达阀门有限公司 Wear resistant high-carbon steel pump valve material and preparation method thereof
CN104264038A (en) * 2014-09-23 2015-01-07 攀钢集团西昌钢钒有限公司 440 MPa-grade continuous-annealed and cold-rolled structural steel plate and production process thereof
CN105369114A (en) * 2015-12-03 2016-03-02 武汉钢铁(集团)公司 Production method for thin pickling and annealing tool steel
CN105369114B (en) * 2015-12-03 2017-04-12 武汉钢铁(集团)公司 Production method for thin pickling and annealing tool steel
JP2017190494A (en) * 2016-04-13 2017-10-19 日新製鋼株式会社 Wear resistant steel sheet excellent in toughness
KR101830551B1 (en) 2016-12-14 2018-02-20 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
WO2018110906A1 (en) * 2016-12-14 2018-06-21 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor
WO2019038923A1 (en) * 2017-08-25 2019-02-28 日新製鋼株式会社 Wear-resistant steel sheet having excellent toughness
CN111373064A (en) * 2017-08-25 2020-07-03 日铁日新制钢株式会社 Wear-resistant steel sheet having excellent toughness
EP3674432A4 (en) * 2017-08-25 2020-12-16 Nippon Steel Corporation Wear-resistant steel sheet having excellent toughness
KR101968013B1 (en) * 2017-11-07 2019-04-10 주식회사 포스코 High strength and low toughness hot-rolled steel sheet having good fracture characteristics, and method for manufacturing same
KR20190068064A (en) * 2017-12-08 2019-06-18 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
KR102020387B1 (en) 2017-12-08 2019-11-04 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
CN109280847A (en) * 2018-10-08 2019-01-29 鞍钢股份有限公司 A kind of high carbon alloy chain tool steel and its manufacturing method
CN109280847B (en) * 2018-10-08 2020-05-29 鞍钢股份有限公司 High-carbon alloy chain tool steel and manufacturing method thereof
WO2020179737A1 (en) 2019-03-06 2020-09-10 日本製鉄株式会社 Hot-rolled steel sheet and production method therefor
KR20210120087A (en) 2019-03-06 2021-10-06 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP4903839B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4903839B2 (en) Soft high carbon steel plate excellent in punchability and manufacturing method thereof
JP6285462B2 (en) 780 MPa class cold rolled duplex steel and method for producing the same
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
CN107614727B (en) Steel sheet and method for producing same
KR101382912B1 (en) Boron-containing steel sheet with excellent hardenability and method of manufacturing same
WO2013035848A1 (en) Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
TW201641708A (en) Cold rolled steel sheet and manufacturing method thereof
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2014159610A (en) High strength cold rolled steel sheet excellent in bendability
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP5312230B2 (en) Soft high carbon steel sheet with small punching and manufacturing method thereof
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
KR101344537B1 (en) High strength steel sheet and method of manufacturing the steel sheet
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5521931B2 (en) Soft medium carbon steel plate with excellent induction hardenability
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP5549450B2 (en) High carbon hot-rolled steel sheet excellent in fine blanking property and manufacturing method thereof
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2018502992A (en) Composite steel sheet with excellent formability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R151 Written notification of patent or utility model registration

Ref document number: 4903839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees