JP5312230B2 - Soft high carbon steel sheet with small punching and manufacturing method thereof - Google Patents

Soft high carbon steel sheet with small punching and manufacturing method thereof Download PDF

Info

Publication number
JP5312230B2
JP5312230B2 JP2009158175A JP2009158175A JP5312230B2 JP 5312230 B2 JP5312230 B2 JP 5312230B2 JP 2009158175 A JP2009158175 A JP 2009158175A JP 2009158175 A JP2009158175 A JP 2009158175A JP 5312230 B2 JP5312230 B2 JP 5312230B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
annealing
cold rolling
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158175A
Other languages
Japanese (ja)
Other versions
JP2011012317A (en
Inventor
健悟 竹田
阿部  雅之
久斉 矢頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009158175A priority Critical patent/JP5312230B2/en
Publication of JP2011012317A publication Critical patent/JP2011012317A/en
Application granted granted Critical
Publication of JP5312230B2 publication Critical patent/JP5312230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、打抜きカエリの小さい軟質高炭素鋼板とその製造方法関するものである。   The present invention relates to a soft high carbon steel sheet having a small punching and a manufacturing method thereof.

高炭素鋼板は、チェーン、ギヤー、クラッチ、鋸、刃物等の素材として広く用いられている。高炭素鋼板から製品を製造する場合、通常、成形後、焼入れ焼戻し等の熱処理を施して硬化させる。それ故、高炭素鋼板には、複雑で過酷な加工に耐える加工性が要求される。   High carbon steel plates are widely used as materials for chains, gears, clutches, saws, blades and the like. When a product is produced from a high carbon steel plate, it is usually cured after forming by heat treatment such as quenching and tempering. Therefore, high carbon steel sheets are required to have workability that can withstand complicated and severe processing.

通常、高炭素鋼板に所要の加工性を付与するためには、炭化物を球状化する焼鈍を採用する(例えば、特許文献1〜5、参照)が、近年、高炭素鋼板には、用途の多様化に伴い、打抜き性も要求されるようになり、材質の軟質化を図る炭化物球状化焼鈍では、該要求に対処できないのが実情である。   Usually, in order to impart required workability to a high-carbon steel sheet, annealing to spheroidize carbide is employed (see, for example, Patent Documents 1 to 5). As a result, punching properties are also required, and it is the actual situation that carbide spheroidizing annealing for softening the material cannot cope with the requirements.

例えば、特許文献1には、C:0.50〜0.70質量%、Si:0.5質量%以下、Mn:1.0〜2.0質量%、P:0.02%質量以下、S:0.02質量%、Al:0.001〜0.10質量%、さらに、V:0.05〜0.50質量%、Ti:0.02〜0.20%、Nb:0.01〜0.50質量%の1種又は2種以上を含み、残部がFe及び不可避的不純物からなり、炭化物の球状化率が95%以上で、最大粒径が2.5μm以下の炭化物が分散した焼入れ性、疲労特性、靭性に優れた高炭素鋼板が開示されているが、該高炭素鋼板において、打抜きカエリを小さくする試みはなされていない。   For example, in Patent Document 1, C: 0.50 to 0.70% by mass, Si: 0.5% by mass or less, Mn: 1.0 to 2.0% by mass, P: 0.02% by mass or less, S: 0.02% by mass, Al: 0.001 to 0.10% by mass, V: 0.05 to 0.50% by mass, Ti: 0.02 to 0.20%, Nb: 0.01 1 to 2 or more of 0.50 mass%, the balance is Fe and inevitable impurities, the spheroidization rate of the carbide is 95% or more, the carbide having a maximum particle size of 2.5 μm or less dispersed Although a high carbon steel sheet excellent in hardenability, fatigue characteristics, and toughness has been disclosed, no attempt has been made to reduce punching in the high carbon steel sheet.

高炭素鋼板は、高炭素であるが故、本来、所要の硬度を備えていて、打抜き性に優れているが、炭化物球状化焼鈍で軟質化を図れば、打抜き性は劣化し、打抜きで生じるカエリは大きくなる。   A high carbon steel plate is high carbon, so it originally has the required hardness and is excellent in punchability, but if it is softened by carbide spheroidizing annealing, the punchability will deteriorate and it will occur by punching. Kaeri grows big.

特に、Cを0.65質量%以上含有する高炭素鋼板において、材質の軟質化と、打抜き性の向上、特に、打抜きカエリの抑制を両立させることは難しい。   In particular, in a high carbon steel plate containing 0.65% by mass or more of C, it is difficult to achieve both softening of the material and improvement of punchability, particularly suppression of punching.

特開2009−024233号公報JP 2009-024233 A 特開2008−303415号公報JP 2008-303415 A 特開2008−156712号公報JP 2008-156712 A 特開2008−069452号公報JP 2008-069452 A 特開2007−291495号公報JP 2007-291495 A

前述したように、Cを0.65質量%以上含有する高炭素鋼板において、材質の軟質化と、打抜き性の向上(特に、打抜きカエリの抑制)を両立させることは難しいところ、本発明は、Cを0.65質量%以上0.85質量%以下含有する高炭素鋼板において、材質の軟質化と打抜き性の向上(特に、打抜きカエリの抑制)を図ることを課題とし、該課題を解決する高炭素鋼板とその製造方法を提供することを目的とする。   As described above, in a high carbon steel sheet containing 0.65% by mass or more of C, it is difficult to achieve both softening of the material and improvement of punchability (particularly, suppression of punching). In a high carbon steel sheet containing 0.65% by mass or more and 0.85% by mass or less of C, the object is to soften the material and improve punchability (particularly, suppression of punching burrs), and solve the problem It aims at providing a high carbon steel plate and its manufacturing method.

本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、焼鈍条件と冷却条件の組合せで、最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に抑制すると、その後の冷間圧延で、鋼組織にボイドが導入され、その結果、打抜きカエリが顕著に小さくなり、打抜き性が格段に向上することを見いだした。 The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, with the combination of annealing conditions and cooling conditions, when the area of carbides of 0.5 μm 2 or less is suppressed to 15% or less of the total area of carbides in the thickness cross section of the structure before final cold rolling, It has been found that cold rolling introduces voids in the steel structure, and as a result, punching remarks are remarkably reduced, and punching performance is remarkably improved.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 質量%で、C:0.65〜0.85%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、
(i)硬さが170HV以下であり、かつ、
(ii)連続鋳造、熱延、酸洗、焼鈍の後に、冷延及び焼鈍を1回又は2回施す際の最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内であり、かつ、
(iii)上記最終冷延の圧下率が15%以上30%以下である、
ことを特徴とする打抜きカエリの小さい軟質高炭素鋼板。
(1) By mass%, C: 0.65-0.85%, Si: 0.05-0.4%, Mn: 0.5-2.0%, P: 0.005-0.03% , S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, with the balance being Fe and inevitable impurities,
(I) the hardness is 170 HV or less, and
(Ii) After continuous casting, hot rolling, pickling and annealing, in the plate thickness section of the structure before final cold rolling when cold rolling and annealing are performed once or twice, 0.5 μm 2 or less of carbide area of state, and are within 15% of the total area of the carbide, and,
(Iii) the final cold rolling reduction ratio is Ru der than 30% to 15%
A soft high-carbon steel sheet with small punching characteristics.

(2) 質量%で、さらに、Cr:0.05〜1.0%、Ni:0.01〜1.0%、Cu:0.05〜0.5%、及び、Mo:0.01〜1.0%の1種又は2種以上を含有することを特徴とする前記(1)に記載の打抜きカエリの小さい軟質高炭素鋼板。   (2) In mass%, Cr: 0.05 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.05 to 0.5%, and Mo: 0.01 to The soft high-carbon steel sheet with small punching as described in (1) above, containing 1.0% or one or more of 1.0%.

(3) 質量%で、さらに、Nb:0.01〜0.5%、V:0.01〜0.5%、Ta:0.01〜0.5%、及び、W:0.01〜0.5%の1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の打抜きカエリの小さい軟質な高炭素鋼板。   (3) In mass%, Nb: 0.01 to 0.5%, V: 0.01 to 0.5%, Ta: 0.01 to 0.5%, and W: 0.01 to The soft high-carbon steel sheet with small punching as described in (1) or (2) above, containing 0.5% of one type or two or more types.

(4) 質量%で、さらに、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の打抜きカエリの小さい軟質高炭素鋼板。   (4) By mass%, Sn: 0.003-0.03%, Sb: 0.003-0.03%, and As: 0.003-0.03%, or one or more The soft high-carbon steel sheet with small punching as described in any one of (1) to (3) above.

(5) 前記組織の板厚断面に、観察組織1mm2当り100個以上のボイドが存在することを特徴とする前記(1)〜(4)のいずれかに記載の打抜きカエリの小さい軟質高炭素鋼板。 (5) The soft high carbon with a small punching defect according to any one of the above (1) to (4), wherein 100 or more voids per 1 mm 2 of the observed structure are present in the thickness cross section of the structure steel sheet.

(6) 前記(1)〜(4)のいずれかに記載の成分組成を満たす連続鋳造鋳片を、鋳造後、直接、又は、1300℃以下で、90分以下加熱して熱間圧延に供し、800〜940℃で仕上圧延を終了し、次いで、熱延鋼板を、650℃まで30℃/s以上で強冷却し、その後、巻取りまで20℃/s以下で緩冷却して、400〜650℃未満で捲き取り、酸洗の後、軟質化箱焼鈍を施した後に、冷延及び焼鈍を1回施す高炭素鋼板の製造方法であって、軟質化箱焼鈍及び軟質化箱焼鈍後の冷延を以下の条件で行うことを特徴とする打抜きカエリの小さい軟質高炭素鋼板の製造方法。
(i)軟質化箱焼鈍は、室温からAc1〜Ac1+100℃の温度まで加熱した後、3時間以上保持し、次いで、Ar1以下まで冷却する過程において、加熱保持温度〜Ar1の温度範囲で、20℃/hr以下の冷却と冷却後0.5hr以上の保持を1回以上繰り返す。
(ii)軟質化箱焼鈍後の冷延の圧下率は、15%以上30%以下とする。
(6) A continuous cast slab satisfying the component composition according to any one of (1) to (4) is subjected to hot rolling directly after casting or heated at 1300 ° C. or less for 90 minutes or less. The finish rolling is finished at 800 to 940 ° C., and then the hot-rolled steel sheet is strongly cooled to 650 ° C. at 30 ° C./s or more, and then slowly cooled to 20 ° C. or less until winding up to 400 to 400 ° C. taken Maki below 650 ° C., after pickling, after performing softened box annealing, cold rolling and annealing method for manufacturing a 1 Kai施 be high carbon steel sheet, after softening box annealing and softening box annealing A method for producing a soft high carbon steel sheet with small punching, characterized in that the cold rolling is performed under the following conditions.
(I) softening box annealing, after heating from room temperature up to a temperature of Ac 1 ~Ac 1 + 100 ℃, and held for 3 hours or more, then, in the course of cooling to Ar 1 or less, the temperature of the heating and holding temperature to Ar 1 In the range, cooling at 20 ° C./hr or less and holding for 0.5 hr or more after cooling are repeated once or more.
(Ii) The rolling reduction of cold rolling after softening box annealing is 15% or more and 30% or less.

(7) 前記(1)〜(4)のいずれかに記載の成分組成を満たす連続鋳造鋳片を、鋳造後、直接、又は、1300℃以下で、90分以下加熱して熱間圧延に供し、800〜940℃で仕上圧延を終了し、次いで、熱延鋼板を、650℃まで30℃/s以上で強冷却し、その後、巻取りまで20℃/s以下で緩冷却して、400〜650℃未満で捲き取り、酸洗の後、軟質化箱焼鈍を施した後に、冷延及び焼鈍を2回施す高炭素鋼板の製造方法であって、軟質化箱焼鈍、軟質化箱焼鈍後の冷延、及び、冷延後の処理を以下の条件で行うことを特徴とする打抜きカエリの小さい軟質高炭素鋼板の製造方法。
(i)軟質化箱焼鈍は、室温から680℃以上Ac1以下の温度まで加熱した後、3時間以上保持する。
(ii)軟質化箱焼鈍後の冷延の圧下率は、40%以上とする。
(iii)冷延後の処理は、フェライト粒径dαが、下記式(1)を満たすように、再度、680℃以上Ac1以下の温度で焼鈍した後、圧下率15%以上30%以下の冷間圧延を施し、次いで、箱焼鈍を施す。
dα>2.5−1.7ln(C質量%) ・・・(1)
(7) A continuous cast slab satisfying the component composition according to any one of (1) to (4) is subjected to hot rolling directly after casting or at 1300 ° C. or less for 90 minutes or less. The finish rolling is finished at 800 to 940 ° C., and then the hot-rolled steel sheet is strongly cooled to 650 ° C. at 30 ° C./s or more and then slowly cooled to 20 ° C. or less until winding up to 400 to 400 ° C. It is a manufacturing method of a high carbon steel sheet which is subjected to cold rolling and annealing twice after scraping at less than 650 ° C., pickling, softening box annealing, and after softening box annealing and softening box annealing. A method for producing a soft high-carbon steel sheet with small punching, characterized in that cold rolling and processing after cold rolling are performed under the following conditions.
(I) Softening box annealing is heated for 3 hours or more after heating from room temperature to a temperature of 680 ° C. or higher and Ac 1 or lower.
(Ii) The rolling reduction of cold rolling after softening box annealing shall be 40% or more.
(Iii) The treatment after cold rolling is performed again at a temperature of 680 ° C. or more and Ac 1 or less so that the ferrite particle diameter dα satisfies the following formula (1), and then the rolling reduction is 15% or more and 30% or less. subjected to cold rolling, then, subjected to a box grilled blunt.
dα> 2.5-1.7ln (C mass%) (1)

本発明によれば、C:0.65〜0.85%の高炭素鋼板において、鋼板組織にボイドが導入されて、打抜きカエリが顕著に小さくなるので、打抜き性に優れた軟質高炭素鋼板とその製造方法を提供することができる。   According to the present invention, in the high carbon steel sheet of C: 0.65 to 0.85%, voids are introduced into the steel sheet structure, and punching is significantly reduced. Therefore, the soft high carbon steel sheet having excellent punchability and A manufacturing method thereof can be provided.

板厚断面組織中に、0.5μm2以下の炭化物が、炭化物の総面積の15%以下で存在する態様を示す図である。It is a figure which shows the aspect in which 0.5 micrometer < 2 > or less carbide | carbonized_material exists in 15% or less of the total area of a carbide | carbonized_material in a plate | board thickness cross-sectional structure. 板厚断面組織中にボイド(白矢印)が存在する態様を示す図である。It is a figure which shows the aspect in which a void (white arrow) exists in a plate | board thickness cross-sectional structure | tissue. 本発明製造方法における熱処理の態様を示す図である。It is a figure which shows the aspect of the heat processing in this invention manufacturing method. 打抜きカエリの程度と硬度(HV)の関係を示す図である。It is a figure which shows the relationship between the grade of punching, and hardness (HV).

本発明の軟質高炭素鋼板は、質量%で、C:0.65〜0.85%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなる鋼板において、
(i)硬さが170HV以下であり、かつ、
(ii)連続鋳造、熱延、酸洗、焼鈍の後に、冷延及び焼鈍を1回又は2回施す際の最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内である、
ことを特徴とする。
The soft high carbon steel sheet of the present invention is in mass%, C: 0.65-0.85%, Si: 0.05-0.4%, Mn: 0.5-2.0%, P: 0.00. 005 to 0.03%, S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, the balance being Fe and inevitable In steel plates made of mechanical impurities,
(I) the hardness is 170 HV or less, and
(Ii) After continuous casting, hot rolling, pickling and annealing, in the plate thickness section of the structure before final cold rolling when cold rolling and annealing are performed once or twice , 0.5 μm 2 or less of carbide The area is within 15% of the total area of the carbide,
It is characterized by that.

まず、本発明の軟質高炭素鋼板(以下「本発明鋼板」ということがある。)の成分組成に係る限定理由について説明する。なお、以下、「%」は「質量%」を意味する。   First, the reason for limitation relating to the component composition of the soft high carbon steel sheet of the present invention (hereinafter sometimes referred to as “the present invention steel sheet”) will be described. Hereinafter, “%” means “mass%”.

C:0.65〜0.85%
Cは、鋼板の強度を確保するうえで重要な元素であり、0.65%以上添加し、所要の強度を確保する。0.65%未満では、焼入れ性が低下し、機械構造用高強度鋼板としての強度が得られないので、下限を0.65%とする。0.85%を超えると、靭性や加工性を確保する熱処理に長時間を要するので、上限を0.85%とする。好ましくは、0.70〜0.80%である。
C: 0.65-0.85%
C is an important element for securing the strength of the steel sheet, and is added by 0.65% or more to ensure the required strength. If it is less than 0.65%, the hardenability deteriorates and the strength as a high-strength steel sheet for machine structures cannot be obtained, so the lower limit is made 0.65%. If it exceeds 0.85%, it takes a long time for heat treatment to ensure toughness and workability, so the upper limit is made 0.85%. Preferably, it is 0.70 to 0.80%.

Si:0.05〜0.4%
Siは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。0.05%未満では、添加効果が得られないので、下限を0.05%とする。0.4%を超えると、熱間圧延時のスケール疵に起因する表面性状の劣化を招くので、上限を0.4%とする。好ましくは、0.10〜0.3%である。
Si: 0.05-0.4%
Si acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.05%, the effect of addition cannot be obtained, so the lower limit is made 0.05%. If it exceeds 0.4%, the surface properties are deteriorated due to scale wrinkling during hot rolling, so the upper limit is made 0.4%. Preferably, it is 0.10 to 0.3%.

Mn:0.5〜2.0%
Mnは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。0.5%未満では、添加効果が得られないので、下限を0.5%とする。2.0%を超えると、焼入れ、焼戻し後の衝撃特性を助長するので、上限を2.0%とする。好ましくは、0.8〜1.5%である。
Mn: 0.5 to 2.0%
Mn acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.5%, the effect of addition cannot be obtained, so the lower limit is made 0.5%. If it exceeds 2.0%, impact characteristics after quenching and tempering are promoted, so the upper limit is made 2.0%. Preferably, it is 0.8 to 1.5%.

P:0.005〜0.03%
Pは、固溶強化元素であり、鋼板の強度に有効な元素である。過剰な含有は、靭性を阻害するので、上限を0.03%とする。0.005%未満に低減することは、精錬コストの上昇を招くので、下限を0.005%とする。好ましくは、0.007〜0.02%である。
P: 0.005 to 0.03%
P is a solid solution strengthening element and is an element effective for the strength of the steel sheet. Since excessive inclusion will inhibit toughness, the upper limit is made 0.03%. Reduction to less than 0.005% causes an increase in refining cost, so the lower limit is made 0.005%. Preferably, it is 0.007 to 0.02%.

S:0.0001〜0.006%
Sは、非金属介在物を形成し、加工性や、熱処理後の靭性を阻害する原因となるので、上限を0.006%とする。0.0001%未満に低減することは、精錬コストの大幅な上昇を招くので、下限を0.0001%とする。好ましくは、0.001〜0.004%である。
S: 0.0001 to 0.006%
S forms a non-metallic inclusion and causes a deterioration in workability and toughness after heat treatment, so the upper limit is made 0.006%. Reducing to less than 0.0001% causes a significant increase in refining costs, so the lower limit is made 0.0001%. Preferably, it is 0.001 to 0.004%.

Al:0.005〜0.10%
Alは、脱酸剤として作用し、また、Nの固定に有効な元素である。0.005%未満では、添加効果が十分に得られないので、下限を0.005%とする。0.10%を超えると、添加効果は飽和し、また、表面疵が発生し易くなるので、上限を0.10%とする。好ましくは、0.01〜0.05%である。
Al: 0.005-0.10%
Al acts as a deoxidizing agent and is an element effective for fixing N. If it is less than 0.005%, the effect of addition cannot be sufficiently obtained, so the lower limit is made 0.005%. If it exceeds 0.10%, the effect of addition is saturated and surface flaws are likely to occur, so the upper limit is made 0.10%. Preferably, it is 0.01 to 0.05%.

N:0.001〜0.01%
Nは、Nは窒化物を形成する元素である。湾曲型連続鋳造における鋳片曲げ矯正時に窒化物が析出すると、鋳片が割れることがあるので、上限を0.01%とする。少ないほど好ましいが、0.001%未満に低減するのは、精錬コストの増加を招くので、下限を0.001%とする。好ましくは、0.004〜0.007%である。
N: 0.001 to 0.01%
N is an element that forms a nitride. If nitride precipitates during slab bending correction in curved continuous casting, the slab may crack, so the upper limit is made 0.01%. A smaller amount is preferable, but a reduction to less than 0.001% leads to an increase in refining costs, so the lower limit is made 0.001%. Preferably, it is 0.004 to 0.007%.

本発明鋼板の機械特性を強化するため、Cr、Ni、Cu、及び、Moの1種又は2種以上を、所要量、添加してもよい。   In order to enhance the mechanical properties of the steel sheet of the present invention, a required amount of one or more of Cr, Ni, Cu, and Mo may be added.

Cr:0.05〜1.0%
Crは、焼入れ性の向上に有効な元素である。0.05%未満では、添加効果がないので、下限を0.05%とする。1.0%を超えると、添加効果は飽和するので、上限を1.0%とする。好ましくは、0.07〜0.7%である。
Cr: 0.05-1.0%
Cr is an element effective for improving hardenability. If it is less than 0.05%, there is no effect of addition, so the lower limit is made 0.05%. If it exceeds 1.0%, the effect of addition is saturated, so the upper limit is made 1.0%. Preferably, it is 0.07 to 0.7%.

Ni:0.01〜1.0%
Niは、靭性の向上や、焼入れ性の向上に有効な元素である。0.01%未満では、添加効果がないので、下限を0.01%とする。1.0%を超えると、添加効果は飽和するし、また、コスト増を招くので、上限を1.0%とする。好ましくは、0.05〜0.5%である。
Ni: 0.01 to 1.0%
Ni is an element effective for improving toughness and hardenability. If it is less than 0.01%, there is no effect of addition, so the lower limit is made 0.01%. If it exceeds 1.0%, the effect of addition is saturated and the cost is increased, so the upper limit is made 1.0%. Preferably, it is 0.05 to 0.5%.

Cu:0.05〜0.5%
Cuは、焼入れ性の確保に有効な元素である。0.05%未満では、添加効果が不十分であるので、下限を0.05%とする。0.5%を超えると、硬くなり過ぎ、冷間加工性が劣化するので、上限を0.5%とする。好ましくは、0.08〜0.2%である。
Cu: 0.05 to 0.5%
Cu is an element effective for ensuring hardenability. If it is less than 0.05%, the effect of addition is insufficient, so the lower limit is made 0.05%. If it exceeds 0.5%, it becomes too hard and the cold workability deteriorates, so the upper limit is made 0.5%. Preferably, it is 0.08 to 0.2%.

Mo:0.01〜1.0%
Moは、焼入れ性の向上と、焼戻し軟化抵抗性の向上に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。1.0%を超えると、添加効果は飽和するので、上限を1.0%とする。好ましくは、0.05〜0.5%である。
Mo: 0.01 to 1.0%
Mo is an element effective for improving hardenability and improving resistance to temper softening. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 1.0%, the effect of addition is saturated, so the upper limit is made 1.0%. Preferably, it is 0.05 to 0.5%.

本発明鋼板の機械特性を、さらに強化するため、Nb、V、Ta、及び、Wの1種又は2種以上を、所要量、添加してもよい。   In order to further strengthen the mechanical properties of the steel sheet of the present invention, a necessary amount of one or more of Nb, V, Ta, and W may be added.

Nb:0.01〜0.5%
Nbは、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果は充分に発現しないので、下限を0.01%とする。0.5%を超えると、添加効果が飽和するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
Nb: 0.01 to 0.5%
Nb is an element that forms carbonitride and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is not sufficiently exhibited, so the lower limit is made 0.01%. If it exceeds 0.5%, the effect of addition is saturated, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

V:0.01〜0.5%
Vは、Nbと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
V: 0.01 to 0.5%
V, like Nb, is an element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

Ta:0.01〜0.5%
Taは、Nb、Vと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
Ta: 0.01 to 0.5%
Ta, like Nb and V, is an element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

W:0.01〜0.5%
Wは、鋼板の強化に有効な元素である。0.01%未満では、添加効果が発現しないので、下限を0.01%とする。0.5%を超えると、加工性が低下するので、上限を0.5%にする。好ましくは、0.04〜0.2%である。
W: 0.01-0.5%
W is an element effective for strengthening a steel sheet. If it is less than 0.01%, the effect of addition does not appear, so the lower limit is made 0.01%. If it exceeds 0.5%, the workability deteriorates, so the upper limit is made 0.5%. Preferably, it is 0.04 to 0.2%.

本発明鋼板の原料としてスクラップを用いた場合、不可避的にSn、Sb、及び、Asの1種又は2種以上が、0.003%以上混入するが、いずれも、0.03%以下であれば、本発明鋼板の打抜き性を阻害しないので、本発明鋼板においては、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上の含有を許容する。   When scrap is used as a raw material for the steel sheet of the present invention, one or more of Sn, Sb, and As are inevitably mixed in by 0.003% or more, and any of them may be 0.03% or less. In the steel sheet of the present invention, Sn: 0.003 to 0.03%, Sb: 0.003 to 0.03%, and As: 0.003 to 0. 0.03% of one kind or two kinds or more are allowed.

本発明鋼板において、O量は規定していないが、酸化物が凝集して粗大化すると、延性が低下するので、Oは、0.0025%以下が好ましい。Oは、少ないほうが好ましいが、0.0001%未満に低減することは、技術的に困難であるので、0.0001%以上の含有は許容される。   In the steel sheet of the present invention, the amount of O is not specified, but when the oxide aggregates and coarsens, the ductility decreases, so O is preferably 0.0025% or less. A smaller amount of O is preferable, but since it is technically difficult to reduce it to less than 0.0001%, a content of 0.0001% or more is allowed.

本発明鋼板の溶製原料としてスクラップを用いた場合、Ti、Zn、Zr等の元素が、不可避的不純物として混入するが、本発明鋼板においては、本発明鋼板の特性を阻害しない範囲で、上記元素の混入を許容する。なお、Ti、Zn、Zr等以外の元素でも、本発明鋼板の特性を阻害しない範囲で、混入を許容する。   When scrap is used as a melting raw material of the steel sheet of the present invention, elements such as Ti, Zn, Zr are mixed as unavoidable impurities, but in the steel sheet of the present invention, the above does not impair the characteristics of the steel sheet of the present invention. Allow mixing of elements. It should be noted that elements other than Ti, Zn, Zr and the like are allowed to be mixed as long as the characteristics of the steel sheet of the present invention are not impaired.

本発明鋼板は、前述したように、
(i)硬さが170HV以下であり、かつ、
(ii)連続鋳造、熱延、酸洗、焼鈍の後に、冷延及び焼鈍を1回又は2回施す際の最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内である、
ことを特徴とする。
As described above, the steel sheet of the present invention is
(I) the hardness is 170 HV or less, and
(Ii) After continuous casting, hot rolling, pickling and annealing, in the plate thickness section of the structure before final cold rolling when cold rolling and annealing are performed once or twice , 0.5 μm 2 or less of carbide The area is within 15% of the total area of the carbide,
It is characterized by that.

鋼板の軟質性を確保するため、硬さを170HV以下に限定する。硬さが170HVを超えると、加工性が低下する。   In order to ensure the softness of the steel sheet, the hardness is limited to 170 HV or less. If the hardness exceeds 170 HV, the workability decreases.

本発明鋼板においては、最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内であることが重要である。 In the steel sheet of the present invention, it is important that the area of carbide of 0.5 μm 2 or less is within 15% of the total area of carbide in the thickness cross section of the structure before final cold rolling.

0.5μm2以下の微細な炭化物が、炭化物の総面積の15%を超えて存在すると、次工程の冷間圧延にて、ボイドの形成が抑制されるので、本発明鋼板では、最終冷延前の組織の板厚断面において、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に限定した。 If fine carbides of 0.5 μm 2 or less are present in excess of 15% of the total area of the carbides, void formation is suppressed in the cold rolling of the next step. In the plate thickness cross section of the previous structure, the area of carbides of 0.5 μm 2 or less was limited to 15% of the total area of carbides.

即ち、本発明鋼板は、焼鈍条件と冷却条件の組み合せで、最終冷延前の板厚断面組織において、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に抑制したものである。 That is, the steel sheet of the present invention is a combination of annealing conditions and cooling conditions, and the carbide area of 0.5 μm 2 or less is suppressed within 15% of the total carbide area in the sheet thickness cross-sectional structure before final cold rolling. It is.

図1に、板厚断面組織中に、0.5μm2以下の炭化物が、炭化物の総面積の15%以下で存在する態様を示す。 FIG. 1 shows an embodiment in which carbides of 0.5 μm 2 or less exist in 15% or less of the total area of carbides in the plate thickness cross-sectional structure.

連続鋳造、熱延、酸洗、焼鈍の後に、冷延及び焼鈍を1回又は2回施す際の最終冷延前の板厚断面組織において、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に抑制すると、鋼板の打抜き時に発生する鋼板のカエリを顕著に小さくすることができることは、本発明者らが見いだした新規な知見である。なお、板厚断面組織において、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に抑制する焼鈍条件と冷却条件については後述する。 After continuous casting, hot rolling, pickling, and annealing, in the sheet thickness cross-sectional structure before final cold rolling when cold rolling and annealing are performed once or twice , the carbide area of 0.5 μm 2 or less It is a novel finding that the present inventors have found that when the steel sheet is controlled to be within 15% of the total area, the burrs of the steel sheet generated when the steel sheet is punched can be remarkably reduced. An annealing condition and a cooling condition for suppressing the area of carbide of 0.5 μm 2 or less within 15% of the total area of the carbide in the plate thickness cross-sectional structure will be described later.

本発明鋼板においては、鋼板組織の板厚断面中に、観察組織1mm2当り100個以上のボイドが存在することが好ましい。板厚断面の組織中に、観察組織1mm2当り100個以上のボイドが存在することにより、打抜き性が顕著に向上し、打ち抜いた後に生じるカエリが、極力、小さくなる。 In the steel sheet of the present invention, it is preferable that 100 or more voids exist per 1 mm 2 of the observation structure in the thickness cross section of the steel sheet structure. The presence of 100 or more voids per 1 mm 2 of the observed structure in the structure of the plate thickness cross section significantly improves punchability, and the burrs generated after punching become as small as possible.

板厚断面の組織中に、観察組織1mm2当り100個以上のボイドが存在することにより、鋼板の打抜き性が顕著に向上することも、本発明者らが見いだした新規な知見である。なお、組織にボイドを導入する焼鈍条件と冷却条件については後述する。 It is a new finding that the present inventors have found that the punchability of the steel sheet is remarkably improved by the presence of 100 or more voids per 1 mm 2 of the observation structure in the structure of the plate thickness cross section. An annealing condition and a cooling condition for introducing a void into the structure will be described later.

組織の観察は、走査型電子顕微鏡で行なうのが好ましい。観察組織1mm2当りのボイド数を数えて、1個以上存在することを確認する。ボイドの数が、観察組織1mm2当り100個未満であると、所要の打抜き性を確保するのが難しくなる。 The observation of the tissue is preferably performed with a scanning electron microscope. Count the number of voids per 1 mm 2 of the observed tissue and confirm that one or more exist. If the number of voids is less than 100 per 1 mm 2 of the observed tissue, it becomes difficult to ensure the required punchability.

図2に、冷間圧延後、箱焼鈍を施した鋼組織中にボイドが存在する態様を示す。ボイドは、炭化物に隣接して形成されていることが解る。ボイドは、鋼組織において、通常、疲労破壊の起点となり得るので、構造材料では回避すべき存在であるが、打抜き時においては、ボイドの連結効果により破断面の形成が促進されて、打抜き性が向上する。   FIG. 2 shows an embodiment in which voids exist in the steel structure subjected to box annealing after cold rolling. It can be seen that the void is formed adjacent to the carbide. Since voids can usually be the starting point of fatigue fracture in steel structures, they should be avoided in structural materials, but at the time of punching, the formation of fracture surfaces is promoted by the effect of void connection, and punchability is improved. improves.

次に、本発明鋼板の製造方法(以下「本発明製造方法」という。)について説明する。   Next, a manufacturing method of the steel sheet of the present invention (hereinafter referred to as “the manufacturing method of the present invention”) will be described.

熱間圧延に供する連続鋳造鋳片(冷片)を、1300℃以下、90分以下加熱する。1300℃を超えて加熱したり、90分を超えて長時間加熱すると、加熱工程で、スラブの表層部で脱Cが顕著となり、鋼板表面の焼入れ性が劣化する。それ故、加熱温度は1300℃以下、加熱時間は90分以下とする。脱Cを抑制するとの観点から、加熱温度は1200℃以下が好ましく、加熱時間は60分以下が好ましい。   A continuously cast slab (cold slab) to be subjected to hot rolling is heated to 1300 ° C. or less and 90 minutes or less. When heating is performed at a temperature exceeding 1300 ° C. or when the heating is performed for a long time exceeding 90 minutes, de-C is remarkable in the surface layer portion of the slab in the heating process, and the hardenability of the steel sheet surface is deteriorated. Therefore, the heating temperature is 1300 ° C. or less and the heating time is 90 minutes or less. From the viewpoint of suppressing de-C, the heating temperature is preferably 1200 ° C. or less, and the heating time is preferably 60 minutes or less.

なお、連続鋳造鋳片を、直接、又は、再加熱して熱間圧延に供するが、直接圧延した場合と、再加熱後圧延した場合において、鋼板特性に差は殆どない。   In addition, although a continuous cast slab is directly or reheated and used for hot rolling, there is almost no difference in steel plate characteristics between direct rolling and rolling after reheating.

熱間圧延は、通常の熱間圧延、及び、仕上圧延においてスラブを接合する連続化熱間圧延のどちらでもよい。熱間圧延の終了温度(熱延終了温度)は、生産性や板厚精度、異方性改善の観点に、表面疵の観点をも加えて設定する。熱延終了温度が800℃未満であると、焼付による疵が多発し、一方、940℃を超えると、スケール疵の発生頻度が高くなり、製品歩留りが低下して、コストが増大する。それ故、熱延終了温度は、800〜940℃とする。   Hot rolling may be either normal hot rolling or continuous hot rolling in which slabs are joined in finish rolling. The end temperature of hot rolling (hot end temperature) is set by adding the viewpoint of surface defects to the viewpoint of productivity, sheet thickness accuracy, and anisotropy improvement. If the hot rolling end temperature is less than 800 ° C., defects due to baking occur frequently, whereas if it exceeds 940 ° C., the occurrence frequency of scale defects increases, the product yield decreases, and the cost increases. Therefore, the hot rolling end temperature is set to 800 to 940 ° C.

熱間圧延後の鋼板の冷却は、仕上圧延後、30℃/秒以上の冷却速度で、650℃まで冷却し、続いて、20℃/秒以下の冷却速度で、巻取温度の400〜650℃未満まで緩冷却する。   The steel sheet after hot rolling is cooled to 650 ° C. at a cooling rate of 30 ° C./second or more after the finish rolling, and subsequently, at a cooling rate of 20 ° C./second or less, at a coiling temperature of 400 to 650. Slowly cool to below ℃.

熱延終了後、熱延鋼板を、650℃まで、冷却速度30℃/秒以上で冷却する理由は、冷却速度が冷却速度30℃/秒未満であると、偏析に伴うパーライトバンドが生成し、焼鈍後も、粗大な炭化物が存在し易く、加工性の劣化に繋がるからである。加工性の劣化を抑制する観点から、熱延鋼板を30℃/秒以上で冷却する。   After hot rolling, the hot-rolled steel sheet is cooled to 650 ° C. at a cooling rate of 30 ° C./second or more. If the cooling rate is less than 30 ° C./second, a pearlite band accompanying segregation is generated, This is because coarse carbides are easily present even after annealing, leading to deterioration of workability. From the viewpoint of suppressing the deterioration of workability, the hot-rolled steel sheet is cooled at 30 ° C./second or more.

熱延鋼板を、巻取温度400〜650℃まで、20℃/秒以下の冷却速度で緩冷却する理由は、パーライト組織の均一なパーライト変態やベイナイト変態を促進させるためである。上記温度範囲まで急冷すると、過冷オーステナイトに起因するコイルの巻き形状の乱れが起きて疵が発生し、歩留りが低下する。   The reason why the hot-rolled steel sheet is slowly cooled to a coiling temperature of 400 to 650 ° C. at a cooling rate of 20 ° C./second or less is to promote uniform pearlite transformation and bainite transformation of the pearlite structure. When cooled rapidly to the above temperature range, the winding shape of the coil is disturbed due to the supercooled austenite, so that wrinkles are generated and the yield is lowered.

熱延鋼板を、巻取温度400〜650℃で巻き取る理由は、400℃未満では、一部、マルテンサイト変態が生じて鋼板強度が上昇し、ハンドリングが困難になったり、冷間圧延の際、組織不均一からゲージハンチングを起こすなど、歩留りの低下を引き起こすからである。一方、巻取温度が650℃を超えると、熱延鋼板のスケールが厚くなり、酸洗性が低下するばかりでなく、表層部の酸化進行や粒界酸化が進展する。それ故、巻取温度は400〜650℃とする。   The reason for winding a hot-rolled steel sheet at a coiling temperature of 400 to 650 ° C. is that when it is less than 400 ° C., partly martensitic transformation occurs, the steel sheet strength increases, handling becomes difficult, or during cold rolling. This is because the yield is lowered, such as causing gauge hunting due to the uneven structure. On the other hand, when the coiling temperature exceeds 650 ° C., the scale of the hot-rolled steel sheet becomes thick and not only the pickling property is lowered, but also the oxidation of the surface layer part and the grain boundary oxidation progress. Therefore, the winding temperature is 400 to 650 ° C.

鋼板を酸洗し、表面を清浄化した後、鋼板に軟質化箱焼鈍を施す。本発明製造方法においては、鋼板に軟質化箱焼鈍を施し、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に抑制して、材質の軟質化と打抜き性の向上を同時に図る。 After pickling the steel plate and cleaning the surface, the steel plate is subjected to softening box annealing. In the manufacturing method of the present invention, the steel sheet is subjected to softening box annealing, and the area of carbides of 0.5 μm 2 or less is suppressed to 15% or less of the total area of carbides, thereby softening the material and improving punchability. At the same time.

ここで、図3に、本発明製造方法における熱処理の態様を示す。   Here, in FIG. 3, the aspect of the heat processing in this invention manufacturing method is shown.

軟質化箱焼鈍は、図3に示すように、鋼板(熱延板、冷延板)を、室温からAc1〜Ac1+100℃まで加熱した後、3時間以上保持して行う。この3時間以上の保持により、ラメラー炭化物をオーステナイト中へ固溶させる。 As shown in FIG. 3, the softening box annealing is performed by heating a steel plate (hot rolled plate, cold rolled plate) from room temperature to Ac 1 to Ac 1 + 100 ° C. and holding for 3 hours or more. By holding for 3 hours or more, lamellar carbide is dissolved in austenite.

上記3時間以上の保持後、鋼板を、図3に示すように、Ar1以下まで冷却するが、この冷却過程において、加熱保持温度〜Ar1の温度範囲で、20℃/hr以下の冷却(図3中(a))と、冷却後0.5hr以上の保持(図3中(b))を1回以上繰り返す(図3中(c))。 After the above holding for 3 hours or more, the steel sheet is cooled to Ar 1 or lower as shown in FIG. 3. In this cooling process, cooling at 20 ° C./hr or lower in the temperature range of the heating holding temperature to Ar 1 ( (A) in FIG. 3) and holding for 0.5 hr or more after cooling ((b) in FIG. 3) are repeated once or more ((c) in FIG. 3).

冷却と保持を1回以上繰り返すステップ冷却により、前記最終冷延前の組織の板厚断面において、0.5μm2以下の炭化物の面積を、炭化物の総面積の15%以内に抑制することができる。 The step cooling repeating cooling and holding one or more times, the thickness cross section of the final cold rolling before the tissue, an area of 0.5 [mu] m 2 or less of carbides can be suppressed within 15% of the total area of the carbide .

冷却速度が20℃/hr超、又は、冷却後の保持が0.5hr未満であると、Ar1以下に達したとき、0.5μm2以下の炭化物に係る所望の面積率が得られない。 When the cooling rate exceeds 20 ° C./hr or the retention after cooling is less than 0.5 hr, the desired area ratio related to carbides of 0.5 μm 2 or less cannot be obtained when Ar 1 or less is reached.

本発明製造方法における別の熱処理の態様を説明するAnother embodiment of heat treatment in the production method of the present invention will be described .

上記の軟質化箱焼鈍を施した後、Ar1以下に冷却した上記鋼板に、圧下率30%以下の冷間圧延を施し、次いで、箱焼鈍を施す。焼鈍温度は、Ac1以下が好ましい。 After performing the above softening box annealing, the above steel plate was cooled to Ar 1 below, subjected to rolling reduction of 30% or less of the cold rolling, then subjected to box annealing. The annealing temperature is preferably Ac 1 or less.

軟質化箱焼鈍を施した鋼板に、圧下率15%以上30%以下の冷間圧延を施すことにより、軟質化と同時に、鋼中へ効率的にボイドを導入することができる。 By subjecting the steel sheet subjected to softening box annealing to cold rolling with a rolling reduction of 15% or more and 30% or less, voids can be efficiently introduced into the steel simultaneously with softening.

また、軟質化箱焼鈍は、熱延板を、室温からAc1以下の温度まで加熱した後、3時間以上保持して行ない、次いで、熱延板に、圧下率40%以上の冷間圧延を施し、その後、フェライト粒径(α粒径)dαが、下記式(1)を満たすように、再度、Ac1以下の温度で焼鈍を施す。
α>2.5−1.7ln(C質量%) ・・・(1)
Further, softening box annealing, the hot rolled sheet was heated from room temperature to Ac 1 temperature below performs holds more than 3 hours, then the hot-rolled sheet, reduction ratio of 40% or more cold rolling alms, then ferrite grain size (alpha particle diameter) d alpha is, so as to satisfy the following formula (1), again, subjected to annealing at Ac 1 or lower.
d α> 2.5-1.7ln (C mass%) (1)

上記の軟質化箱焼鈍を施した鋼板に、圧下率40%以上の冷間圧延を施すことにより、フェライトの再結晶を駆動力とし、炭化物を粗大化することが可能である。   By subjecting the steel sheet subjected to the above-mentioned softening box annealing to cold rolling with a rolling reduction of 40% or more, the recrystallization of ferrite can be used as a driving force, and the carbide can be coarsened.

さらに、Ac1以下の焼鈍を施した上記鋼板に、圧下率15%以上30%以下の冷間圧延を施し、次いで、箱焼鈍を施す。焼鈍温度はAc1以下が好ましい。 Moreover, Ac in the steel plate subjected 1 the following annealing, subjected to the following cold rolled 30% reduction ratio of 15% or more, then, subjected to box annealing. The annealing temperature is preferably Ac 1 or less.

Ac1以下の焼鈍を施した鋼板に、圧下率15%以上30%以下の冷間圧延を施すことにより、粗大炭化物上でボイドが生成する。鋼板に、圧下率30%超の冷間圧延を施すと、フェライトが再結晶し、再結晶時にボイドが消滅するので、圧下率は30%以下が好ましい。圧下率の下限は、表4中、発明例の冷延率の最小値15%に基づいて15%が好ましい。 By subjecting the steel sheet annealed with Ac 1 or less to cold rolling at a reduction rate of 15% or more and 30% or less, voids are generated on the coarse carbide. When the steel sheet is cold-rolled with a reduction ratio of more than 30%, ferrite recrystallizes and voids disappear during the recrystallization, so the reduction ratio is preferably 30% or less. In Table 4, the lower limit of the rolling reduction is preferably 15% based on the minimum value of 15% of the cold rolling rate of the invention examples.

次いで、冷間圧延後の鋼板に、Ac1以下の温度範囲で箱焼鈍を施して、マトリックス中にボイドを残存させたまま、フェライトの粒成長を促進する。Ac1を超える温度範囲で箱焼鈍を施すと、フェライトからオーステナイトへの相変態時にボイドが消滅するので、箱焼鈍温度は、Ac1以下の温度範囲が好ましい。 Next, the steel sheet after cold rolling is subjected to box annealing in a temperature range of Ac 1 or less to promote ferrite grain growth while leaving voids in the matrix. When box annealing is performed in a temperature range exceeding Ac 1 , voids disappear during phase transformation from ferrite to austenite. Therefore, the box annealing temperature is preferably a temperature range of Ac 1 or lower.

箱焼鈍は、水素95%以上で、かつ、400℃までの露点が−20℃未満で、400℃超における露点が−40℃未満の雰囲気で行うことが好ましい。   The box annealing is preferably performed in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of less than −20 ° C., and a dew point of over 400 ° C. of less than −40 ° C.

コイル内の温度分布を均一化することに加え、窒素侵入による焼入れ性の低下を抑制するため、水素95%以上の雰囲気中で焼鈍する。焼鈍中の脱炭を抑制するため、400℃までの露点を−20℃未満とし、400℃超における露点を−40℃未満とする。   In addition to uniformizing the temperature distribution in the coil, annealing is performed in an atmosphere of 95% or more of hydrogen in order to suppress a decrease in hardenability due to nitrogen penetration. In order to suppress decarburization during annealing, the dew point up to 400 ° C is set to less than -20 ° C, and the dew point above 400 ° C is set to less than -40 ° C.

打抜きカエリが小さく、打抜き性に優れた本発明鋼板は、打ち抜き後、容体化処理を施して、焼入れ処理をする。この焼入れ処理により、打ち抜き後の本発明鋼板は、所要の強度を備えることになる。   The steel sheet of the present invention, which has a small punching resistance and excellent punchability, is subjected to a hardening treatment after punching. By this quenching treatment, the steel sheet of the present invention after punching has a required strength.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表1に示す成分組成を有する鋼板に、表2及び表3に示す焼鈍条件で焼鈍を施し、最終冷延前の鋼板組織について、硬さ(HV)、炭化物、ボイド、フェライト粒径を調査した。表2は、熱延板焼鈍後で冷延前の鋼板の焼鈍条件と炭化物の状態を整理したもので、数字は、表1のNoに該当する成分組成であることを示し、数字の次のアルファベットは、各成分組成の熱延鋼板に、種々の熱延板焼鈍を施したことを示す。表3は、熱延板焼鈍後に冷延及び焼鈍を施した鋼板の2回目の冷延前の炭化物の状態を整理したもので、数字は、表1のNoに該当する成分組成であることを示し、数字の次のアルファベットは、各成分組成の熱延鋼板に、種々の熱延板焼鈍、冷延、及び、冷延板焼鈍を施したことを示す。さらに、鋼板に打抜き加工を施して、打抜きカエリの程度を評価した。結果を表4に示す。表4は、熱延板焼鈍後に1回又は2回の冷延及び焼鈍を施した鋼板であり、最終冷延前の炭化物の状態と最終冷延及び最終焼鈍後の硬度と打抜き性を整理したもので、Noの数字と数字の次のアルファベットは、表2に示す熱延板焼鈍又は表3に示す熱延板焼鈍、冷延、焼鈍を施した後に、さらに、表4の冷延、焼鈍で製造したことを示す。なお、打抜きカエリの程度は、表5に示す基準で評価した。
(Example)
The steel sheet having the component composition shown in Table 1 was annealed under the annealing conditions shown in Table 2 and Table 3, and the hardness (HV), carbide, voids, and ferrite grain size were investigated for the steel sheet structure before the final cold rolling. . Table 2 summarizes the annealing conditions and the state of carbides of the steel sheet after hot-rolled sheet annealing and before cold rolling, and the numbers indicate the component composition corresponding to No in Table 1; The alphabet indicates that various hot-rolled sheet annealing was applied to the hot-rolled steel sheet having each component composition. Table 3 summarizes the state of the carbide before the second cold rolling of the steel sheet that has been cold rolled and annealed after the hot rolled sheet annealing, and the numbers are component compositions corresponding to No in Table 1. The alphabet following the number indicates that various hot-rolled sheet annealing, cold-rolling and cold-rolling sheet annealing were performed on the hot-rolled steel sheets having the respective component compositions. Further, the steel sheet was punched to evaluate the degree of punching. The results are shown in Table 4. Table 4 is a steel sheet that has been cold-rolled and annealed once or twice after the hot-rolled sheet annealing, and arranged the carbide state before the final cold rolling, the hardness after the final cold rolling and the final annealing, and the punchability. However, after the numbers of No and the alphabet following the numbers are subjected to hot-rolled sheet annealing shown in Table 2 or hot-rolled sheet annealing, cold-rolled and annealed as shown in Table 3, further cold-rolled and annealed in Table 4 It shows that it was manufactured. The degree of punching was evaluated according to the criteria shown in Table 5.

図4に、打抜きカエリの程度の評価と、硬度(HV)の関係を示す。図中、○印が発明例であり、◇印が比較例である。発明例は、図中、左上に位置していて、比較例に比べ、顕著に、打抜きカエリが小さく、打抜き性に優れていることが解る。 FIG. 4 shows the relationship between the evaluation of the degree of punching and the hardness (HV). In the figure, ◯ indicates an invention example, and ◇ indicates a comparative example. The invention example is located in the upper left in the figure, and it can be seen that, compared with the comparative example, the punching is remarkably small and the punching property is excellent.

前述したように、本発明によれば、C:0.65〜0.85%の高炭素鋼板において、鋼板組織にボイドが導入されて、打抜きカエリが顕著に小さくなるので、打抜き性に優れた軟質高炭素鋼板とその製造方法を提供することができる。よって、本発明は、高炭素鋼板の用途を大きく拡大するので、鋼製品製造産業において利用可能性が高いものである。   As described above, according to the present invention, in a high carbon steel sheet of C: 0.65 to 0.85%, voids are introduced into the steel sheet structure, and punching is significantly reduced, so that the punchability is excellent. A soft high carbon steel sheet and a method for producing the same can be provided. Therefore, since this invention expands the use of a high carbon steel plate greatly, its applicability is high in the steel product manufacturing industry.

Claims (7)

質量%で、C:0.65〜0.85%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、
(i)硬さが170HV以下であり、かつ、
(ii)連続鋳造、熱延、酸洗、焼鈍の後に、冷延及び焼鈍を1回又は2回施す際の最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内であり、かつ、
(iii)上記最終冷延の圧下率が15%以上30%以下である、
ことを特徴とする打抜きカエリの小さい軟質高炭素鋼板。
In mass%, C: 0.65-0.85%, Si: 0.05-0.4%, Mn: 0.5-2.0%, P: 0.005-0.03%, S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, with the balance consisting of Fe and inevitable impurities,
(I) the hardness is 170 HV or less, and
(Ii) After continuous casting, hot rolling, pickling and annealing, in the plate thickness section of the structure before final cold rolling when cold rolling and annealing are performed once or twice, 0.5 μm 2 or less of carbide area of state, and are within 15% of the total area of the carbide, and,
(Iii) the final cold rolling reduction ratio is Ru der than 30% to 15%
A soft high-carbon steel sheet with small punching characteristics.
質量%で、さらに、Cr:0.05〜1.0%、Ni:0.01〜1.0%、Cu:0.05〜0.5%、及び、Mo:0.01〜1.0%の1種又は2種以上を含有することを特徴とする請求項1に記載の打抜きカエリの小さい軟質高炭素鋼板。   Further, Cr: 0.05-1.0%, Ni: 0.01-1.0%, Cu: 0.05-0.5%, and Mo: 0.01-1.0 The soft high-carbon steel sheet having a small punching resistance according to claim 1, characterized in that it contains at least one kind or two or more kinds. 質量%で、さらに、Nb:0.01〜0.5%、V:0.01〜0.5%、Ta:0.01〜0.5%、及び、W:0.01〜0.5%の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の打抜きカエリの小さい軟質な高炭素鋼板。   Further, Nb: 0.01 to 0.5%, V: 0.01 to 0.5%, Ta: 0.01 to 0.5%, and W: 0.01 to 0.5 The soft high-carbon steel sheet having a small punching resistance according to claim 1 or 2, characterized by containing at least one kind or two or more kinds. 質量%で、さらに、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の打抜きカエリの小さい軟質高炭素鋼板。   In addition, it contains one or more of Sn: 0.003 to 0.03%, Sb: 0.003 to 0.03%, and As: 0.003 to 0.03%. The soft high-carbon steel sheet with small punching according to any one of claims 1 to 3. 前記組織の板厚断面に、観察組織1mm2当り100個以上のボイドが存在することを特徴とする請求項1〜4のいずれか1項に記載の打抜きカエリの小さい軟質高炭素鋼板。   5. The soft high carbon steel plate with small punching according to any one of claims 1 to 4, wherein there are 100 or more voids per 1 mm <2> of the observed structure in the thickness cross section of the structure. 請求項1〜4のいずれか1項に記載の成分組成を満たす連続鋳造鋳片を、鋳造後、直接、又は、1300℃以下で、90分以下加熱して熱間圧延に供し、800〜940℃で仕上圧延を終了し、次いで、熱延鋼板を、650℃まで30℃/s以上で強冷却し、その後、巻取りまで20℃/s以下で緩冷却して、400〜650℃未満で捲き取り、酸洗の後、軟質化箱焼鈍を施した後に、冷延及び焼鈍を1回施す高炭素鋼板の製造方法であって、軟質化箱焼鈍及び軟質化箱焼鈍後の冷延を以下の条件で行うことを特徴とする打抜きカエリの小さい軟質高炭素鋼板の製造方法。
(i)軟質化箱焼鈍は、室温からAc1〜Ac1+100℃の温度まで加熱した後、3時間以上保持し、次いで、Ar1以下まで冷却する過程において、加熱保持温度〜Ar1の温度範囲で、20℃/hr以下の冷却と冷却後0.5hr以上の保持を1回以上繰り返す。
(ii)軟質化箱焼鈍後の冷延の圧下率は、15%以上30%以下とする。
A continuous cast slab satisfying the component composition according to any one of claims 1 to 4 is subjected to hot rolling after casting, directly or at 1300 ° C or lower for 90 minutes or less, and 800 to 940. Finish rolling at ℃, then strongly cool the hot-rolled steel sheet to 650 ° C at 30 ° C / s or more, and then slowly cool to 20 ° C / s or less until winding, at 400 to 650 ° C or less. taken Maki, after pickling, after performing softened box annealing, cold rolling and annealing method for manufacturing a 1 Kai施 to high-carbon steel, the cold-rolled after softening box annealing and softening box annealing A method for producing a soft high carbon steel sheet with small punching, characterized in that it is carried out under the following conditions.
(I) softening box annealing, after heating from room temperature up to a temperature of Ac 1 ~Ac 1 + 100 ℃, and held for 3 hours or more, then, in the course of cooling to Ar 1 or less, the temperature of the heating and holding temperature to Ar 1 In the range, cooling at 20 ° C./hr or less and holding for 0.5 hr or more after cooling are repeated once or more.
(Ii) The rolling reduction of cold rolling after softening box annealing is 15% or more and 30% or less.
請求項1〜4のいずれか1項に記載の成分組成を満たす連続鋳造鋳片を、鋳造後、直接、又は、1300℃以下で、90分以下加熱して熱間圧延に供し、800〜940℃で仕上圧延を終了し、次いで、熱延鋼板を、650℃まで30℃/s以上で強冷却し、その後、巻取りまで20℃/s以下で緩冷却して、400〜650℃未満で捲き取り、酸洗の後、軟質化箱焼鈍を施した後に、冷延及び焼鈍を2回施す高炭素鋼板の製造方法であって、軟質化箱焼鈍、軟質化箱焼鈍後の冷延、及び、冷延後の処理を以下の条件で行うことを特徴とする打抜きカエリの小さい軟質高炭素鋼板の製造方法。
(i)軟質化箱焼鈍は、室温から680℃以上Ac1以下の温度まで加熱した後、3時間以上保持する。
(ii)軟質化箱焼鈍後の冷延の圧下率は、40%以上とする。
(iii)冷延後の処理は、フェライト粒径dαが、下記式(1)を満たすように、再度、680℃以上Ac1以下の温度で焼鈍した後、圧下率15%以上30%以下の冷間圧延を施し、次いで、箱焼鈍を施す。
dα>2.5−1.7ln(C質量%) ・・・(1)
A continuous cast slab satisfying the component composition according to any one of claims 1 to 4 is subjected to hot rolling after casting, directly or at 1300 ° C or lower for 90 minutes or less, and 800 to 940. Finish rolling at ℃, then strongly cool the hot-rolled steel sheet to 650 ° C at 30 ° C / s or more, and then slowly cool to 20 ° C / s or less until winding, at 400 to 650 ° C or less. A method of manufacturing a high carbon steel sheet which is subjected to cold rolling and annealing twice after performing softening box annealing after scraping, pickling, and softening box annealing, cold rolling after softening box annealing, and A method for producing a soft high carbon steel sheet with small punching, characterized in that the treatment after cold rolling is performed under the following conditions.
(I) Softening box annealing is heated for 3 hours or more after heating from room temperature to a temperature of 680 ° C. or higher and Ac 1 or lower.
(Ii) The rolling reduction of cold rolling after softening box annealing shall be 40% or more.
(Iii) The treatment after cold rolling is performed again at a temperature of 680 ° C. or more and Ac 1 or less so that the ferrite particle diameter dα satisfies the following formula (1), and then the rolling reduction is 15% or more and 30% or less. subjected to cold rolling, then, subjected to a box grilled blunt.
dα> 2.5-1.7ln (C mass%) (1)
JP2009158175A 2009-07-02 2009-07-02 Soft high carbon steel sheet with small punching and manufacturing method thereof Active JP5312230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158175A JP5312230B2 (en) 2009-07-02 2009-07-02 Soft high carbon steel sheet with small punching and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158175A JP5312230B2 (en) 2009-07-02 2009-07-02 Soft high carbon steel sheet with small punching and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011012317A JP2011012317A (en) 2011-01-20
JP5312230B2 true JP5312230B2 (en) 2013-10-09

Family

ID=43591499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158175A Active JP5312230B2 (en) 2009-07-02 2009-07-02 Soft high carbon steel sheet with small punching and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5312230B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811818B2 (en) * 2011-12-06 2015-11-11 新日鐵住金株式会社 Steel plate manufacturing method
JP6068291B2 (en) * 2013-08-07 2017-01-25 株式会社神戸製鋼所 Soft high carbon steel sheet
CN105745348B (en) 2013-11-22 2018-01-09 新日铁住金株式会社 High carbon steel sheet and its manufacture method
CN103643122B (en) * 2013-12-23 2016-01-20 河北钢铁股份有限公司唐山分公司 The 75Cr hot-rolled sheet coil that a kind of CSP is produced and method thereof
MX2017004601A (en) * 2014-10-16 2017-07-10 Nippon Steel & Sumitomo Metal Corp High carbon steel plate and manufacturing method therefor.
JP6615039B2 (en) * 2016-04-13 2019-12-04 日鉄日新製鋼株式会社 Wear-resistant steel plate with excellent toughness
CN112063929B (en) * 2020-09-21 2021-06-22 江阴方圆环锻法兰有限公司 Novel bearing forging for shield tunneling machine and forging method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147485A (en) * 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor
JP2005336560A (en) * 2004-05-27 2005-12-08 Nisshin Steel Co Ltd High-carbon steel sheet for precision-blanked parts, and precision-blanked parts
JP5011846B2 (en) * 2005-06-29 2012-08-29 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
JP5030280B2 (en) * 2007-07-20 2012-09-19 日新製鋼株式会社 High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same

Also Published As

Publication number Publication date
JP2011012317A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4903839B2 (en) Soft high carbon steel plate excellent in punchability and manufacturing method thereof
CN107614727B (en) Steel sheet and method for producing same
WO2013035848A1 (en) Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5312230B2 (en) Soft high carbon steel sheet with small punching and manufacturing method thereof
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
WO2015060223A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent cold workability
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
WO2015060311A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP5521931B2 (en) Soft medium carbon steel plate with excellent induction hardenability
JP5729213B2 (en) Manufacturing method of hot press member
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP5549450B2 (en) High carbon hot-rolled steel sheet excellent in fine blanking property and manufacturing method thereof
KR20180027689A (en) Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP2023504150A (en) Heavy-duty composite structure steel with excellent durability and its manufacturing method
WO2016158562A1 (en) Heat-treated steel wire having excellent fatigue-resistance characteristics
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120920

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350