JPH0987805A - High carbon steel sheet and its production - Google Patents

High carbon steel sheet and its production

Info

Publication number
JPH0987805A
JPH0987805A JP24766295A JP24766295A JPH0987805A JP H0987805 A JPH0987805 A JP H0987805A JP 24766295 A JP24766295 A JP 24766295A JP 24766295 A JP24766295 A JP 24766295A JP H0987805 A JPH0987805 A JP H0987805A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
cementite
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24766295A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24766295A priority Critical patent/JPH0987805A/en
Publication of JPH0987805A publication Critical patent/JPH0987805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a Cr-containing steel sheet, in which the range of the amount of C from eutectoid to hyper-eutectoid is specified and which has superior precision punchability and excellent rolling fatigue resistance as well as wear resistance after refining. SOLUTION: This steel sheet is a high carbon steel sheet having a composition consisting of, by weight, 0.75-1.00% C, 0.05-0.35% Si, 0.10-0.60% Mn, <=0.02% P, <=0.01% S, 0.50-1.00% Cr, 0.50-2.00% Ni, 0.10% Al, <=0.0015% O, <=0.5% Mo, and the balance essentially Fe with inevitable alloy components and also having a ferritic structure in which cementite of 0.5-2.0μm average grain size is dispersed. This steel sheet can be produced by controlling hot rolling finishing temp. and coiling temp. and performing annealing, as spheroidizing annealing, at 730-800 deg.C or by performing cold working at >=20% after hot rolling and then applying annealing at 650-800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は刃物、ばね、クラッ
チ、軸受けなどに使用される、Crを含む高炭素の薄鋼
板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon thin steel sheet containing Cr, which is used for blades, springs, clutches, bearings and the like.

【0002】[0002]

【従来の技術】大きな接触面圧を受ける用途に耐える鋼
としてJIS-G-4805に規定される高C高Crの軸受鋼が規
定されている。みがき特殊鋼帯ないしはそれに類する薄
鋼板においても、ギヤ、スプロケット、あるいは刃物用
など、とくに摺動による摩耗やころがり疲れによるフレ
ーキングが重視される用途に、C量が共析(約0.75%)
から過共析に至る組成のこの軸受鋼相当の高炭素のCr
添加鋼が適用される。
2. Description of the Related Art A bearing steel having a high C and a high Cr specified in JIS-G-4805 is specified as a steel that can withstand a large amount of contact pressure. Even for special steel strips or thin steel sheets similar to them, the C content is eutectoid (about 0.75%) for applications such as gears, sprockets, and blades, where flaking due to sliding wear and rolling fatigue is important.
To high eutectoid Cr equivalent to this bearing steel
Additive steel is applied.

【0003】素材が薄鋼板である場合、ことに軟鋼にお
いては、打抜き、曲げ、絞り、張り出し、などの塑性変
形を種々組合せてプレス成形する技術が長足の進歩をと
げ、様々な複雑かつ精密な形状が切削を用いずに作られ
るようになってきた。しかし上記のようなC量が高い薄
鋼板では、燒鈍状態でも塑性加工の変形能が低く、合理
的な量産方法であるプレス加工の適用は容易でない。
When the material is a thin steel plate, especially for mild steel, the technique of press forming by combining various plastic deformations such as punching, bending, drawing, and overhanging has made great progress, and various complicated and precise techniques have been achieved. Shapes have come to be made without cutting. However, in the case of a thin steel sheet having a high C content as described above, the deformability of plastic working is low even in the annealed state, and it is not easy to apply press working which is a rational mass production method.

【0004】このため、一般には、切削加工して目的形
状にすることが多く、成形後、焼入れ焼戻しなどの熱処
理により所要の硬さに調質する。また、C量の低い鋼板
を用いてプレス加工後、浸炭処理をして表面のC量を高
め、目的とする耐摩耗性や耐ころがり疲労性を得ている
こともある。このような切削加工による方法も、プレス
加工後浸炭する方法も工数のかかる方法であるが、もし
目的の組成の鋼がある程度の加工に耐える変形能を有し
ておれば、形状によってはプレス加工法の適用が可能に
なる。たとえば、ギヤやスプロケットなどであれば、歯
の形状などを精密打抜き法により最終形状に加工でき
る。通常の打抜きに比して、精密打抜きはポンチとダイ
スのクリアランスを小さくし、フランジ部をクランプし
てダイス内への材料の流入を抑え、さらに逆抑え用のポ
ンチを配備し、剪断面の静水圧を高めて打抜きをおこな
うものである。その結果、打抜き端の破断面比率が 0%
となり、切削加工したものと同等の端面が得られる。
For this reason, in general, it is often cut to a desired shape, and after shaping, it is tempered to a required hardness by heat treatment such as quenching and tempering. In addition, a steel plate having a low C content may be press-worked and then carburized to increase the C content on the surface to obtain desired wear resistance and rolling fatigue resistance. Both the method of cutting and the method of carburizing after pressing are labor-intensive, but if the steel of the desired composition has a deformability that can withstand a certain degree of processing, pressing depending on the shape The law can be applied. For example, in the case of gears and sprockets, the tooth shape can be processed into the final shape by the precision punching method. Compared to normal punching, precision punching reduces the clearance between the punch and the die, clamps the flange to prevent the material from flowing into the die, and provides a punch for reverse restraint to keep the shear surface smooth. The punching is performed by increasing the water pressure. As a result, the fracture surface ratio at the punched end is 0%.
Therefore, an end surface equivalent to that obtained by cutting is obtained.

【0005】このような用途の部品では、調質後の耐摩
耗性や耐ころがり疲れ性からC量およびCr量等が限定
され、さらに、調質後の組織として、焼戻しマルテンサ
イトの地の中に、適度の大きさの球状化セメンタイトが
均一に分布していることが要求される。そこで、加工素
材としての薄鋼板も、球状化セメンタイトの形状を整え
ておく必要があり、その上で所要の加工性を有すること
が好ましい。
In the parts for such applications, the amounts of C and Cr, etc. are limited due to wear resistance and rolling fatigue resistance after tempering. Furthermore, as a texture after tempering, tempered martensite In addition, it is required that the spheroidized cementite of an appropriate size be uniformly distributed. Therefore, it is necessary to prepare the shape of the spheroidized cementite in the thin steel sheet as a processing material, and it is preferable that the steel sheet has the required workability.

【0006】最終用途を配慮して、その組成と組織を調
整し、それに必要な加工に耐えるよう加工性を向上させ
るということは、素材に要求される課題であるが、この
ような高炭素鋼薄板において、これらの要求が必ずしも
十分対処されているとは言い難い。
[0006] It is a task required for the raw material to adjust the composition and structure in consideration of the end use and to improve the workability so as to withstand the processing required for it. It is hard to say that these requirements have been adequately addressed in thin plates.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、C量
が共析から過共析の範囲(0.75〜1.00%)の、Crを含
む薄鋼板にて、精密打抜き性にすぐれ、調質後の耐摩耗
性や耐ころがり疲れ性の良好な鋼板およびその製造方法
を提供することにある。
The object of the present invention is to provide a thin steel sheet containing Cr in which the amount of C is in the range of eutectoid to hypereutectoid (0.75 to 1.00%), which is excellent in precision punchability and is heat-treated. It is an object of the present invention to provide a steel sheet having good wear resistance and rolling fatigue resistance and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明者は、Crを含む
過共析の高炭素薄鋼板に関し、加工用の素材として精密
打抜き性が良好で、かつ焼入れ焼戻しの調質後は、とく
に耐ころがり疲れ性にすぐれた、ギヤや軸受け部品用の
鋼を得るための製造方法を検討した。
The present inventor relates to a hyper-eutectoid high carbon thin steel sheet containing Cr, which has a good precision punching property as a material for working and is particularly resistant to hardening after tempering. We investigated a manufacturing method for obtaining steel with excellent rolling fatigue properties for gears and bearing parts.

【0009】薄鋼板の加工性からは、CおよびCrは低
い方が望ましいが、その用途が高C高Crの軸受鋼と同
等の性能を必要とするのであれば、C:0.95〜1.10%で
Cr:0.90〜1.60%となる。しかし肉厚の薄い部品の場
合、面圧は多少緩和されることおよび熱処理の寸法効果
が小さいことから、許容できる限界として、C:0.75〜
1.00%、Cr:0.50〜1.00%の範囲であれば十分なの
で、この範囲の組成の鋼を対象に最終熱処理後の性能
と、その前の加工性、とくに精密打抜き性との両立可能
な条件を種々調査した。
From the workability of a thin steel sheet, it is desirable that C and Cr are low, but if the application requires performance equivalent to that of a high C, high Cr bearing steel, C: 0.95 to 1.10%. Cr: 0.90 to 1.60%. However, in the case of thin-walled parts, the surface pressure is somewhat relaxed and the dimensional effect of heat treatment is small, so the allowable limit is C: 0.75 to
1.00%, Cr: 0.50 to 1.00% is sufficient, so for steels with this range of composition, the condition after which the performance after the final heat treatment and the workability before it, especially the precision punching property, can be compatible Various investigations were conducted.

【0010】通常、打抜きの工具寿命の点からは、加工
用素材の硬さは低い方がよく、そのためには、球状化し
たセメンタイトは粗大であること、すなわちセメンタイ
ト粒子の平均間隔が大きいことが好ましい。また、素材
の伸びの点では、セメンタイト粒子が適度の大きさで均
一に分散している必要がある。これらの点に加えて精密
打抜きにおいては、打抜き方向と直角の、板面に平行な
端面割れが発生しやすい。この端面割れの防止には、材
料としてある程度の延性が必要であり、さらに、打抜き
時歪みが剪断面へ集中するので、加工硬化性の低い材料
がよいと推定された。そこで、高速変形時の加工硬化に
およぼす材料の要因を調べた結果、セメンタイトを粗大
化させることの他、Niの添加も加工硬化の緩和に有効
であることがわかった。
Generally, from the viewpoint of the tool life of punching, it is preferable that the hardness of the material for processing is low, and for that reason, the spheroidized cementite is coarse, that is, the average spacing of the cementite particles is large. preferable. Further, in terms of elongation of the material, it is necessary that the cementite particles are appropriately dispersed in a proper size. In addition to these points, in precision punching, an end face crack that is perpendicular to the punching direction and is parallel to the plate surface is likely to occur. In order to prevent this end face cracking, a certain degree of ductility is required as a material, and since strain during punching concentrates on the sheared surface, it was presumed that a material with low work-hardening property is preferable. Therefore, as a result of investigating the factors of the material that affect the work hardening during high-speed deformation, it was found that addition of Ni to the cementite is also effective for alleviating the work hardening in addition to coarsening the cementite.

【0011】一方、成形加工後調質熱処理された鋼中の
セメンタイトの分布状態は、熱処理前の状態に大きく支
配され、しかも、その鋼の耐ころがり疲れ性に大きく影
響し、粗大なセメンタイトはフレーキング発生までの寿
命を短くする。したがって、このような高炭素薄鋼板の
球状化セメンタイトの分布は、材料の加工性と、熱処理
後の性能とが両立する、ある範囲に限定されなければな
らない。
On the other hand, the distribution state of cementite in the steel that has been heat treated after forming is largely governed by the state before heat treatment, and furthermore, the rolling fatigue resistance of the steel is greatly affected, and coarse cementite is flared. Shorten the life until the occurrence of king. Therefore, the distribution of spheroidized cementite in such a high carbon thin steel sheet must be limited to a certain range in which the workability of the material and the performance after heat treatment are compatible.

【0012】そして、そのような球状化セメンタイトの
分布と、所要の性能を有する高炭素薄鋼板は、所定組成
の鋼を熱間圧延と焼鈍、または熱間圧延後、冷間圧延と
焼鈍との適切な組合せによる製造方法で得られることを
知って本発明を完成した。本発明の要旨は次のとおりで
ある。
A high carbon thin steel sheet having such a distribution of spheroidized cementite and the required performance is obtained by hot rolling and annealing a steel having a predetermined composition, or after hot rolling, cold rolling and annealing. The present invention has been completed by knowing that it can be obtained by a manufacturing method using an appropriate combination. The gist of the present invention is as follows.

【0013】(1) 重量割合にてC:0.75〜1.00%、S
i:0.05〜0.35%、Mn:0.10〜0.60%、P:0.02%以
下、S:0.01%以下、Cr:0.50〜1.00%、Ni:0.50
〜2.00%、O:0.0015%以下、Mo: 0.5%以下を含
み、残部が実質的にFe及び不可避的合金成分から成
り、平均粒径 0.5〜 2.0μm の球状化セメンタイトの分
散したフェライト組織であることを特徴とする高炭素薄
鋼板。
(1) C: 0.75 to 1.00% by weight, S
i: 0.05 to 0.35%, Mn: 0.10 to 0.60%, P: 0.02% or less, S: 0.01% or less, Cr: 0.50 to 1.00%, Ni: 0.50
.About.2.00%, O: 0.0015% or less, Mo: 0.5% or less, the balance consisting essentially of Fe and unavoidable alloy components, and a ferrite structure in which spheroidized cementite having an average particle size of 0.5 to 2.0 .mu.m is dispersed. A high carbon thin steel sheet characterized by the above.

【0014】(2) 上記組成の鋼スラブにより仕上げ温度
を 820〜 900℃として熱間圧延し、550〜 650℃の温度
範囲で巻取った後、温度T(℃)および時間t(h)が
下記の式および式で示される範囲で均熱し、次いで
600〜 680℃の範囲の温度までの冷却速度を15℃/h以
下とする焼鈍をおこなうことを特徴とする、(1) に記載
の高炭素薄鋼板の製造方法。
(2) A steel slab having the above composition is hot-rolled at a finishing temperature of 820 to 900 ° C. and wound in a temperature range of 550 to 650 ° C., after which temperature T (° C.) and time t (h) are Soak in the range shown by the following formula and formula, then
The method for producing a high carbon thin steel sheet according to (1), characterized in that annealing is performed at a cooling rate of 15 ° C / h or less up to a temperature in the range of 600 to 680 ° C.

【0015】 730≦T≦ 800 ・・・・・・・・・・・・・ 800−T≦ 167× logt≦1000−T ・・・・ (3) (1) に記載の組成の鋼スラブによる熱延コイルを、
圧下率20%以上の冷間圧延後、温度T(℃)および時間
t(h)が下記の式および上記の式で示される範囲
で均熱し、 600〜 680℃の範囲の温度までの冷却速度を
15℃/h以下とする焼鈍をおこなうことを特徴とする、
(1) に記載の高炭素薄鋼板の製造方法。
730 ≤ T ≤ 800 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 800-T ≤ 167 × logt ≤ 1000-T ・ ・ ・ ・ (3) With a steel slab having the composition described in (1) Hot rolled coil
After cold rolling with a rolling reduction of 20% or more, temperature T (° C) and time t (h) are soaked within the range shown by the following formula and the above formula, and the cooling rate up to a temperature in the range of 600 to 680 ° C. To
Characterized by annealing at 15 ° C./h or less,
The method for producing a high carbon steel sheet according to (1).

【0016】 650≦T≦ 800 ・・・・・・・・・・ なお、本発明の鋼およびその製造方法は、化学組成とそ
のセメンタイトの分布を規制するものであり、これらに
影響をおよぼさない範囲であれば、精密打抜きに先立っ
て鋼板の板厚精度向上や表面性状改善のために表面を研
削したり、冷間圧延をおこなったり、さらには歪み取り
焼鈍をおこなってもよい。
650 ≦ T ≦ 800 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ The steel of the present invention and the method for producing the same control the chemical composition and the distribution of cementite and have an effect on these. Within the range not to be excluded, the surface may be ground, cold rolled, or strain relief annealing may be performed in order to improve the plate thickness accuracy and surface quality of the steel sheet before the precision punching.

【0017】[0017]

【発明の実施の形態】本発明の薄鋼板における化学組
成、組織および製造条件の限定理由を以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical composition, structure and manufacturing conditions in the thin steel sheet of the present invention will be explained below.

【0018】(A)化学組成および組織 (1) C 熱処理後の硬さ、耐摩耗性および耐ころがり疲れ性を十
分維持するために、Cの含有量を0.75%以上とする。し
かし、多くなると精密打抜きの端面割れ発生を抑制でき
なくなるので、上限は1.00%までとする。
(A) Chemical composition and structure (1) C Content of C is 0.75% or more in order to sufficiently maintain the hardness, wear resistance and rolling fatigue resistance after heat treatment. However, if the amount increases, it will not be possible to suppress the occurrence of end face cracking in precision punching, so the upper limit is 1.00%.

【0019】(2) Si Siは、脱酸作用があり、耐ころがり疲れ性を阻害する
鋼中酸素量の低減に有効なので、0.05%以上含有させ
る。しかし、多くなると鋼を硬くし精密打抜きの際に端
面に割れを生じやすくなることから、その上限は0.35%
である。
(2) Si Since Si has a deoxidizing effect and is effective in reducing the oxygen content in the steel which impairs rolling fatigue resistance, it is contained at 0.05% or more. However, the upper limit is 0.35% because if the amount increases, the steel becomes hard and cracks easily occur on the end face during precision punching.
It is.

【0020】(3) Mn MnはSによる熱間脆性を抑止し、焼戻し温度を高めて
靭性の向上や耐ころがり疲れ性を改善する効果があるの
で、0.10%以上含有させる。しかし、過剰の添加は球状
化焼鈍後の硬さを十分低くできなくするので、その含有
量は0.60%までとする。
(3) Mn Mn has the effect of suppressing hot embrittlement due to S and increasing the tempering temperature to improve toughness and rolling fatigue resistance, so it is contained at 0.10% or more. However, excessive addition makes it impossible to sufficiently lower the hardness after spheroidizing annealing, so the content is made up to 0.60%.

【0021】(4) P Pはフェライト粒界やセメンタイト−フェライト界面に
偏析し、打抜き時の端面割れを発生させる原因となり、
また、調質後の耐ころがり疲れ性を悪くするので、少な
ければ少ないほどよい。顕著な影響をおよぼさない限界
として、0.02%以下とするが、望ましいのは0.015 %以
下である。
(4) P P is segregated at the ferrite grain boundaries and the cementite-ferrite interface, causing end face cracking during punching.
In addition, the rolling fatigue resistance after conditioning is deteriorated, so the smaller the better, the better. The limit is 0.02% or less, but 0.015% or less is preferable as a limit that does not exert a significant effect.

【0022】(3) S Sは鋼中で非金属介在物を構成し、加工の際の割れの起
点となり、また耐ころがり疲れ性を低下させるので、少
なければ少ないほどよい。顕著な影響をおよぼさない限
界として、0.01%以下とするが、望ましいのは0.005 %
以下である。
(3) S S forms a non-metallic inclusion in the steel, becomes a starting point of cracks during processing, and lowers rolling fatigue resistance, so the smaller the better, the better. The limit is 0.01% or less, but 0.005% is preferable.
It is the following.

【0023】(4) Cr Crは、焼入れ性向上の他、焼入加熱中のセメンタイト
の分解を抑制し、マルテンサイト中にセメンタイトを安
定して分散させるのに有効であり、さらにすぐれた靭性
と耐ころがり疲れ性の向上に有効な成分である。このた
め、0.50%以上を添加する。しかし、過度に添加すると
精密打抜性を阻害するので、その上限は1.00%とする。
(4) Cr Cr is effective not only for improving hardenability but also for suppressing decomposition of cementite during quenching and heating, and for stably dispersing cementite in martensite. It is an effective component for improving rolling fatigue resistance. Therefore, 0.50% or more is added. However, if added excessively, the precision punchability is impaired, so the upper limit is made 1.00%.

【0024】(5) Ni Niは、精密打抜き時の端面破断防止には有効であり、
そのために0.50%以上添加する。しかし過度に添加して
もその効果は飽和し、コスト上昇を招くことから、添加
量の上限を2.00%とする。
(5) Ni Ni is effective for preventing end face fracture during precision punching,
Therefore, 0.50% or more is added. However, even if added excessively, the effect is saturated and the cost is increased, so the upper limit of the added amount is 2.00%.

【0025】(6) Al AlはSi添加や溶鋼真空処理など他の方法で、十分脱
酸がおこなわれるならとくには添加を必要としないが、
脱酸の目的に添加する場合は、0.10%までを限度に含有
させる。0.10%を超えて添加しても、効果は飽和し、鋼
を硬くして精密打抜き性を悪くする傾向がある。
(6) Al Al does not need to be added if it is sufficiently deoxidized by another method such as Si addition or molten steel vacuum treatment.
When added for the purpose of deoxidation, contain up to 0.10%. Even if added over 0.10%, the effect is saturated, and the steel tends to be hardened and the precision punchability deteriorates.

【0026】(6) O(酸素) OはSと同様鋼中で非金属介在物を形成し、とくに耐こ
ろがり疲れ性を低下させるので極力低減する必要があ
り、少なければ少ないほどよい。顕著な影響をおよぼさ
ない限界として、0.0015%以下とする。
(6) O (oxygen) O forms non-metallic inclusions in steel similarly to S, and particularly reduces rolling fatigue resistance, so it is necessary to reduce it as much as possible, and the smaller the better. The limit is 0.0015% or less, which has no significant effect.

【0027】なお、本発明鋼ではとくには規制しない
が、鋼の脱酸を目的に0.10%以下のAlを含有させても
よい。
The steel of the present invention is not particularly limited, but may contain 0.10% or less of Al for the purpose of deoxidizing the steel.

【0028】(7) Mo Moは添加しなくてもよいが、精密打抜き時の端面われ
の抑止に有効であり、調質後の耐ころがり疲れ性向上に
も効果があるので、必要に応じ添加する。その効果を得
るには 0.1%以上含有させることが好ましいが、過剰に
添加すると逆に打抜き時の端面われを多くするので、含
有量の上限を 0.5%とする。
(7) Mo Mo is not required to be added, but it is effective in suppressing end face cracking during precision punching and also effective in improving rolling fatigue resistance after tempering. To do. In order to obtain the effect, it is preferable to contain 0.1% or more, but if added in excess, conversely, the end face breakage during punching increases, so the upper limit of the content is made 0.5%.

【0029】(8) セメンタイト粒子の粒径 本発明鋼において、鋼中に分布する球状化セメンタイト
の大きさは極めて重要である。セメンタイト粒子が小さ
すぎる場合、通常の条件にて熱処理した後の耐ころがり
疲れ性がよくない。これは熱処理の加熱の際、オーステ
ナイト中への固溶C量が多くなりすぎ、焼き入れた時に
残留オーステナイトが生じたためではないかと思われ
る。耐ころがり疲れ性を劣化させないセメンタイト粒子
としては、平均粒径を 0.5μm以上とする必要がある。
(8) Particle Size of Cementite Particles In the steel of the present invention, the size of spheroidized cementite distributed in the steel is extremely important. If the cementite particles are too small, the rolling fatigue resistance after heat treatment under normal conditions is not good. It is considered that this is because the amount of solid solution C in the austenite became too large during the heating of the heat treatment, and residual austenite was generated during quenching. Cementite particles that do not deteriorate rolling fatigue resistance must have an average particle size of 0.5 μm or more.

【0030】精密打抜きの加工性、ことに工具寿命に対
してはセメンタイト粒子は大きい方が良好である。しか
し、大きすぎると打抜き時の端面割れの発生頻度が高く
なる傾向があり、その上フレーキング発生までのころが
り疲れ寿命が低下してくる。
Larger cementite particles are better for precision punching workability, especially for tool life. However, if it is too large, the frequency of end face cracking during punching tends to increase, and in addition, rolling fatigue life until flaking occurs decreases.

【0031】これらの点から、セメンタイトの平均粒径
は 2.0μm以下にすべきであり、望ましいのは 1.0μm
以下である。
From these points, the average particle size of cementite should be 2.0 μm or less, preferably 1.0 μm.
It is the following.

【0032】このように、精密打抜きの加工性と熱処理
後の耐ころがり疲れ性が両立する限界として、セメンタ
イト粒子の平均粒径の範囲を 0.5〜 2.0μmとする。
As described above, the range of the average particle size of the cementite particles is set to 0.5 to 2.0 μm as a limit to satisfy both the workability of precision punching and the rolling fatigue resistance after heat treatment.

【0033】(B)製造条件 (1) 熱間圧延 本発明鋼の球状化したセメンタイトを得る製造方法とし
て、熱間圧延板を酸洗しそのまま焼鈍する方法と、冷間
圧延後焼鈍する方法とがある。前者の場合は、焼鈍前の
熱延板のセメンタイトの分布状態に大きく影響を受ける
ので、熱間圧延条件を十分管理する必要がある。この場
合仕上げ圧延温度範囲を 820〜 900℃、巻取り温度範囲
を 550〜 650℃とする。
(B) Manufacturing conditions (1) Hot rolling As a manufacturing method for obtaining spheroidized cementite of the steel of the present invention, there are a method of pickling a hot rolled sheet and annealing as it is, and a method of annealing after cold rolling. There is. In the former case, the distribution of cementite in the hot-rolled sheet before annealing is greatly affected, so it is necessary to sufficiently control the hot rolling conditions. In this case, the finishing rolling temperature range is 820 to 900 ° C and the winding temperature range is 550 to 650 ° C.

【0034】この仕上げ温度を規制する理由は、 820℃
を下回る場合、粗大な初析セメンタイトが生じ、焼鈍後
に粗大なセメンタイト粒となり精密打抜きの際の端面わ
れを生じやすくなるためであり、 900℃を超える場合、
球状化燒鈍後もパーライトが残りやすく、球状化率が低
下するためである。また、巻取り温度を上記範囲に規制
するのは、 650℃を超える場合も仕上げ温度の高すぎと
同様に焼鈍後の球状化率が不十分になり、 550℃を下回
るようになると熱延板が硬化し、酸洗作業時にコイルに
割れが発生するなるためである。
The reason for limiting the finishing temperature is 820 ° C.
If it is below 900 ° C., coarse pro-eutectoid cementite will be generated, and it will become coarse cementite grains after annealing, which will easily cause end face cracking during precision punching.
This is because pearlite tends to remain even after the spheroidizing annealing, and the spheroidization rate decreases. In addition, the coiling temperature is restricted to the above range because the spheroidization rate after annealing becomes insufficient even when the finishing temperature is too high even when it exceeds 650 ° C, and when it falls below 550 ° C, the hot rolled sheet Is hardened and cracks occur in the coil during pickling.

【0035】(2) 冷間圧延 熱延後の鋼板のセメンタイトの形態は、熱延条件の影響
を大きく受け、これをそのまま球状化焼鈍しても、本発
明鋼に必要なセメンタイト粒子の分布は容易には得られ
ないことがある。その場合、熱延条件の影響を排除し、
セメンタイトの形状を整えて十分な球状化を得るために
は、焼鈍前に冷間圧延をおこなう。この冷間圧延の圧下
率は、少なくとも20%あればこの目的は達成され、さら
に大きな圧下を加えても差し支えないが、材料が硬化し
圧延困難となるので、自ずから限定される。したがっ
て、50%位までが適当である。焼鈍前に冷間圧延をおこ
なう場合は、熱間圧延条件はとくには規制しないが、
(1) に示した条件で熱間圧延をおこなったものを用い
て、この冷間圧延を施す方法を適用する場合には、より
一層均一な球状化セメンタイトの分布を実現できる。
(2) The form of cementite in the steel sheet after cold rolling and hot rolling is greatly affected by the hot rolling conditions, and even if it is spheroidized and annealed as it is, the distribution of the cementite particles necessary for the steel of the present invention is It may not be easy to obtain. In that case, eliminate the effect of hot rolling conditions,
In order to adjust the shape of cementite and obtain sufficient spheroidization, cold rolling is performed before annealing. If the reduction ratio of this cold rolling is at least 20%, this object can be achieved, and even if a larger reduction is applied, there is no problem, but since the material hardens and it becomes difficult to roll, it is naturally limited. Therefore, up to about 50% is appropriate. When cold rolling is performed before annealing, hot rolling conditions are not particularly limited,
When this hot rolling method is applied using the hot rolled material under the conditions shown in (1), a more uniform spheroidized cementite distribution can be realized.

【0036】(3) 焼鈍条件 熱間圧延条件により調整された鋼中のセメンタイト、ま
たは冷間圧延により破壊された鋼中のセメンタイトを、
本発明鋼で定める状態に分布させるため以下の条件で焼
鈍をおこなう。すなわち均熱温度をT(℃)、均熱時間
をt(h)としたとき 800−T≦ 167 logt≦1000−T ・・・・・ を満足する範囲とし、Tは熱間圧延後焼鈍する場合は、 730≦T≦ 800 ・・・・・・・・・・・・・ 冷間圧延後焼鈍する場合は、 650≦T≦ 800 ・・・・・・・・・・ の範囲とする。均熱後 680〜 600℃までは15℃/h以下
の冷却速度で徐冷する。
(3) Annealing conditions Cementite in steel adjusted by hot rolling conditions or cementite in steel destroyed by cold rolling is
Annealing is performed under the following conditions in order to distribute the state of the invention steel. That is, when the soaking temperature is T (° C.) and the soaking time is t (h), it is within a range satisfying 800-T ≦ 167 logt ≦ 1000-T, where T is annealed after hot rolling. In the case of 730 ≤ T ≤ 800 ・ ・ ・ ・ ・ ・ ・ ・ When annealing after cold rolling, the range of 650 ≤ T ≤ 800 ・ ・ ・ ・ ・. After soaking, gradually cool to 680-600 ℃ at a cooling rate of 15 ℃ / h or less.

【0037】このように、均熱の温度と時間を式によ
り規制するのは、均熱温度が低い場合は時間を十分取る
必要があり、均熱温度が高い場合は短時間で十分で、時
間を長くしても効果が変らないためである。熱間圧延後
の焼鈍では、セメンタイトを一部固溶させて球状化を促
進させるため、均熱の下限温度をAc1点以上、すなわち
730℃以上とする。冷間加工後の焼鈍ではセメンタイト
の再固溶は必ずし必要とはしないので下限温度は 650℃
である。どちらの場合も、均熱温度が高すぎるとセメン
タイトの再固溶量が増し冷却時パーライトがでてくるの
で、上限温度を800℃とする。
As described above, the temperature and time for soaking are regulated by the formulas. When the soaking temperature is low, it is necessary to take a sufficient amount of time, and when the soaking temperature is high, a short time is sufficient. This is because the effect does not change even if is lengthened. In the annealing after hot rolling, since the cementite is partly solid-dissolved to promote spheroidization, the lower limit temperature of soaking is Ac 1 point or more, that is,
730 ℃ or higher. The minimum temperature is 650 ° C because cementite does not need to be re-dissolved in annealing after cold working.
It is. In either case, if the soaking temperature is too high, the amount of cementite re-dissolved increases and pearlite appears during cooling, so the upper limit temperature is set to 800 ° C.

【0038】また、均熱後の冷却は、球状化を十分おこ
なわせ、できるだけ硬さを下げ、延性を改善するため、
680〜 600℃までは15℃/h以下の冷却速度で徐冷す
る。この温度範囲以下での冷却はとくに規制せず速くて
もよい。このように、徐冷を必要とする温度の下限の範
囲が広いのは、コイルの状態で焼鈍する場合、コイルの
部位により温度が異り、一定温度での管理が困難なため
である。なお、本発明のこの焼鈍条件は、いわゆる箱焼
鈍法で焼鈍を実施すれば、実現は容易である。
In addition, cooling after soaking is performed in order to sufficiently spheroidize, reduce hardness as much as possible, and improve ductility.
Slowly cool from 680 to 600 ℃ at a cooling rate of 15 ℃ / h or less. Cooling in this temperature range or lower may be fast without any restriction. As described above, the reason why the lower limit of the temperature that requires slow cooling is wide is that when annealing is performed in a coil state, the temperature varies depending on the portion of the coil, and it is difficult to manage at a constant temperature. The annealing conditions of the present invention can be easily realized by carrying out annealing by the so-called box annealing method.

【0039】上記の冷間圧延とその後の焼鈍は、熱間圧
延後、通常は1回おこなえば目的とする大きさのセメン
タイト粒子の分布が得られるが、もし1回で所要の状態
が得られない場合、2回以上繰り返し実施することによ
り、確実に本発明で規定する大きさのセメンタイト粒子
の鋼を得ることができる。
The above cold rolling and the subsequent annealing are usually carried out once after hot rolling to obtain a distribution of cementite particles of a desired size. However, if once, the required state can be obtained. If not, the steel having cementite particles having the size defined in the present invention can be reliably obtained by repeating the process twice or more.

【0040】[0040]

【実施例】表1に示すA〜Nの14種の鋼スラブから熱
延鋼板を製造し、脱スケール後、一部の鋼については25
%の冷間圧延を施し、表2に示す焼鈍条件で球状化焼鈍
した。冷間圧延は、熱間圧延ままの状態でおこなう場合
を一次冷圧、熱延鋼板を燒鈍後、冷間圧延する場合を二
次冷圧と区分し表中に示した。得られた鋼板により引張
試験、および精密打抜試験をおこなった。打抜試験は、
100tの油圧プレス機に精密打抜き用金型を設置し、図
1に示す4段階に曲率の異なるコーナーを有する正方形
の試験片を打抜いて、コーナー端面に破断が生じない最
小曲率を比較した。この結果を表2に併記する。さらに
球状化焼鈍した鋼板により、表3に示す条件で焼入・焼
戻したときの耐ころがり疲れ性の評価を行い、結果を表
中に併記した。この時の耐ころがり疲れ性は、直径60mm
の試験片により、概念的に図2に示すようなスラスト式
転動疲労試験機を用い、接触面圧:560kgf/mm2 、回転
速度:1860 rpm、潤滑油は日本石油 #60スピンドル油使
用の条件でフレーキング発生までの回転数を計測した。
この耐ころがり疲れ性の耐久性評価は、19個の試験片に
ついて試験をおこない、これらをフレーキング発生まで
の回転数の順にならべて、発生確率20%としては少ない
方から 4番目の試験片の回転数を、発生確率80%には16
番目の試験片の回転数を表示した。いずれも回転数の多
いほど耐久性は良好である。これらの結果を表3に示
す。
EXAMPLE Hot-rolled steel sheets were manufactured from 14 kinds of steel slabs A to N shown in Table 1, and after descaling, for some steels, 25
% Cold rolling and spheroidizing annealing was performed under the annealing conditions shown in Table 2. The cold rolling is shown in the table by dividing it into the primary cold pressure when the hot rolling is performed as it is and the secondary cold pressure when the cold rolling is performed after annealing the hot rolled steel sheet. A tensile test and a precision punching test were performed on the obtained steel sheet. The punching test is
A precision punching die was installed on a 100-ton hydraulic press, and square test pieces having corners with different curvatures were punched out in four stages shown in FIG. 1 to compare the minimum curvatures at which no breakage occurred at the corner end faces. The results are also shown in Table 2. Further, with respect to the steel sheet that was spheroidized and annealed, the rolling fatigue resistance at the time of quenching and tempering under the conditions shown in Table 3 was evaluated, and the results are also shown in the table. The rolling fatigue resistance at this time is 60 mm in diameter.
Using a thrust type rolling contact fatigue tester as shown in Fig. 2, the contact surface pressure: 560kgf / mm 2 , rotation speed: 1860 rpm, lubricating oil of Nippon Oil # 60 spindle oil was used. The number of rotations until flaking occurred was measured under the conditions.
For this rolling fatigue resistance durability evaluation, 19 test pieces were tested, and these were arranged in the order of the number of revolutions until flaking occurred, and the probability of occurrence was 20%. The number of rotations is 16 when the probability of occurrence is 80%
The rotation speed of the second test piece was displayed. In both cases, the higher the number of rotations, the better the durability. Table 3 shows the results.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】本発明で定める化学組成で、かつ平均粒径
が 0.5〜 2.0μm のセメンタイトの分散したフェライト
組織である場合、試験番号 3、 4、 5、 8、11、18およ
び19等にみられるように、球状化焼鈍後の精密打抜き性
にすぐれ、小さな曲率半径においても端面割れが発生し
ない。また表3の試験番号23、24、25、31、32、34お35
では、このような範囲のセメンタイトの平均粒径の鋼
は、熱処理後の耐ころがり疲れ性もすぐれた鋼であるこ
と示されている。とくに、試験番号 3、 8、 9、23、2
4、25等から、化学組成およびセメンタイトの平均粒径
を本発明範囲とすれば、精密打抜き性および熱処理後の
耐ころがり疲れ性とも優れた高炭素薄鋼板の製造が可能
であることがわかる。
When the ferrite composition has a chemical composition defined by the present invention and an average grain size of 0.5 to 2.0 μm and cementite is dispersed, it is observed in Test Nos. 3, 4, 5, 8, 11, 18, and 19 and the like. As described above, the precision punching property after the spheroidizing annealing is excellent, and the end face crack does not occur even with a small radius of curvature. Also, test numbers 23, 24, 25, 31, 32, 34 and 35 in Table 3
It is shown that steel having an average grain size of cementite in such a range is steel having excellent rolling fatigue resistance after heat treatment. In particular, test numbers 3, 8, 9, 23, 2
From 4, 25 and the like, it can be seen that when the chemical composition and the average particle size of cementite are within the range of the present invention, it is possible to produce a high carbon thin steel sheet excellent in precision punching property and rolling fatigue resistance after heat treatment.

【0045】[0045]

【発明の効果】本発明の高炭素薄鋼板は、精密打抜き性
が良好で、かつ焼入れ焼戻し後の耐ころがり疲労にすぐ
れており、従来プレス打抜き後浸炭、あるいは切削加工
後熱処理していたギヤ、スプロケット、刃物等の製造に
適用すれば、その製造工程を大きく改善できる。
EFFECT OF THE INVENTION The high carbon thin steel sheet of the present invention is excellent in precision punching property and excellent in rolling fatigue after quenching and tempering, and is conventionally carburized after press punching or heat treated after cutting. If applied to the manufacture of sprockets, blades, etc., the manufacturing process can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼板の精密打抜き性の評価に使用する、それぞ
れ曲率の異るコーナーを有する試験片を示す図面であ
る。
FIG. 1 is a drawing showing a test piece having corners with different curvatures, which is used for evaluation of precision punchability of a steel sheet.

【図2】ころがり疲れ性の試験をおこなうスラスト式転
動疲労試験機の構造を概念的に説明する図面である。
FIG. 2 is a drawing that conceptually illustrates the structure of a thrust type rolling contact fatigue testing machine that performs a rolling fatigue test.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量割合にてC:0.75〜1.00%、Si:0.
05〜0.35%、Mn:0.10〜0.60%、P:0.02%以下、
S:0.01%以下、Cr:0.50〜1.00%、Ni:0.50〜2.
00%、Al:0.10%以下、O:0.0015%以下、Mo:
0.5%以下を含み、残部が実質的にFe及び不可避的合
金成分から成り、平均粒径 0.5〜 2.0μm のセメンタイ
トの分散したフェライト組織であることを特徴とする高
炭素薄鋼板。
1. A weight ratio of C: 0.75 to 1.00%, Si: 0.
05 to 0.35%, Mn: 0.10 to 0.60%, P: 0.02% or less,
S: 0.01% or less, Cr: 0.50 to 1.00%, Ni: 0.50 to 2.
00%, Al: 0.10% or less, O: 0.0015% or less, Mo:
A high carbon thin steel sheet containing 0.5% or less, the balance being substantially Fe and an unavoidable alloying component, and having a ferrite structure in which cementite having an average grain size of 0.5 to 2.0 μm is dispersed.
【請求項2】請求項1に記載の化学組成の鋼を、仕上げ
温度を 820〜 900℃として熱間圧延し、 550〜 650℃の
温度範囲で巻取った後、温度T(℃)および時間t
(h)が下記の式および式で示される範囲で均熱
し、次いで 600〜 680℃の範囲の温度までの冷却速度を
15℃/h以下とする焼鈍をおこなうことを特徴とする、
請求項1に記載の高炭素薄鋼板の製造方法。 730≦T≦ 800 ・・・・・・・・・・・・・ 800−T≦ 167× logt≦1000−T ・・・・
2. The steel having the chemical composition according to claim 1 is hot-rolled at a finishing temperature of 820 to 900 ° C. and wound in a temperature range of 550 to 650 ° C., and then the temperature T (° C.) and time are set. t
(H) is soaked within the range shown by the following formula and formula, and then the cooling rate to the temperature in the range of 600 to 680 ° C is
Characterized by annealing at 15 ° C./h or less,
The method for manufacturing a high carbon thin steel sheet according to claim 1. 730 ≤ T ≤ 800 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 800-T ≤ 167 × logt ≤ 1000-T ・ ・ ・ ・
【請求項3】請求項1に記載の化学組成の鋼の熱延コイ
ルを圧下率20%以上で冷間圧延した後、温度T(℃)お
よび時間t(h)が下記の式および上記の式で示さ
れる範囲で均熱し、 600〜 680℃の範囲の温度までの冷
却速度を15℃/h以下とする焼鈍をおこなうことを特徴
とする請求項1に記載の高炭素薄鋼板の製造方法。 650≦T≦ 800 ・・・・・・・・・・
3. A steel hot-rolled coil having the chemical composition according to claim 1 is cold-rolled at a rolling reduction of 20% or more, and then temperature T (° C.) and time t (h) are calculated by the following formula and The method for producing a high carbon thin steel sheet according to claim 1, characterized in that soaking is performed in the range represented by the formula, and annealing is performed at a cooling rate up to a temperature in the range of 600 to 680 ° C of 15 ° C / h or less. . 650≤T≤800
JP24766295A 1995-09-26 1995-09-26 High carbon steel sheet and its production Pending JPH0987805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24766295A JPH0987805A (en) 1995-09-26 1995-09-26 High carbon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24766295A JPH0987805A (en) 1995-09-26 1995-09-26 High carbon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH0987805A true JPH0987805A (en) 1997-03-31

Family

ID=17166808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24766295A Pending JPH0987805A (en) 1995-09-26 1995-09-26 High carbon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH0987805A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147730B2 (en) * 2000-01-27 2006-12-12 Jfe Steel Corporation High carbon steel and production method thereof
JP2008039168A (en) * 2006-08-10 2008-02-21 Ntn Corp Thrust bearing component
JP2008174821A (en) * 2007-01-22 2008-07-31 Ntn Corp Thrust bearing
JP2009299189A (en) * 2009-09-08 2009-12-24 Nisshin Steel Co Ltd High carbon steel sheet for precision blanking
US7763124B2 (en) * 2003-04-16 2010-07-27 Jfe Steel Corporation Steel material with excellent rolling fatigue life and method of producing the same
JP2011012316A (en) * 2009-07-02 2011-01-20 Nippon Steel Corp Soft high-carbon steel sheet superior in punchability and method for manufacturing the same
CN108315637A (en) * 2013-07-09 2018-07-24 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and its manufacturing method
WO2022139277A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Steel for tool and manufacturing method for same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147730B2 (en) * 2000-01-27 2006-12-12 Jfe Steel Corporation High carbon steel and production method thereof
US7763124B2 (en) * 2003-04-16 2010-07-27 Jfe Steel Corporation Steel material with excellent rolling fatigue life and method of producing the same
JP2008039168A (en) * 2006-08-10 2008-02-21 Ntn Corp Thrust bearing component
US8709173B2 (en) 2006-08-10 2014-04-29 Ntn Corporation Thrust bearing component
JP2008174821A (en) * 2007-01-22 2008-07-31 Ntn Corp Thrust bearing
JP2011012316A (en) * 2009-07-02 2011-01-20 Nippon Steel Corp Soft high-carbon steel sheet superior in punchability and method for manufacturing the same
JP2009299189A (en) * 2009-09-08 2009-12-24 Nisshin Steel Co Ltd High carbon steel sheet for precision blanking
CN108315637A (en) * 2013-07-09 2018-07-24 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and its manufacturing method
US10400298B2 (en) 2013-07-09 2019-09-03 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
WO2022139277A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Steel for tool and manufacturing method for same

Similar Documents

Publication Publication Date Title
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
JP2007291495A (en) Hot-rolled ultrasoft high-carbon steel plate and process for production thereof
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP5280324B2 (en) High carbon steel sheet for precision punching
JP4465057B2 (en) High carbon steel sheet for precision punching
US20190300994A1 (en) Steel for Induction Hardening
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992277B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JPH0987805A (en) High carbon steel sheet and its production
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP2006265704A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and capable of obviating softening and method for producing the same
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP2007332439A (en) Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component
JP4319948B2 (en) High carbon cold-rolled steel sheet with excellent stretch flangeability
JP3249700B2 (en) High carbon hot rolled steel sheet excellent in hardenability and punching workability and method for producing the same
JP4161090B2 (en) High carbon steel plate with excellent punchability
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JPH11264049A (en) High carbon steel strip and its production
WO2022264948A1 (en) Steel part and manufacturing method of steel part
JP2005336560A (en) High-carbon steel sheet for precision-blanked parts, and precision-blanked parts
JP4411096B2 (en) Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization
JP4152225B2 (en) Steel plate and punching blade for strip-shaped cutting blades with excellent bendability