JP2011011968A - Method for easily generating gaseous hydrogen and device therefor - Google Patents
Method for easily generating gaseous hydrogen and device therefor Download PDFInfo
- Publication number
- JP2011011968A JP2011011968A JP2009160176A JP2009160176A JP2011011968A JP 2011011968 A JP2011011968 A JP 2011011968A JP 2009160176 A JP2009160176 A JP 2009160176A JP 2009160176 A JP2009160176 A JP 2009160176A JP 2011011968 A JP2011011968 A JP 2011011968A
- Authority
- JP
- Japan
- Prior art keywords
- water
- hydrogen gas
- powder
- gaseous hydrogen
- generating composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
この発明は、抗酸化剤としての水素ガスを安全かつ簡便に発生させる方法及びこれに使用する装置に関するものである。 The present invention relates to a method for safely and simply generating hydrogen gas as an antioxidant and an apparatus used therefor.
一般的に活性酸素種又はフリーラジカルと呼ばれる反応性分子の存在が、老化、がん、アテローム性動脈硬化症、心筋梗塞、発作、ウイルス感染、肺の異常、腸の病気及び神経退行疾患を含む多くの人間の健康上の異常の原因の一つとなっており、老化と健康の悪化につながることが現在では広く認められている。これらの分子は、生理的な反応での通常の副産物であり、酸素の代謝、例えば、細胞呼吸、あるいは免疫系機能及び代謝に不可欠な非常に多くの酵素反応によって生産される。 The presence of reactive molecules, commonly called reactive oxygen species or free radicals, includes aging, cancer, atherosclerosis, myocardial infarction, stroke, viral infections, lung abnormalities, intestinal illness and neurodegenerative diseases It is one of the causes of many human health abnormalities and is now widely recognized as leading to aging and poor health. These molecules are normal byproducts of physiological reactions and are produced by numerous enzyme reactions that are essential for oxygen metabolism, such as cellular respiration, or immune system function and metabolism.
最も一般的な活性酸素種の中にはスーパーオキシドラジカル、ヒドロキシルラジカル、一重項酸素、過酸化水素があげられ、広義の意味では、一酸化窒素、ペルオキシナイトライト、及びアルコキシルラジカルや脂質ペルオキシルラジカル等の脂質ラジカルが含まれる。スーパーオキシド、ヒドロキシルラジカル、一酸化窒素、脂質ペルオキシルラジカル、アルコキシルラジカルなどの脂質ラジカルなどはフリーラジカル分子種である。 Among the most common reactive oxygen species are superoxide radicals, hydroxyl radicals, singlet oxygen, hydrogen peroxide, and in a broad sense, nitric oxide, peroxynitrite, alkoxyl radicals and lipid peroxyl radicals. Lipid radicals such as Lipid radicals such as superoxide, hydroxyl radical, nitric oxide, lipid peroxyl radical, and alkoxyl radical are free radical molecular species.
フリーラジカル分子は生命有機体に対して核酸、タンパク質、脂質などのすべての生物分子の構造的損傷の原因となる酸化毒性を持っている。この分子の損傷は酵素反応の異常、脂質膜の変性といった細胞の異常を誘起し、細胞を傷つける。このように、フリーラジカル分子は酸化力が強く、この酸化力による傷害は一般的に酸化ストレスと呼ばれている。このような酸化ストレスの蓄積により個体レベルでは神経学的障害、内分泌不安定、アレルギーの増加、血管内皮破壊等の原因となることがある。酸化ストレスは、細胞における過剰な活性酸素種又はフリーラジカルの持つ強力な酸化能によって引き起こされる。 Free radical molecules have oxidative toxicity to living organisms that causes structural damage to all biological molecules such as nucleic acids, proteins, and lipids. This molecular damage induces cell abnormalities such as enzyme reaction abnormalities and lipid membrane degeneration and damages the cells. Thus, free radical molecules have strong oxidizing power, and the damage caused by this oxidizing power is generally called oxidative stress. Such accumulation of oxidative stress may cause neurological disorders, endocrine instability, increased allergy, vascular endothelial destruction, etc. at the individual level. Oxidative stress is caused by the strong oxidizing ability of excess reactive oxygen species or free radicals in the cell.
酸化ストレス等の有毒な影響から防護するには、抗酸化剤とよばれるものがある。生体内におけるフリーラジカル分子及びそれらと関連した副産物は、酸化防止剤によって中和され、害の少ない生産物に変換される場合がある。このような酸化防止剤は酵素、必須栄養素、非常に多くの内生物質又は食品化合物であることもある。従って、人間の生体内にはフリーラジカル分子に対するいくつかの天然の抑制物が保持されている。 To protect against toxic effects such as oxidative stress, there are things called antioxidants. In vivo free radical molecules and their associated by-products may be neutralized by antioxidants and converted into less harmful products. Such antioxidants can be enzymes, essential nutrients, numerous endogenous substances or food compounds. Therefore, some natural inhibitors against free radical molecules are retained in the human body.
しかしながら、生体内にフリーラジカル抑制物があるにも関わらず、個体は現実には、フリーラジカルによって多くの障害を受けている。従って、フリーラジカル分子による酸化防止のための栄養的補充を含む作用が人において老化の進行を遅らせ、健康増進、疾病の予防に役立つことが明らかである。 However, even though there are free radical inhibitors in the living body, the individual is actually damaged by free radicals. Therefore, it is clear that the action including nutritional supplementation for preventing oxidation by free radical molecules delays the progress of aging in humans and is useful for promoting health and preventing diseases.
このようにフリーラジカル分子は酸化力が強く、生体に対して酸化ストレスを与えることが知られており、従来から酸化ストレスの防止にはポリフェノール類、ビタミン類などが有効であるとされている。しかし、ビタミンCは水溶性であり、ビタミンEは脂溶性であることから両者とも細胞の内部まで容易に到達することができない。従って、細胞の内外に広く浸透することができる抗酸化物質が求められているのが現状である。 Thus, it is known that free radical molecules have strong oxidizing power and give oxidative stress to the living body. Conventionally, polyphenols, vitamins and the like are effective in preventing oxidative stress. However, since vitamin C is water-soluble and vitamin E is fat-soluble, both cannot easily reach the inside of the cell. Therefore, the present condition is that the antioxidant substance which can permeate | transmit widely inside and outside a cell is calculated | required.
また、フリーラジカルは有害であるだけでなく、生体に必要不可欠な役割を果たしており、例えば、侵入した細胞の殺傷作用、免疫機能、癌に対する防御機能、血管の新生、神経伝達などがある。それらは、スーパーオキシド、過酸化水素、一酸化窒素によるものである。従って、ヒドロキシルラジカル、ベルオキシナイトライト、脂質ペルオキシルラジカルといった反応性が高く、細胞障害性の高いフリーラジカル種等のみを選択的に除去できる物質を見出すことができれば、酸化ストレスの防御に安全に用いることができる。 Free radicals are not only harmful, but also play an indispensable role in the living body, such as killing action of invading cells, immune function, defense function against cancer, neovascularization, and neurotransmission. They are due to superoxide, hydrogen peroxide, and nitric oxide. Therefore, if it is possible to find substances that can selectively remove only free radical species with high reactivity, such as hydroxyl radicals, beroxynitrite, and lipid peroxyl radicals, it is safe to protect against oxidative stress. Can be used.
上述のように、従来からフリーラジカルや活性酸素を消去するための薬剤として抗酸化ビタミンをはじめとする抗酸化物質が健康増進に利用されているが、これらの薬剤は必ずしも細胞の内部まで容易に到達することができるわけではない。また、還元性水を飲用する場合、その水は還元性が維持されたまま細胞の内外へ広く浸透できない恐れがあり、生体の構造と成分は複雑で、均一ではないので、容易にその作用効果を予測することはできない。 As mentioned above, antioxidant substances such as antioxidant vitamins have been conventionally used to promote health as drugs for scavenging free radicals and active oxygen. However, these drugs are not always easy to reach the inside of cells. It can't be reached. In addition, when drinking reducible water, it may not be able to penetrate widely into and out of cells while maintaining reducibility, and the structure and components of the living body are complex and not uniform, so its effects are easy Cannot be predicted.
この様な中、気体状態の水素分子が、細胞障害性の高い活性酸素種であるヒドロキシルラジカルを選択的に還元して細胞を有効に保護し、一方、生理学的に重要な役割をもつ他の活性酸素種とは反応しないことが明らかになった。 Under such circumstances, gaseous hydrogen molecules selectively reduce hydroxyl radicals, which are highly cytotoxic oxygen species, and effectively protect cells, while other physiologically important roles play a role. It became clear that it did not react with reactive oxygen species.
そこで、水素ガスの発生装置が開発されている。水素ガスの発生方法としては、水を電気分解する方法、金属と酸を反応させる方法、水素化金属に水を反応させる方法、メチルアルコール又は天然ガスを水蒸気で改質する方法、水素吸蔵合金、活性炭、カーボンナノチューブ、リチウムー窒素系材料等の水素貯蔵材料から水素を放出させる方法等、各種の方法が知られている。しかしながら、これらの方法は、水素を発生させるために大量のエネルギーを必要とすることや、使用原料に対する水素発生量が少ないこと、大規模な設備を必要とすること等の欠点がある。また、金属とアルカリ水溶液との反応により水素ガスを発生させる水素ガス発生装置としては、特許文献1、特許文献2及び特許文献3のものがある。 Therefore, a hydrogen gas generator has been developed. As a method for generating hydrogen gas, a method for electrolyzing water, a method for reacting a metal with an acid, a method for reacting water with a metal hydride, a method for reforming methyl alcohol or natural gas with water vapor, a hydrogen storage alloy, Various methods are known, such as a method of releasing hydrogen from hydrogen storage materials such as activated carbon, carbon nanotubes, and lithium-nitrogen materials. However, these methods have drawbacks such as requiring a large amount of energy to generate hydrogen, a small amount of hydrogen generation with respect to raw materials used, and a large-scale facility. Moreover, there exist a thing of patent document 1, patent document 2, and patent document 3 as a hydrogen gas generator which generate | occur | produces hydrogen gas by reaction of a metal and aqueous alkali solution.
しかしながら、これらの特許文献1〜3のものは、いずれも反応容器内にアルカリ水溶液及び金属を投入して混合した状態で前記反応容器を密閉し、アルカリ水溶液と金属とが化学反応により水素ガスを発生させるもので、反応容器は高圧に耐えるものでなければならず、持ち運びにも不便である。
また、一方、水素ガスはその濃度によっては容易に爆発する恐れがあり、取り扱いには極めて注意を要する。
However, all of these Patent Documents 1 to 3 seal the reaction vessel in a state where an alkaline aqueous solution and a metal are charged and mixed in the reaction vessel, and the alkaline aqueous solution and the metal generate hydrogen gas by a chemical reaction. The reaction vessel must be able to withstand high pressure and is inconvenient to carry.
On the other hand, hydrogen gas may easily explode depending on its concentration, and handling is extremely careful.
この発明はこのような従来技術を考慮したものであって、持ち運びに便利で、極めて容易に水素ガスを発生させ、かつ当該水素ガスの発生量および時間を調整でき、抗酸化剤としての水素ガスの吸引、水素ガス浴等を安全にかつ容易に実現できる簡易式水素ガス発生方法及びその装置を提供することを目的としたものである。 The present invention has been made in consideration of such a conventional technique, is easy to carry, can easily generate hydrogen gas, can adjust the generation amount and time of the hydrogen gas, and can be used as an antioxidant. It is an object of the present invention to provide a simple hydrogen gas generation method and apparatus capable of safely and easily realizing the suction, hydrogen gas bath and the like.
そこで、請求項1の発明は、金属又は合金粉末にソーダ石灰粉末、酸化カルシウム粉末、水酸化カルシウム粉末の1つまたは複数を加えた水素ガス発生組成物を、透水性の袋又は小容器に収納し、これを大容器に入れた水又は温水中に沈めて、上記組成物と水との反応で水素ガスを前記水又は温水の液中に発生させる方法とした。 Therefore, the invention of claim 1 stores a hydrogen gas generating composition obtained by adding one or more of soda lime powder, calcium oxide powder and calcium hydroxide powder to metal or alloy powder in a water permeable bag or small container. Then, this was submerged in water or warm water in a large container, and hydrogen gas was generated in the water or warm water by the reaction of the composition and water.
また、請求項2の発明は、前記請求項1の発明において、前記水素ガス発生組成物の金属又は合金粉末が、アルミニウム又は亜鉛である、水素ガス発生方法とした。 The invention of claim 2 is the hydrogen gas generation method according to the invention of claim 1, wherein the metal or alloy powder of the hydrogen gas generating composition is aluminum or zinc.
また、請求項3の発明は、金属又は合金粉末にソーダ石灰粉末、酸化カルシウム粉末、水酸化カルシウム粉末の1つまたは複数を加えた水素ガス発生組成物が、透水性の袋又は小容器に収納され、この袋又は小容器が、大容器に入れた水又は温水中に没している水素ガス発生装置とした。 According to a third aspect of the present invention, a hydrogen gas generating composition obtained by adding one or more of soda lime powder, calcium oxide powder and calcium hydroxide powder to metal or alloy powder is stored in a water-permeable bag or small container. In this case, the bag or small container is a hydrogen gas generator that is submerged in water or warm water in a large container.
また、請求項4の発明は、前記請求項3の発明において、前記水素ガス発生組成物の金属又は合金粉末が、アルミニウム又は亜鉛である、水素ガス発生装置とした。 The invention of claim 4 is the hydrogen gas generator according to the invention of claim 3, wherein the metal or alloy powder of the hydrogen gas generating composition is aluminum or zinc.
請求項1〜4の各発明によれば、水素ガス発生組成物は、水と反応して水素ガスを発生する。そして、この水素ガスは水より比重が軽いため、水又は温水中を泡として上昇し、水面から空中へ放出される。従って、前記大容器をテーブル等の上に置き、使用者がその前で座っていると、大容器が使用者の顔の下に位置し、大容器の水面から放出される水素ガスを吸うことができる。また、前記大容器が浴槽である場合もあり、その場合は、入浴中、浴槽の湯面から水素ガスが空中に放出され、当該浴槽のある浴室中に水素ガスが分散し、入浴者は自然と水素ガスを吸うこととなり、水素ガス浴が出来る。いずれの場合も、使用者は自然の呼吸において抗酸化剤である水素ガスを摂取することとなり、摂取しやすく、活性酸素種であるヒドロキシラジカルを還元して細胞を容易に保護することができる。 According to each invention of Claims 1-4, a hydrogen gas generation composition reacts with water and generates hydrogen gas. And since this hydrogen gas has a specific gravity lighter than water, it rises as a bubble in water or warm water, and is discharged | emitted from the water surface to the air. Therefore, when the large container is placed on a table or the like and the user is sitting in front of it, the large container is located under the user's face and sucks hydrogen gas released from the water surface of the large container. Can do. In some cases, the large container is a bathtub. In such a case, during bathing, hydrogen gas is released into the air from the hot water surface of the bathtub, and the hydrogen gas is dispersed in the bathroom with the bathtub, so And hydrogen gas will be sucked, and a hydrogen gas bath can be made. In either case, the user will ingest hydrogen gas, which is an antioxidant, in natural respiration, and can easily ingest, and can easily protect cells by reducing hydroxy radicals, which are reactive oxygen species.
また、この発明では、前記水素ガス発生組成物は、透水性の袋又は小容器に入れており、運搬や取り扱いが極めて容易かつ安全である。しかも、水素ガスの濃度や発生量も、これらの金属又は合金粉末やソーダ石灰粉末等の量を調整することにより、容易に調整できる。また、前記水素ガス発生組成物は水と接すると反応し、この反応により熱が生じる。しかし、これらの反応を水中又は温水中で行わせるため、これらを使用者が万一触っても、前記熱による火傷等の危険がほとんどない。また、前記反応を水中で行うため、水面で反応させるより、反応が激しくなく、長時間にわたって反応し、それだけ長く水素ガスが発生する。 Moreover, in this invention, the said hydrogen gas generating composition is put in the water-permeable bag or the small container, and conveyance and handling are very easy and safe. Moreover, the concentration and generation amount of hydrogen gas can be easily adjusted by adjusting the amount of these metal or alloy powders, soda lime powders, or the like. The hydrogen gas generating composition reacts when in contact with water, and heat is generated by this reaction. However, since these reactions are performed in water or warm water, there is almost no risk of burns due to heat even if the user touches them. In addition, since the reaction is performed in water, the reaction is not violent than the reaction on the surface of the water.
この発明における水素ガス発生組成物は、アルミニウム粉末、亜鉛粉末等の金属又は合金粉末と、ソーダ石灰粉末、酸化カルシウム粉末、水酸化カルシウムの1つ又は複数を加えたもので、水と接すると化学反応により、水素ガスが発生するものである。この水素ガス発生組成物を、不織布等の透水性の袋、小容器に入れて使用する。従って、取り扱いが極めて容易かつ安全で、持ち運びにも便利である。この水素ガス発生組成物の入った袋又は小容器を、水又は温水を入れた大容器に入れ、水中に浸けると、前記水素ガス発生組成物が水と反応し、一定時間にわたって当該大容器の水面から水素ガスが発生する。この発生した水素ガスを、自然な呼吸で体内に吸い込むものである。この場合、予めこの水素ガス発生組成物の入った袋又は小容器を大容器の底に取り付け、後から水又は温水を注入してもよい。 The hydrogen gas generating composition according to the present invention comprises a metal or alloy powder such as aluminum powder and zinc powder and one or more of soda lime powder, calcium oxide powder and calcium hydroxide. Hydrogen gas is generated by the reaction. This hydrogen gas generating composition is used in a water-permeable bag or a small container such as a nonwoven fabric. Therefore, it is very easy and safe to handle and convenient to carry. When the bag or small container containing the hydrogen gas generating composition is placed in a large container containing water or warm water and immersed in water, the hydrogen gas generating composition reacts with water, Hydrogen gas is generated from the water surface. This generated hydrogen gas is sucked into the body by natural breathing. In this case, a bag or a small container containing the hydrogen gas generating composition may be attached to the bottom of the large container in advance, and water or warm water may be injected later.
この発明の実施例1を説明する。まず、実施例1の水素ガス発生組成物は、
(1)前記水素ガス発生組成物の質量当たり、平均粒径が75μm〜150μmの粉体酸化カルシウムを30%超〜40%以下、及び(2)(イ)粒径45μm passが70.0〜80.0%、粒径45〜75μmが20.0〜30.0%の粒度分布を有する粉体アルミニウムと、(ロ)粒径45μm passが60〜70%、粒径45μmが20〜30%、粒径63μmが7〜10%、粒径75μmが1.0〜2.0%の粒度分布を有す粉体アルミニウムとの質量混合比が1:2の混合アルミニウムを60%以上〜70%未満含むものに、(3)硫酸カルシウム、硫酸第1鉄、塩化マグネシウム、亜硫酸ナトリウム、リン酸ナトリウム及び炭酸ナトリウムから成る群から選択された少なくとも1種類の無機塩化合物を助剤として前記水素ガス発生組成物の総質量に対して、5〜20%の範囲で添加したものである。
A first embodiment of the present invention will be described. First, the hydrogen gas generating composition of Example 1 is
(1) More than 30% to 40% or less of powdered calcium oxide having an average particle size of 75 μm to 150 μm per mass of the hydrogen gas generating composition, and (2) (a) a particle size of 45 μm pass is 70.0 to Powder aluminum having a particle size distribution of 80.0%, particle size 45-75 μm is 20.0-30.0%, and (b) particle size 45 μm pass is 60-70%, particle size 45 μm is 20-30% 60% or more to 70% of mixed aluminum having a mass mixing ratio of 1: 2 with powdered aluminum having a particle size distribution of 7 to 10% in particle size of 63 μm and 1.0 to 2.0% in particle size of 75 μm (3) The hydrogen gas using as an aid at least one inorganic salt compound selected from the group consisting of calcium sulfate, ferrous sulfate, magnesium chloride, sodium sulfite, sodium phosphate and sodium carbonate Relative to the total weight of the raw composition is obtained by adding in the range of 5-20%.
この場合、酸化カルシウムと混合アルミニウムが水と接触した場合、下記の反応式(1)に従って、まず、水酸化カルシウム(Ca(OH)2)を生成する。
CaO+H2O=Ca(OH)2 (1)
In this case, when calcium oxide and mixed aluminum come into contact with water, calcium hydroxide (Ca (OH) 2 ) is first generated according to the following reaction formula (1).
CaO + H 2 O = Ca (OH) 2 (1)
一方、アルミニウム粉末は、下記の式(2)に従って水酸化カルシウムと急激に反応して、アルミン酸カルシウムと水素を発生する。
2Al+Ca(OH)2+2H2O=CaO・Al2O3+3H2↑ (2)
On the other hand, the aluminum powder reacts rapidly with calcium hydroxide according to the following formula (2) to generate calcium aluminate and hydrogen.
2Al + Ca (OH) 2 + 2H 2 O = CaO · Al 2 O 3 + 3H 2 ↑ (2)
また、前記水素ガス発生組成物は、図1に示すように、透水性の不織布、和紙、合成紙等の袋1に充填し、さらにアルミ箔等の非透水性の袋2に包装して、粉体酸化カルシウム等が空気中の水分を吸収して反応するのを防止する。従って、水又は温水に浸ける場合は、前記非透水性の袋から不織布等の袋を取り出して使用する。これは、透水性の容器に前記水素ガス発生組成物を入れる場合も同様である。 Further, as shown in FIG. 1, the hydrogen gas generating composition is filled in a bag 1 such as a water-permeable nonwoven fabric, Japanese paper, or synthetic paper, and further packaged in a non-water-permeable bag 2 such as an aluminum foil, Prevents powdered calcium oxide and the like from reacting by absorbing moisture in the air. Therefore, when immersed in water or warm water, a bag such as a nonwoven fabric is taken out from the water-impermeable bag and used. The same applies to the case where the hydrogen gas generating composition is placed in a water-permeable container.
また、この実施例1では、前記袋1を水中に浸けるため、図2に示すように、水中固定具3を設けた。この水中固定具3は、前記袋1を収納する収納スペース3a及びこの収納スペース3aの開口部を塞ぎ、収納スペースに水を導入させる窓3cを有する開閉扉3b、さらに、合成樹脂からなる吸盤3dを有している。使用に当たっては、前記袋1を収納スペース3aに入れて開閉扉3bを閉じ、図3に示すように、この水中固定具3の吸盤3dを容器4の底部内面に吸着させ、水5を当該容器4に満たす。これにより水中固定具3の窓3cから収納スペース3a内に水5が入り、前記袋1内の水素ガス発生組成物が水と接触して反応し、水素ガスを泡状に発生させる。使用者はこの容器4の開口部に顔を近づけると、水面から発散する水素ガスを吸引することが出来る。その際、水中固定具3は吸盤3dにより容器4の底部内面に固定され、袋1は水中に保持される。 Moreover, in Example 1, in order to immerse the bag 1 in water, an underwater fixture 3 was provided as shown in FIG. The underwater fixture 3 includes a storage space 3a for storing the bag 1, an opening / closing door 3b having a window 3c for closing the opening of the storage space 3a and introducing water into the storage space, and a suction cup 3d made of synthetic resin. have. In use, the bag 1 is placed in the storage space 3a, the door 3b is closed, and the suction cup 3d of the underwater fixture 3 is adsorbed to the inner surface of the bottom of the container 4 as shown in FIG. Satisfy 4 As a result, water 5 enters the storage space 3a from the window 3c of the underwater fixture 3, and the hydrogen gas generating composition in the bag 1 contacts and reacts with water to generate hydrogen gas in the form of foam. When the user brings his face close to the opening of the container 4, the hydrogen gas emanating from the water surface can be sucked. At that time, the underwater fixture 3 is fixed to the inner surface of the bottom of the container 4 by the suction cup 3d, and the bag 1 is held in water.
また、水素ガス浴をする場合は、図4に示すように、浴槽6内にお湯7を溜め、入浴する際、前記袋1を入れた水中固定具3を浴槽6の底部に、吸盤3dにより吸着させて固定する。これにより、水中固定具3の窓3cから収納スペース3a内にお湯7が入り、前記袋1内の水素ガス発生組成物がお湯7と接触して反応し、水素ガスを泡状に発生させる。そしてこの浴槽6がある浴室(図示省略)に水素ガスが放出される。これにより入浴者は入浴中に水素ガスを自然に吸引する。このように、入浴中、例えば、30分間前記水素ガス発生組成物が水と反応して水素ガスを発生させることができる。 In the case of taking a hydrogen gas bath, as shown in FIG. 4, hot water 7 is stored in the bathtub 6, and when taking a bath, the underwater fixture 3 containing the bag 1 is placed on the bottom of the bathtub 6 by a suction cup 3 d. Adsorb and fix. As a result, hot water 7 enters the storage space 3a from the window 3c of the underwater fixture 3, and the hydrogen gas generating composition in the bag 1 comes into contact with the hot water 7 and reacts to generate hydrogen gas in the form of bubbles. And hydrogen gas is discharge | released to the bathroom (illustration omitted) with this bathtub 6. FIG. Thus, the bather naturally sucks hydrogen gas during bathing. Thus, during bathing, for example, the hydrogen gas generating composition can react with water to generate hydrogen gas for 30 minutes.
前記水素ガス発生組成物を入れた袋1を直接前記水5又はお湯7に入れると、水素ガスが発生し、それが袋1内に充満しながら水素ガスは外部に拡散する。その際、水面に浮かんだ状態となり、反応としては水面に接触している水素ガス発生組成物の下側から化学反応に必要な水を吸い上げ、空気接触面表面より水蒸気に随伴し水素ガスを発生させる。このような場合、水蒸気を含む気体は化学反応後急速に発生し、約10〜15分経過後、目視による水蒸気の発生は見られなくなる。 When the bag 1 containing the hydrogen gas generating composition is directly put into the water 5 or hot water 7, hydrogen gas is generated, and the hydrogen gas diffuses to the outside while filling the bag 1. At that time, it floats on the water surface, and as a reaction, water necessary for chemical reaction is sucked from the lower side of the hydrogen gas generating composition in contact with the water surface, and hydrogen gas is generated along with water vapor from the air contact surface. Let In such a case, the gas containing water vapor is generated rapidly after the chemical reaction, and the generation of water vapor by visual inspection is not observed after about 10 to 15 minutes.
これは、発生した水素ガスは比重が軽く、拡散しやすいガスであるため、発生した気体は直ちに上方へと移動してしまう。人間の呼吸量は平均400ml/回(93ml/sec)と言われているが、吸引目的で発生させた水素ガスが単位時間当たりに集中して発生してしまうと、そのほとんどが吸引されず、空気中上方に拡散してしまう。理想的には、水素が一定量継続的に発生し、自然呼吸により吸引するか、若しくは水素飽和状態(2%が良いとされている)となっている室内で水素ガスを自然呼吸にて吸引できる状態が望ましいが、後者では、空調設備による水素ガス(この場合は水素ボンベ)の濃度調整が必要となり、大掛かりとなる。簡単、安全に水素ガスを吸引に利用できることを目的とするこの発明には反する。 This is because the generated hydrogen gas has a low specific gravity and is easy to diffuse, so that the generated gas immediately moves upward. It is said that the average human respiration rate is 400 ml / time (93 ml / sec), but when hydrogen gas generated for suction is concentrated and generated per unit time, most of it is not sucked. It diffuses upward in the air. Ideally, a certain amount of hydrogen is continuously generated and sucked by natural breathing, or hydrogen gas is sucked by natural breathing in a room saturated with hydrogen (2% is considered good). The latter is desirable, but in the latter case, it is necessary to adjust the concentration of hydrogen gas (in this case, a hydrogen cylinder) by the air conditioning equipment, which is a large scale. This is contrary to the present invention which aims to be able to use hydrogen gas for suction simply and safely.
そこで、前記袋1を水中に入れてこれを保持した場合と、水面で反応させた場合とを比較する実験をした。 Therefore, an experiment was conducted to compare the case where the bag 1 was put in water and held, and the case where the bag 1 was reacted on the water surface.
実験は以下の要領でおこなった。
図5に示すように、満量10リットル容量のポリタンク11に、止水弁を2箇所加工したものを用意し、ポリタンク11内に水を約8リットル入れ、その密閉されたポリタンク11の内部にて水素ガス発生組成物を水と反応させ気体を発生させる。通常、水素は水上置換法にて気体を捕集するが、本実験では増加した気体の容積相当量の水の排出量にて気体発生量と同等とみなした。なお、気体が発生し充満時のポリタンク11の膨張における誤差ならびにその際の水への圧力による排出への影響は考慮しないものとする。測定法は、下部排出止水弁より排出された水を大型の容器12で受け、その容器12ごと計量器13にて容量(g)を測定する。
The experiment was conducted as follows.
As shown in FIG. 5, a plastic tank 11 with a capacity of 10 liters is prepared by processing two water stop valves. About 8 liters of water is placed in the plastic tank 11, and inside the sealed plastic tank 11. The hydrogen gas generating composition is reacted with water to generate gas. Normally, hydrogen collects gas by the water displacement method, but in this experiment, the amount of water corresponding to the increased volume of gas was regarded as equivalent to the amount of gas generated. In addition, the influence on the discharge | emission by the pressure to the water at the time of the expansion | swelling of the poly tank 11 at the time of gas generation | occurrence | production and filling, and water at that time shall not be considered. In the measurement method, water discharged from the lower discharge stop valve is received by a large container 12, and the capacity (g) is measured by the measuring device 13 together with the container 12.
図6は、前記の実験装置において、水素ガス発生組成物を水中に沈めた場合と、水面に浮かべた場合とを比較した、単位時間当たりの水素ガス発生量を示す。なお、横軸は経過時間、縦軸は発生量を示す。検体の水素ガス発生組成物は、粉体アルミニウムを67%、粉体酸化カルシュウムを33%に対し、助剤として炭酸ナトリウムを10重量%加え、これを不織布から成る袋に詰めた。 FIG. 6 shows the amount of hydrogen gas generated per unit time by comparing the case where the hydrogen gas generating composition is submerged in water with the case where the composition is floated on the water surface. The horizontal axis indicates the elapsed time, and the vertical axis indicates the amount generated. The sample hydrogen gas generating composition was 67% powdered aluminum, 33% powdered calcium oxide, 10% by weight sodium carbonate as an auxiliary agent, and was packed in a bag made of nonwoven fabric.
この実験の結果、前記袋を水中に配置した場合は、初期の急激な水素発生が抑えられ、約20分経過後水素の単位時間当たり発生量がおおよそ70ml/minと安定した状態で発生している。一方、前記袋を水面に浮かべた場合は、初期に急激に水素が発生し、約20分経過後の水素の単位時間当たり発生量がおおよそ50ml/min未満となりその後さらに激減している。 As a result of this experiment, when the bag was placed in water, the initial rapid hydrogen generation was suppressed, and the hydrogen generation amount per unit time was stable at about 70 ml / min after about 20 minutes. Yes. On the other hand, when the bag is floated on the surface of the water, hydrogen is rapidly generated in the initial stage, and the amount of hydrogen generated per unit time after about 20 minutes has been reduced to less than about 50 ml / min, and then further drastically decreased.
前記水素ガス発生組成物は、上記実施例1のもに限らない。他の水素ガス発生組成物として、40〜60重量%のアルミニウム粉末と、10〜40重量%の消石灰粉末と、10〜40重量%の生石灰粉末を含むものがある。 The hydrogen gas generating composition is not limited to that in Example 1 above. Other hydrogen gas generating compositions include those containing 40-60 wt% aluminum powder, 10-40 wt% slaked lime powder, and 10-40 wt% quicklime powder.
また、他の水素ガス発生組成物として、当該水素ガス発生組成物の重量当たり、100メッシュ(−150μm90%以下)乃至200メッシュ(−75μm95%以上)の粉体生石灰が15乃至30%、及び−330メッシュ(−45μm)が40乃至60%、+330メッシュ(+45μm)が15乃至30%、+235メッシュ(+63μm)が15%>、+200メッシュ(+75μm)が10%>の粒度分布を有する粉体アルミニウム70乃至85%から成るものがある。 Further, as other hydrogen gas generating composition, 15 to 30% of powdered quicklime of 100 mesh (−150 μm 90% or less) to 200 mesh (−75 μm 95% or more) per weight of the hydrogen gas generating composition, and − Powdered aluminum having a particle size distribution such that 330 mesh (−45 μm) is 40 to 60%, +330 mesh (+45 μm) is 15 to 30%, +235 mesh (+63 μm) is 15%>, and +200 mesh (+75 μm) is 10%>. Some consist of 70 to 85%.
また、他の水素ガス発生組成物として、平均粒径が40〜60μmで、粒度分布が、−330メッシュ(−45μm)が35〜60%、+330メッシュ(+45μm)が15〜30%、+235メッシュ(+63μm)が5〜15%>、+200メッシュ(+75μm)が10〜20%、+140メッシュ(+106μm)が7%>、+100メッシュ(+150μm)が1%>、+70メッシュ(+212μm)が0%の粉体アルミニウム23.3gと、粉体酸化カルシュウム11.7gを混合して総質量35gとしたものがある。 As another hydrogen gas generating composition, the average particle size is 40 to 60 μm, and the particle size distribution is 35 to 60% for −330 mesh (−45 μm), 15 to 30% for +330 mesh (+45 μm), and +235 mesh. (+63 μm) is 5-15%>, +200 mesh (+75 μm) is 10-20%, +140 mesh (+106 μm) is 7%>, +100 mesh (+150 μm) is 1%>, +70 mesh (+212 μm) is 0%. There is a mixture of 23.3 g of powdered aluminum and 11.7 g of powdered calcium oxide to a total mass of 35 g.
なお、上記実施例1では、水素ガス発生組成物を透水性の袋1に入れ、保管時は、非透水性の袋2に入れておき、使用時に前記袋2から取り出して、水中固定具3に入れて使用しているが、これに限らず、前記水素ガス発生組成物を、粉体がこぼれず、かつ外部の水や温水と内部の水素ガス発生組成物が接触可能な容器に入れて使用することもできる。また、前記水中固定具3もこの構成に限るものではない。 In Example 1 above, the hydrogen gas generating composition is put in the water-permeable bag 1 and stored in the non-water-permeable bag 2 and is taken out from the bag 2 during use, and the underwater fixture 3 is used. However, the present invention is not limited to this, and the hydrogen gas generating composition is put in a container in which powder is not spilled and external water or hot water can be in contact with the internal hydrogen gas generating composition. It can also be used. The underwater fixture 3 is not limited to this configuration.
1 透水性の袋 2 非透水性の袋
3 水中固定具 4 容器
5 水 6 浴槽
7 お湯
DESCRIPTION OF SYMBOLS 1 Water-permeable bag 2 Non-water-permeable bag 3 Underwater fixture 4 Container
5 Water 6 Bathtub 7 Hot water
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009160176A JP2011011968A (en) | 2009-07-06 | 2009-07-06 | Method for easily generating gaseous hydrogen and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009160176A JP2011011968A (en) | 2009-07-06 | 2009-07-06 | Method for easily generating gaseous hydrogen and device therefor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013002057U Continuation JP3184538U (en) | 2013-04-11 | 2013-04-11 | Simple hydrogen gas generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011011968A true JP2011011968A (en) | 2011-01-20 |
Family
ID=43591226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009160176A Pending JP2011011968A (en) | 2009-07-06 | 2009-07-06 | Method for easily generating gaseous hydrogen and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011011968A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016040267A (en) * | 2008-02-08 | 2016-03-24 | 典生 山本 | Method for generating hydroxyl radical and hydroxyl radical generating material |
CN106377413A (en) * | 2016-10-31 | 2017-02-08 | 广东溢泓源科技有限公司 | Hydrogen massage instrument |
JP6244056B1 (en) * | 2017-08-31 | 2017-12-06 | 浩章 皆川 | Hydrogen generator comprising calcium oxide powder and aluminum powder |
JP6388268B1 (en) * | 2017-11-17 | 2018-09-12 | 国立研究開発法人理化学研究所 | Hydrogen gas generator and hydrogen gas generator |
JP2019104664A (en) * | 2017-12-14 | 2019-06-27 | 株式会社アテック | Mobile hydrogen generator using sources that are calcium hydride or metal calcium and aluminum hydride or metal aluminum |
JP2019193703A (en) * | 2018-05-01 | 2019-11-07 | 浩章 皆川 | In-bath hydrogen generation device and in-bath hydrogen generation method with hydrogen generation agent storage device |
CN111481425A (en) * | 2019-01-25 | 2020-08-04 | 曹荣华 | Microenvironment hydrogen supply breathable layer and external application bag |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6461301A (en) * | 1987-08-18 | 1989-03-08 | Kenji Kimoto | Production of hydrogen gas |
JP2004174301A (en) * | 2002-11-25 | 2004-06-24 | Zendama Club:Kk | Structure for making water high in hydrogen concentration |
JP2004210591A (en) * | 2002-12-27 | 2004-07-29 | Itec Co Ltd | Apparatus and method of producing gaseous hydrogen |
JP2004231466A (en) * | 2003-01-30 | 2004-08-19 | Uchiya Thermostat Kk | Hydrogen generating material and method and apparatus for generating hydrogen |
JP2004243151A (en) * | 2003-02-10 | 2004-09-02 | Yoshiro Tanaka | Hydrogen-dissolved water making appliance |
JP2004322020A (en) * | 2003-04-28 | 2004-11-18 | Norimi Okada | Simple hydrogen water generation implement |
JP2005206459A (en) * | 2003-12-26 | 2005-08-04 | Itec Co Ltd | Hydrogen gas generator and hydrogen gas generating method |
JP2007153667A (en) * | 2005-12-05 | 2007-06-21 | Saiseiko Kk | Hydrogen generator and fuel cell |
JP2007191379A (en) * | 2006-01-20 | 2007-08-02 | Akane:Kk | Hydrogen generator and vessel for hydrogen generator |
JP2007320792A (en) * | 2006-05-31 | 2007-12-13 | Itec Co Ltd | Hydrogen gas generating method and hydrogen gas generator |
JP2008156159A (en) * | 2006-12-22 | 2008-07-10 | Equos Research Co Ltd | Hydrogen generating apparatus and power generation system |
JP2008273758A (en) * | 2007-04-26 | 2008-11-13 | Hitachi Maxell Ltd | Hydrogen generating material composition and hydrogen generating apparatus |
JP2009221097A (en) * | 2008-02-22 | 2009-10-01 | Hydro-Device Co Ltd | Hydrogen generation material, communicated porous membrane, and hydrogen generation method |
-
2009
- 2009-07-06 JP JP2009160176A patent/JP2011011968A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6461301A (en) * | 1987-08-18 | 1989-03-08 | Kenji Kimoto | Production of hydrogen gas |
JP2004174301A (en) * | 2002-11-25 | 2004-06-24 | Zendama Club:Kk | Structure for making water high in hydrogen concentration |
JP2004210591A (en) * | 2002-12-27 | 2004-07-29 | Itec Co Ltd | Apparatus and method of producing gaseous hydrogen |
JP2004231466A (en) * | 2003-01-30 | 2004-08-19 | Uchiya Thermostat Kk | Hydrogen generating material and method and apparatus for generating hydrogen |
JP2004243151A (en) * | 2003-02-10 | 2004-09-02 | Yoshiro Tanaka | Hydrogen-dissolved water making appliance |
JP2004322020A (en) * | 2003-04-28 | 2004-11-18 | Norimi Okada | Simple hydrogen water generation implement |
JP2005206459A (en) * | 2003-12-26 | 2005-08-04 | Itec Co Ltd | Hydrogen gas generator and hydrogen gas generating method |
JP2007153667A (en) * | 2005-12-05 | 2007-06-21 | Saiseiko Kk | Hydrogen generator and fuel cell |
JP2007191379A (en) * | 2006-01-20 | 2007-08-02 | Akane:Kk | Hydrogen generator and vessel for hydrogen generator |
JP2007320792A (en) * | 2006-05-31 | 2007-12-13 | Itec Co Ltd | Hydrogen gas generating method and hydrogen gas generator |
JP2008156159A (en) * | 2006-12-22 | 2008-07-10 | Equos Research Co Ltd | Hydrogen generating apparatus and power generation system |
JP2008273758A (en) * | 2007-04-26 | 2008-11-13 | Hitachi Maxell Ltd | Hydrogen generating material composition and hydrogen generating apparatus |
JP2009221097A (en) * | 2008-02-22 | 2009-10-01 | Hydro-Device Co Ltd | Hydrogen generation material, communicated porous membrane, and hydrogen generation method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016040267A (en) * | 2008-02-08 | 2016-03-24 | 典生 山本 | Method for generating hydroxyl radical and hydroxyl radical generating material |
CN106377413A (en) * | 2016-10-31 | 2017-02-08 | 广东溢泓源科技有限公司 | Hydrogen massage instrument |
JP6244056B1 (en) * | 2017-08-31 | 2017-12-06 | 浩章 皆川 | Hydrogen generator comprising calcium oxide powder and aluminum powder |
JP2019043791A (en) * | 2017-08-31 | 2019-03-22 | 浩章 皆川 | Hydrogen generating agent comprising calcium oxide powder and aluminum powder |
JP6388268B1 (en) * | 2017-11-17 | 2018-09-12 | 国立研究開発法人理化学研究所 | Hydrogen gas generator and hydrogen gas generator |
JP2019094219A (en) * | 2017-11-17 | 2019-06-20 | 国立研究開発法人理化学研究所 | Hydrogen gas generating agent and hydrogen gas generator |
JP2019104664A (en) * | 2017-12-14 | 2019-06-27 | 株式会社アテック | Mobile hydrogen generator using sources that are calcium hydride or metal calcium and aluminum hydride or metal aluminum |
JP2019193703A (en) * | 2018-05-01 | 2019-11-07 | 浩章 皆川 | In-bath hydrogen generation device and in-bath hydrogen generation method with hydrogen generation agent storage device |
CN111481425A (en) * | 2019-01-25 | 2020-08-04 | 曹荣华 | Microenvironment hydrogen supply breathable layer and external application bag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011011968A (en) | Method for easily generating gaseous hydrogen and device therefor | |
KR101313358B1 (en) | Selective hydrogenation apparatus for biologically applicable liquid | |
JP5228142B1 (en) | High concentration hydrogen gas supply device for living body | |
CN102712510B (en) | Device for selectively hydrogenating biocompatible solution | |
US9120672B2 (en) | Selective hydrogen adding equipment for living organism applicable fluid | |
JP4744641B1 (en) | Device for adding hydrogen to biological fluids | |
JP3184538U (en) | Simple hydrogen gas generator | |
CN104016470A (en) | Method and apparatus to produce hydrogen-rich materials | |
JP2007167696A (en) | Method and material for modifying drinking water | |
KR102039093B1 (en) | Beverage-containing pouch container and exterior sheet material therefor | |
JP3164934U (en) | Hydrogen gas generator | |
JP5857139B1 (en) | Skeleton type hydrogen gas generator | |
JP2009234887A (en) | Method and device for generating gaseous chlorine dioxide | |
US20120082734A1 (en) | Hydrogen production device, hydrogen addition device and hydrogen-additive article | |
KR20200055023A (en) | Method for generating chlorine dioxide gas, liquid composition, gel composition, and chlorine dioxide gas generation kit | |
JP2018027976A (en) | Mist provision method | |
CN107021451A (en) | Generating means, generation external member and the generation method of hydrogeneous liquid | |
US20100129464A1 (en) | Manufacturing method and apparatus for producing substances that include negative hydrogen ion | |
CN105692559B (en) | The preparation method of chlorine dioxide | |
JP2019104664A (en) | Mobile hydrogen generator using sources that are calcium hydride or metal calcium and aluminum hydride or metal aluminum | |
US20170157045A1 (en) | Apparatus and method for generating hydrogen-containing liquid | |
CN108294960A (en) | A kind of hydrogen-rich beauty mask and preparation method thereof | |
JP3164045U (en) | Inner lid of sealed container | |
US7651628B2 (en) | Compression molded product of effervescent chlorinated isocyanuric acid | |
JP6345986B2 (en) | Device for supplying reduced hydrogen water and carbonic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120703 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20130218 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20130306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |