JP2004231466A - Hydrogen generating material and method and apparatus for generating hydrogen - Google Patents

Hydrogen generating material and method and apparatus for generating hydrogen Download PDF

Info

Publication number
JP2004231466A
JP2004231466A JP2003021995A JP2003021995A JP2004231466A JP 2004231466 A JP2004231466 A JP 2004231466A JP 2003021995 A JP2003021995 A JP 2003021995A JP 2003021995 A JP2003021995 A JP 2003021995A JP 2004231466 A JP2004231466 A JP 2004231466A
Authority
JP
Japan
Prior art keywords
hydrogen
powder
generating material
water
hydrogen generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003021995A
Other languages
Japanese (ja)
Other versions
JP4276854B2 (en
Inventor
Kazuyuki Iizuka
和幸 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiya Thermostat Co Ltd
Original Assignee
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co Ltd filed Critical Uchiya Thermostat Co Ltd
Priority to JP2003021995A priority Critical patent/JP4276854B2/en
Publication of JP2004231466A publication Critical patent/JP2004231466A/en
Application granted granted Critical
Publication of JP4276854B2 publication Critical patent/JP4276854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generating material capable of stably generating hydrogen from water at a room temperature without by-producing carbon monoxide or carbon dioxide and a method and an apparatus for generating hydrogen. <P>SOLUTION: The hydrogen generating material contains aluminum powder and calcium oxide powder and the blending ratio of the aluminum powder per 100 wt.% in total of the aluminum powder and the calcium oxide powder is ≤85 wt.%. The method of generating hydrogen includes a process for preparing the hydrogen generating material and a process for generating hydrogen by adding water to the hydrogen generating material. The hydrogen generating apparatus has a vessel for housing the hydrogen generating material, a pipe line for introducing water into the vessel and a pipe line for discharging hydrogen generated in the vessel. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水から水素を製造するために使用される水素発生材料、水素発生方法及び水素発生装置に関する。
【0002】
【従来の技術】
燃料として水素を用いる燃料電池には、部分酸化法や水蒸気改質法によってメタノール等を水素に改質し、これを燃料電池に供給するための水素発生装置が一般に併設されている。しかし、このような方法では水素とともに一酸化炭素(CO)が副生し、これが燃料電池の電極を被毒する。したがって、COを10ppm以下にまで除去する必要があるが、CO除去手段を設置すると、改質器が大型化及び高コスト化するという問題がある。また、水蒸気改質法は、約800℃の非常に高い温度まで加熱する必要がある。
【0003】
一方、COやCOを発生しない方法として、太陽熱を利用したUT−3サイクルや、特開平07−267601号公報の方法が提案されている。しかし、これらの方法は太陽熱を利用するため、大規模なシステムが必要でコストが非常に高いという問題がある。また、アルミニウムとアルカリ金属もしくはアルカリ土類金属との合金を水に反応させて水素を発生させる方法が、特開2002−69558号公報で提案されている。しかし、この方法は700〜800℃の高温で反応を行う必要があり、装置に使用される材料にチタンを用いるなどコストが非常に高く、さらに冷却装置なども必要であるという問題がある。
【0004】
【特許文献1】
特開平07−267601号公報
【特許文献2】
特開2002−69558号公報
【0005】
【発明が解決しようとする課題】
そこで本発明は、上記の問題点を鑑み、一酸化炭素や二酸化炭素を副生せず、かつ常温で安定的に水素を生成させることができる水素発生材料、水素発生方法及び水素発生装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の水素発生材料は、アルミニウム粉末と酸化カルシウム粉末とを含んでなり、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下であることを特徴とするものである。酸化カルシウムは、以下の式1に示すように、水と反応して水酸化カルシウムを生成する。
CaO+HO→Ca(OH)・・・(式1)
生成した水酸化カルシウムは、さらにアルミニウムと反応してアルミン酸カルシウムと水素を生成する。その代表的な反応を以下の式2に示す。
3Ca(OH)+2Al→3CaO・Al+3H・・・(式2)
なお、アルミン酸カルシウムは、式2中の3CaO・Alの化合物の他に、CaO・2Al、CaO・Al、Ca[Al(OH)、2Ca(OH)・Al(OH)・5/2HOなどの化合物がある。すなわち、水酸化カルシウムとアルミニウムとの反応により、上記のような複数の種類の化合物も生成しうる。
【0007】
また、式1及び式2は、アルミニウムとアルカリ又は水とを直接的に反応させるものではないので、可逆的反応ではなく、常温による穏やか反応であり、実用に適している。また、式1及び式2からわかるように、本発明に係る水素発生材料と水との反応によって、CO及びCOは副生しない。そして、アルミニウム粉末と酸化カルシウム粉末との合計を100重量%として、アルミニウム粉末の配合比を85重量%以下にする。このような配合比にすることで、水素発生材料の単位重量当りの水素発生量を飛躍的に向上させることができる。すなわち、一酸化炭素や二酸化炭素を副生せず、かつ常温で安定的に水素を発生させることができる。なお、水素発生材料に、水酸化カルシウムでなく、酸化カルシウムの粉末を加えることで、水と酸化カルシウムの反応により高い反応熱を得ることができ、水素発生反応を促進させることができる。
CaO+HO=Ca(OH) ΔH=−65.15kJ/mol(25℃、1atm)
【0008】
本発明の水素発生材料は、保水剤をさらに含むことが好ましい。保水剤を添加することにより、長時間にわたり一定量の水素を発生させることができる。保水剤の配合比としては、アルミニウム粉末と酸化カルシウム粉末の合計100重量部に対して、10〜300重量部であることが好ましい。保水剤としては、保水量の多い材料を用いることが好ましく、例えば、アルミナ粉、シリカ粉、アルミナ系多孔質物質、シリカ系多孔質物質、バーミキュライト、パーライト、木粉、シリカゲル、ゼオライト、活性炭、吸水性ポリマーよりなる群から少なくとも1つを含むものが好ましい。
【0009】
また、本発明の水素発生材料は、通水性を有する袋に充填された水素発生剤とすることが好ましい。袋が通水性を有するので、袋に水素発生材料が充填された状態のまま水を添加しても、上記の式1及び式2の反応が起き、水素を発生させることができる。したがって、水素発生材料を袋に充填された状態で取り扱うことができるので、粉末状である水素発生材料の取り扱いを容易に行うことができる。なお、本明細書では、水素発生材料を袋詰めしたものであって、そのまま水を添加して使用できるものを水素発生剤という。
【0010】
本発明は、別の態様として、水素発生方法であって、アルミニウム粉末と酸化カルシウム粉末とを混合し、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を調製する工程と、該水素発生材料に水を加えて水素を発生させる工程とを含んでなることを特徴とする。この水素発生工程は常温で行うことが好ましい。上記したように、式1及び式2は常温で安定的に反応が進むので、従来必要であった高温まで加熱させる工程が不要になり、電気などのエネルギーを外部から加えることなく、簡単かつ短時間に、水素を発生させることができる。
【0011】
さらに、本発明は、別の態様として、水素発生装置であって、アルミニウム粉末及び酸化カルシウム粉末を含み、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を収容するための容器と、該容器内に水を導入するための配管と、該容器内で発生した水素を排出するための配管とを含んでなることを特徴とする。前記容器には、収納された水素発生材料を交換するための開閉手段が設けられていることが好ましい。このような開閉手段としては、高い密閉性を確保できるものが好ましく、例えば、スクリュー式のキャップやヒンジ式の蓋などを用いることができる。また、前記水導入用の配管と前記水素排出用の配管は、1つの配管により兼用されていることが好ましい。
【0012】
【発明の実施の形態】
先ず、本発明に係る水素発生材料の実施の形態について説明する。本発明に係る水素発生材料は、アルミニウム粉末と酸化カルシウム粉末とを含んでなるものである。アルミニウム粉末としては、粒度分布が20μm〜300μm、特に50〜150μmのものが好ましい。粒径が20μm未満では、反応速度が向上するが、空気中での酸化反応も速くなるため、取り扱いが難しくなる。一方、粒径が300μmより大きいと、反応速度が低下する。また、酸化カルシウム粉末としては、粒度分布が100μm以下、特に10μm〜100μmのものが好ましい。粒径が10μm未満のような微粒子になると、空気中での吸湿が高く、空気中の二酸化炭素との反応性が高まり好ましくない。一方、粒径が100μmより大きいと、粒子の中心部まで水が拡散(浸透)しにくく、反応効率が劣り、好ましくない。
【0013】
アルミニウム粉末と酸化カルシウム粉末との配合比は、これらの合計を100重量%とすると、アルミニウム粉末を85重量%以下にする必要がある。アルミニウム粉末が85重量%を超えると、酸化カルシウムが15重量%未満となってしまい、上記式1の反応によるCa(OH)の生成が少なく、結果的に上記式2の反応による水素の発生が極端に減少してしまう(後述の図4を参照)。アルミニウム粉末と酸化カルシウム粉末のより好ましい配合比は、アルミニウム粉末が25〜85重量%、酸化カルシウム粉末が75〜15重量%である。アルミニウム粉末を25重量%未満とすると、水素発生材料の単位重量当りの水素発生量が低下する。
【0014】
本発明に係る水素発生材料は、長時間にわたり一定量の水素を発生させる目的で、保水剤をさらに配合することが好ましい。保水剤としては、アルミナ粉、シリカ粉、アルミナ系多孔質物質、シリカ系多孔質物質、バーミキュライト、パーライト、木粉、シリカゲル、ゼオライト、活性炭、吸水性ポリマーなど、保水量の多い材料を用いることが好ましい。保水剤の配合比は、アルミニウム粉末と酸化カルシウム粉末の合計を100重量部として、10〜300重量部、特に20〜200重量部とすることが好ましい。保水剤が10重量部未満では、式1及び式2の反応が速やかに進み、短時間で水素の発生が終わってしまう。一方、保水剤が300重量部を超えると、水素発生材料全体の重量及び体積が増加し過ぎるため、効率が悪い。
【0015】
なお、本発明に係る水素発生材料は、酸化カルシウム粉末に代えて、水酸化カルシウム粉末を使用することもできる。水酸化カルシウム粉末は、酸化カルシウム粉末と比べ、大気中でやや安定であり、また水素発生材料に水を加えた時の体積の膨張を抑えることができる点で有利である。水酸化カルシウム粉末は、粒度分布が10μm〜100μmのものが好ましい。粒径が10μm未満では、空気中での吸湿が高く、空気中の二酸化炭素との反応性も高まり、好ましくない。一方、粒径が100μmより大きいと、粒子の中心部まで水が拡散(浸透)しにくく、反応効率が劣り、好ましくない。水酸化カルシウム粉末の配合比は、アルミニウム粉末と水酸化カルシウム粉末との合計を100重量%として、アルミニウム粉末を80重量%以下にする。好ましくは20〜80重量%である。
【0016】
また、本発明に係る水素発生材料は、通水性を有する袋に充填して、水素発生剤として使用することが好ましい。袋が通水性を有するので、水素発生剤の状態のまま水を添加しても、水素を発生させることができる。これにより、粉末状である水素発生材料の取り扱いを容易に行うことができる。通水性を有する袋としては、水が浸透する所定の見付量を有する不織布、和紙、合成紙などを用いることができる。通水性の袋も、不織布など保水性を有するものは、水を徐々に水素発生材料に供給する作用があり、保水剤を入れたときと同様の効果が得られる。なお、水素発生剤は、保管や運搬する場合には、さらにアルミ箔等の非通水性を有する袋で密閉して包装されることが好ましい。
【0017】
次に、本発明に係る水素発生装置の実施の形態について説明する。図1は、本発明に係る水素発生装置の一実施の形態を示す概略図であって、(a)は平面図、(b)は(a)のB−B線における断面図である。図1に示すように、水素発生装置は、底部を有する円筒形状の容器10と、容器10とほぼ同一の外径を有するスクリュー式のキャップ20とから主に構成されている。
【0018】
容器10は、キャップ20が係合する係合部10aを有している。この係合部10aは、容器10の側面部10bより内側方向に環状に設けられており、係合部10aの外壁にはネジが切られている。また、キャップ20の側面部20aの内壁にもネジが切られており、キャップ20を左右に回転させることにより、キャップ20は容器10の係合部10aと着脱し、容器10の開閉を自在にしている。キャップ20の天井部20bの内側にはパッキン26が設けられており、これにより容器10とキャップ20との高い密閉性を確保し、容器10内で発生した水素ガスが外に漏れるのを防止している。
【0019】
また、キャップ20の天井部20bの中央部分には、天井部20bを貫通した配管28が設けられている。配管28は、容器10内に水を導入するための水源(図示省略)と、容器10内で発生した水素が供給される燃料電池(図示省略)との両方に接続されている。そして、配管28と水源及び燃料電池との間には、どちらと通じるかを適宜選択できる切替手段(図示省略)が設けられている。
【0020】
容器10及びキャップ20は、耐アルカリ性であって、80〜100℃程度の熱に耐えられる素材で作られることが好ましく、例えば、ポリエチレン、ポリプロピレン、ポリカーボネイト、ナイロン、ABS樹脂、フッ素などの樹脂や、シリカ、アルミナなどのセラミックス、フッ素樹脂やセラミックスで表面をコーティングしたステンレスやアルミニウムなどを使用することができる。
【0021】
このような構成によれば、先ず、スクリュー式のキャップ20を回転させて、キャップ20を容器10から取り外し、容器10を開く。そして、容器10内に水素発生剤30を投入する。水素発生剤30は、所定量のアルミニウム粉末と酸化カルシウム粉末を混合した水素発生材料32が、通水性を有する袋に充填されたものである。次に、配管28を介して、水源(図示省略)から所定量の水を容器10内に導入する。数分後、上記の式1及び式2の反応により水素が発生する。発生した水素は、配管28から排出され、燃料電池(図示省略)に供給される。
【0022】
反応が終了し、水素が発生しなくなったら、水素発生剤30を交換するため、キャップ20を回転させてキャップ20を取り外し、容器10内から水素発生剤30を取り出して、新しい水素発生剤30を投入する。そして、キャップ20を取り付けて、配管28から水を導入して再び反応を開始する。このようにして、一酸化炭素や二酸化炭素を副生することなく、常温で安定的に水素を発生させることができる。
【0023】
なお、上記説明では、所定量の水を一度に容器10内に導入したが、ポンプなどを用いて、容器10内に一定量の水を連続的もしくは断続的に導入していくこともできる。これにより、長期にわたって一定量の水素を発生させることができる。また、水素発生材料32に保水剤を加えることによって、所定量の水を一度に導入した場合であっても、長期にわたって一定量の水素を発生させることができる。
【0024】
また、図1では、水を導入するための配管と、水素を排出するための配管とを兼ねる1本の配管を配管28として設けたが、水導入用の配管と水素排出用の配管と別々に設けることもできる。なお、配管を2本以上設ける場合、水素排出用の配管以外には、開閉バルブや逆止弁などを設けて、容器10内で発生した水素が配管を逆流しないようにすることが好ましい。
【0025】
【実施例】
以下、本発明の実施例及び比較例について説明する。
アルミニウム粉末としては、53〜150μmの粒度分布を示す和光純薬工業株式会社製アルミニウム粉末を使用した。また、酸化カルシウム粉末としては、関東化学株式会社製の塊状酸化カルシウムを乳鉢にて粉砕後、目開き60μmのふるいにて通過した粒径60μm未満のものを使用した。保水剤であるアルミナ粉末としては、粒径75μm未満の和光純薬工業株式会社製酸化アルミニウム粉末を使用した。
【0026】
図2は、実験装置の概要を示す模式図である。図2に示すように、外径16.5mmのガラス製試験管50内に、上記のアルミニウム粉末、酸化カルシウム粉末、アルミナ粉末及び水を入れて反応させた。そして、発生した水素と反応熱により気化した水を、水のトラップ装置52へ導入した。トラップ装置52を0℃に保持することで、気化した水を凝集し、水素のみをトラップ装置52から排出した。排出された水素は、石鹸膜流量計54に導入し、単位時間当たりの水素発生量、すなわち、水素発生速度(mL/min)を測定した。なお、実験は常温(20±2℃)で行い、水は20±2℃に保たれた純水を使用した。
【0027】
(実施例1)
アルミニウム粉末2.55gと酸化カルシウム粉末0.45gを混合し、これを試験管50に充填した。次に、試験管50に水3mLを導入することで反応を開始した。そして、石鹸膜流量計54にて、反応時間の経過ごとに水素発生速度を測定した。
(実施例2〜5)
表1に示す量のアルミニウム粉末と酸化カルシウム粉末をそれぞれ使用した以外は、実施例1と同様の手順により実験を行った。
【0028】
(比較例1)
アルミニウム粉末のみ3gを試験管50に充填し、水3mLを導入した以外は、実施例1と同様の手順により実験を行った。
(比較例2〜3)
表1に示す量のアルミニウム粉末と酸化カルシウム粉末をそれぞれ使用した以外は、実施例1と同様の手順により実験を行った。
(比較例4)
酸化カルシウム粉末のみ3gを試験管50に充填し、水3mLを導入した以外は、実施例1と同様の手順により実験を行った。
【0029】
実施例1〜5及び比較例1〜4の各材料の重量(g)及び重量比(wt%)と、水素発生総量(mL)の結果を表1に示す。また、水素発生速度の時間変化の結果を図3に示す。
【0030】
【表1】

Figure 2004231466
【0031】
図3に示すように、実施例1〜5は、反応開始から約2〜3分で水素が発生し始め、アルミニウム粉末の配合比により違いがあるものの、時間の経過とともに水素発生速度は上昇し、水素発生速度が最大値となった後、反応が終了した。アルミニウム粉末の配合比が85重量%である実施例1は、水素発生速度の最大値が約150mL/minに達し、反応時間も約13分と長かった。
一方、アルミニウム粉末のみ及び酸化カルシウム粉末のみの比較例1及び4は、反応開始から10分経過しても、水素の発生は確認できなかった。また、アルミニウム粉末の配合比が90wt%及び95wt%の比較例2及び3も、反応開始から10分経過しても、水素の発生はほとんど見られなかった。
【0032】
また、実施例1〜5及び比較例1〜4の結果から、アルミニウム粉末の重量比に対する水素発生総量の関係を図4に示す。図4に示すように、アルミニウム粉末の配合比が90wt%以上(比較例1〜3)である場合、水素発生総量はほぼ0mLであったが、アルミニウム粉末の配合比を85wt%(実施例1)にした場合、飛躍的に水素発生総量が増加することがわかった。また、アルミニウム粉末の配合比を85wt%以下から減少させると、アルミニウム粉末の配合比に比例して水素発生総量も減少し、アルミニウム粉末の配合比が0wt%では水素発生総量は0mLであった。
【0033】
(実施例6)
アルミニウム粉末1.2gと酸化カルシウム粉末0.3gとを混合し、これを試験管50に充填した。次に、試験管50に水5mLを導入することで反応を開始した。そして、石鹸膜流量計54にて、反応時間の経過ごとに水素発生速度を測定した。
(実施例7)
アルミニウム粉末と酸化カルシウム粉末の混合物に、さらに、保水剤としてアルミナ粉末1.5gを混合した以外は、実施例6と同様の手順により実験を行った。
(実施例8)
アルミナ粉末を3g混合した以外は、実施例7と同様の手順により実験を行った。
【0034】
実施例6〜8の結果から、各反応時間に対する水素発生速度の関係を図5に示す。図5に示すように、アルミニウム粉末と酸化カルシウム粉末の合計重量1.5gに対して、保水剤を1.5g(実施例7)、3g(実施例8)と加えていくことで、反応速度が低い値で一定になっていき、長時間にわたって水素を発生することができた。アルミナ粉末を無添加にした実施例6では、短時間で水素を発生し、20分後には水素を発生しなくなった。それと比較して、アルミナ粉末3g添加した実施例8では、1時間にわたり水素を発生し続けることができた。このように、保水剤を加えることで、燃料電池が必要とする以上の余分な水素を発生させることなく、一定量の水素を長時間にわたり発生させることができる。
【0035】
【発明の効果】
上述してきたように、本発明によれば、一酸化炭素や二酸化炭素を副生せず、かつ常温で安定的に水素を生成させることができる水素発生材料、水素発生方法及び水素発生装置を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明に係る水素発生装置の一実施の形態の概略を示す平面図であって、(b)は(a)のB−B線における断面図である。
【図2】水素発生実験に用いた実験装置の概要を示す模式図である。
【図3】本発明の実施例及び比較例において、反応時間の経過に対する水素発生速度の変化を示すグラフである。
【図4】本発明の実施例及び比較例において、アルミニウム粉末の配合比に対する水素発生総量の関係を示すグラフである。
【図5】本発明の実施例において、反応時間の経過に対する水素発生速度の変化を示すグラフである。
【符号の説明】
10 容器
10a 係合部
10b 側面部
20 キャップ
20a 側面部
20b 天井部
26 パッキン
28 配管
30 水素発生剤
32 水素発生材料
50 試験管
52 水のトラップ装置
54 石鹸膜流量計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen generating material, a hydrogen generating method, and a hydrogen generating apparatus used for producing hydrogen from water.
[0002]
[Prior art]
A fuel cell using hydrogen as a fuel is generally provided with a hydrogen generator for reforming methanol or the like into hydrogen by a partial oxidation method or a steam reforming method and supplying the reformed hydrogen to the fuel cell. However, in such a method, carbon monoxide (CO) is by-produced together with hydrogen, and this poisons the electrodes of the fuel cell. Therefore, it is necessary to remove CO to 10 ppm or less. However, if the CO removing means is installed, there is a problem that the reformer is increased in size and cost. Also, the steam reforming method requires heating to a very high temperature of about 800 ° C.
[0003]
On the other hand, as a method that does not generate CO or CO 2 , a UT-3 cycle using solar heat and a method disclosed in Japanese Patent Application Laid-Open No. 07-267601 have been proposed. However, since these methods use solar heat, there is a problem that a large-scale system is required and the cost is very high. Japanese Patent Application Laid-Open No. 2002-69558 proposes a method of generating hydrogen by reacting an alloy of aluminum and an alkali metal or an alkaline earth metal with water. However, this method has a problem that the reaction needs to be performed at a high temperature of 700 to 800 ° C., the cost is extremely high such as using titanium as a material used for the device, and a cooling device is also required.
[0004]
[Patent Document 1]
JP 07-267601 A [Patent Document 2]
JP-A-2002-69558 [0005]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a hydrogen generating material, a hydrogen generating method, and a hydrogen generating apparatus capable of stably generating hydrogen at room temperature without by-producing carbon monoxide or carbon dioxide. The purpose is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the hydrogen generating material of the present invention comprises an aluminum powder and a calcium oxide powder, and the mixing ratio of the aluminum powder is defined assuming that the total of the aluminum powder and the calcium oxide powder is 100% by weight. Is 85% by weight or less. Calcium oxide reacts with water to produce calcium hydroxide, as shown in Equation 1 below.
CaO + H 2 O → Ca (OH) 2 (formula 1)
The generated calcium hydroxide further reacts with aluminum to generate calcium aluminate and hydrogen. The typical reaction is shown in the following formula 2.
3Ca (OH) 2 + 2Al → 3CaO · Al 2 O 3 + 3H 2 (formula 2)
Incidentally, calcium aluminate, in addition to the compounds of 3CaO · Al 2 O 3 in Formula 2, CaO · 2Al 2 O 3 , CaO · Al 2 O 3, Ca 3 [Al (OH) 6] 2, 2Ca ( OH) 2 .Al (OH) 2 .5 / 2H 2 O. That is, a plurality of types of compounds as described above can be produced by the reaction between calcium hydroxide and aluminum.
[0007]
Formulas 1 and 2 do not directly react aluminum with alkali or water, and are not reversible reactions but mild reactions at room temperature, which are suitable for practical use. Also, as can be seen from Equations 1 and 2, CO and CO 2 are not by-produced by the reaction between the hydrogen generating material according to the present invention and water. Then, assuming that the total of the aluminum powder and the calcium oxide powder is 100% by weight, the mixing ratio of the aluminum powder is 85% by weight or less. With such a mixing ratio, the amount of hydrogen generated per unit weight of the hydrogen generating material can be dramatically improved. That is, hydrogen can be stably generated at normal temperature without by-producing carbon monoxide or carbon dioxide. Note that by adding calcium oxide powder instead of calcium hydroxide to the hydrogen generating material, high reaction heat can be obtained by the reaction between water and calcium oxide, and the hydrogen generating reaction can be promoted.
CaO + H 2 O = Ca (OH) 2 ΔH = −65.15 kJ / mol (25 ° C., 1 atm)
[0008]
It is preferable that the hydrogen generating material of the present invention further contains a water retention agent. By adding a water retention agent, a constant amount of hydrogen can be generated for a long time. The mixing ratio of the water retention agent is preferably from 10 to 300 parts by weight based on 100 parts by weight of the total of the aluminum powder and the calcium oxide powder. As the water retention agent, it is preferable to use a material having a large amount of water retention, for example, alumina powder, silica powder, alumina-based porous substance, silica-based porous substance, vermiculite, perlite, wood powder, silica gel, zeolite, activated carbon, water absorption The one containing at least one from the group consisting of conductive polymers is preferable.
[0009]
In addition, the hydrogen generating material of the present invention is preferably a hydrogen generating agent packed in a bag having water permeability. Since the bag has water permeability, even if water is added while the bag is filled with the hydrogen generating material, the reactions of the above formulas 1 and 2 occur, and hydrogen can be generated. Therefore, the hydrogen generating material can be handled in a state of being filled in the bag, so that the powdery hydrogen generating material can be easily handled. In the present specification, a hydrogen generating material which is packed with a hydrogen generating material and which can be used by adding water as it is is referred to as a hydrogen generating agent.
[0010]
Another aspect of the present invention is a method for generating hydrogen, comprising mixing an aluminum powder and a calcium oxide powder, and setting the total ratio of the aluminum powder and the calcium oxide powder to 100% by weight, and It is characterized by comprising a step of preparing a hydrogen generating material of 85% by weight or less, and a step of adding water to the hydrogen generating material to generate hydrogen. This hydrogen generation step is preferably performed at room temperature. As described above, since the reactions in Formulas 1 and 2 proceed stably at ordinary temperature, the step of heating to a high temperature, which was conventionally required, becomes unnecessary, and the process is simple and short without applying external energy such as electricity. In time, hydrogen can be evolved.
[0011]
Further, as another aspect, the present invention relates to a hydrogen generator, which includes an aluminum powder and a calcium oxide powder, and a mixing ratio of the aluminum powder and the calcium oxide powder is 100% by weight. A vessel for containing a hydrogen generating material of 85% by weight or less, a pipe for introducing water into the vessel, and a pipe for discharging hydrogen generated in the vessel. Features. The container is preferably provided with an opening / closing means for exchanging the stored hydrogen generating material. As such opening / closing means, those capable of ensuring high airtightness are preferable. For example, a screw-type cap, a hinge-type lid, or the like can be used. Further, it is preferable that one pipe is used for the water introduction pipe and the hydrogen discharge pipe.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
First, an embodiment of the hydrogen generating material according to the present invention will be described. The hydrogen generating material according to the present invention comprises an aluminum powder and a calcium oxide powder. As the aluminum powder, a powder having a particle size distribution of 20 μm to 300 μm, particularly preferably 50 μm to 150 μm is preferable. When the particle size is less than 20 μm, the reaction speed is improved, but the oxidation reaction in air is also faster, so that handling becomes difficult. On the other hand, when the particle size is larger than 300 μm, the reaction rate decreases. The calcium oxide powder preferably has a particle size distribution of 100 μm or less, particularly preferably 10 μm to 100 μm. Fine particles having a particle size of less than 10 μm are not preferable because of high moisture absorption in the air and high reactivity with carbon dioxide in the air. On the other hand, when the particle size is larger than 100 μm, water hardly diffuses (permeates) to the center of the particles, and the reaction efficiency is poor, which is not preferable.
[0013]
The mixing ratio of the aluminum powder and the calcium oxide powder needs to be 85% by weight or less, assuming that the total of these is 100% by weight. If the aluminum powder exceeds 85% by weight, the content of calcium oxide will be less than 15% by weight, and the generation of Ca (OH) 2 by the reaction of the above formula 1 is small, and as a result, the generation of hydrogen by the reaction of the above formula 2 Is extremely reduced (see FIG. 4 described later). More preferable mixing ratio of the aluminum powder and the calcium oxide powder is 25 to 85% by weight of the aluminum powder and 75 to 15% by weight of the calcium oxide powder. When the aluminum powder content is less than 25% by weight, the amount of hydrogen generated per unit weight of the hydrogen generating material decreases.
[0014]
The hydrogen generating material according to the present invention preferably further contains a water retention agent for the purpose of generating a fixed amount of hydrogen for a long time. As the water retention agent, a material having a large water retention amount such as alumina powder, silica powder, alumina-based porous material, silica-based porous material, vermiculite, perlite, wood powder, silica gel, zeolite, activated carbon, and water-absorbing polymer may be used. preferable. The mixing ratio of the water retention agent is preferably 10 to 300 parts by weight, particularly preferably 20 to 200 parts by weight, based on 100 parts by weight of the total of the aluminum powder and the calcium oxide powder. If the water retention agent is less than 10 parts by weight, the reactions of Formulas 1 and 2 proceed rapidly, and the generation of hydrogen ends in a short time. On the other hand, if the amount of the water retention agent exceeds 300 parts by weight, the weight and volume of the entire hydrogen generating material increase excessively, and the efficiency is poor.
[0015]
The hydrogen generating material according to the present invention may use calcium hydroxide powder instead of calcium oxide powder. Calcium hydroxide powder is advantageous in that it is slightly more stable in the air than calcium oxide powder and can suppress volume expansion when water is added to the hydrogen generating material. The calcium hydroxide powder preferably has a particle size distribution of 10 μm to 100 μm. If the particle size is less than 10 μm, moisture absorption in the air is high, and reactivity with carbon dioxide in the air increases, which is not preferable. On the other hand, when the particle size is larger than 100 μm, water hardly diffuses (permeates) to the center of the particles, and the reaction efficiency is poor, which is not preferable. The mixing ratio of the calcium hydroxide powder is set to 80% by weight or less, with the total of the aluminum powder and the calcium hydroxide powder being 100% by weight. Preferably it is 20 to 80% by weight.
[0016]
Further, the hydrogen generating material according to the present invention is preferably filled in a bag having water permeability and used as a hydrogen generating agent. Since the bag has water permeability, hydrogen can be generated even if water is added in the state of the hydrogen generating agent. Thereby, the powdery hydrogen generating material can be easily handled. As the bag having water permeability, a nonwoven fabric, Japanese paper, synthetic paper, or the like having a predetermined apparent amount through which water permeates can be used. A water-permeable bag, such as a nonwoven fabric, which has a water retention property has an effect of gradually supplying water to the hydrogen generating material, and the same effect as when a water retention agent is added can be obtained. When the hydrogen generating agent is stored or transported, it is preferable that the hydrogen generating agent is further sealed and packaged with a non-water-permeable bag such as an aluminum foil.
[0017]
Next, an embodiment of the hydrogen generator according to the present invention will be described. FIG. 1 is a schematic view showing one embodiment of a hydrogen generator according to the present invention, wherein (a) is a plan view and (b) is a cross-sectional view taken along line BB of (a). As shown in FIG. 1, the hydrogen generator mainly includes a cylindrical container 10 having a bottom and a screw cap 20 having an outer diameter substantially the same as the container 10.
[0018]
The container 10 has an engaging portion 10a with which the cap 20 engages. The engaging portion 10a is provided annularly inward from the side surface portion 10b of the container 10, and the outer wall of the engaging portion 10a is threaded. The inner wall of the side surface portion 20a of the cap 20 is also threaded, and by rotating the cap 20 left and right, the cap 20 is attached to and detached from the engaging portion 10a of the container 10, and the container 10 can be freely opened and closed. ing. A packing 26 is provided inside the ceiling portion 20b of the cap 20, which ensures a high hermeticity between the container 10 and the cap 20, and prevents the hydrogen gas generated in the container 10 from leaking out. ing.
[0019]
In addition, a pipe 28 that penetrates through the ceiling 20b is provided at the center of the ceiling 20b of the cap 20. The pipe 28 is connected to both a water source (not shown) for introducing water into the container 10 and a fuel cell (not shown) to which hydrogen generated in the container 10 is supplied. A switching means (not shown) is provided between the pipe 28 and the water source or the fuel cell so that the connection can be appropriately selected.
[0020]
The container 10 and the cap 20 are preferably alkali-resistant and made of a material that can withstand heat of about 80 to 100 ° C., for example, polyethylene, polypropylene, polycarbonate, nylon, ABS resin, resin such as fluorine, Ceramics such as silica and alumina, and stainless steel and aluminum coated on the surface with a fluororesin or ceramics can be used.
[0021]
According to such a configuration, first, the screw-type cap 20 is rotated, the cap 20 is removed from the container 10, and the container 10 is opened. Then, the hydrogen generating agent 30 is charged into the container 10. The hydrogen generating agent 30 is a hydrogen generating material 32 obtained by mixing a predetermined amount of aluminum powder and calcium oxide powder into a bag having water permeability. Next, a predetermined amount of water is introduced into the container 10 from a water source (not shown) via the pipe 28. After a few minutes, hydrogen is evolved by the reactions of Equations 1 and 2 above. The generated hydrogen is discharged from the pipe 28 and supplied to a fuel cell (not shown).
[0022]
When the reaction is completed and hydrogen is no longer generated, in order to replace the hydrogen generating agent 30, the cap 20 is rotated to remove the cap 20, the hydrogen generating agent 30 is taken out of the container 10, and a new hydrogen generating agent 30 is replaced. throw into. Then, the cap 20 is attached, water is introduced from the pipe 28, and the reaction is started again. In this manner, hydrogen can be stably generated at room temperature without by-producing carbon monoxide or carbon dioxide.
[0023]
In the above description, a predetermined amount of water is introduced into the container 10 at one time, but a constant amount of water may be introduced into the container 10 continuously or intermittently using a pump or the like. Thereby, a fixed amount of hydrogen can be generated over a long period of time. Further, by adding a water retention agent to the hydrogen generating material 32, even when a predetermined amount of water is introduced at a time, a constant amount of hydrogen can be generated for a long period of time.
[0024]
Further, in FIG. 1, one pipe serving both as a pipe for introducing water and a pipe for discharging hydrogen is provided as the pipe 28. However, a pipe for introducing water and a pipe for discharging hydrogen are separately provided. Can also be provided. When two or more pipes are provided, it is preferable to provide an on-off valve, a check valve, and the like, in addition to the pipe for discharging hydrogen, so that hydrogen generated in the container 10 does not flow back through the pipes.
[0025]
【Example】
Hereinafter, examples and comparative examples of the present invention will be described.
As the aluminum powder, an aluminum powder manufactured by Wako Pure Chemical Industries, Ltd. having a particle size distribution of 53 to 150 μm was used. As the calcium oxide powder, a powder having a particle size of less than 60 μm, which was obtained by pulverizing bulk calcium oxide manufactured by Kanto Chemical Co., Ltd. in a mortar and passing it through a sieve having openings of 60 μm, was used. As the alumina powder as the water retention agent, an aluminum oxide powder manufactured by Wako Pure Chemical Industries, Ltd. having a particle size of less than 75 μm was used.
[0026]
FIG. 2 is a schematic diagram showing an outline of the experimental apparatus. As shown in FIG. 2, the above aluminum powder, calcium oxide powder, alumina powder and water were placed in a glass test tube 50 having an outer diameter of 16.5 mm and reacted. Then, the water vaporized by the generated hydrogen and the reaction heat was introduced into the water trap device 52. By keeping the trap device 52 at 0 ° C., the vaporized water was aggregated, and only hydrogen was discharged from the trap device 52. The discharged hydrogen was introduced into a soap film flow meter 54, and the amount of hydrogen generated per unit time, that is, the hydrogen generation rate (mL / min) was measured. The experiment was performed at normal temperature (20 ± 2 ° C.), and pure water kept at 20 ± 2 ° C. was used.
[0027]
(Example 1)
2.55 g of aluminum powder and 0.45 g of calcium oxide powder were mixed and filled in a test tube 50. Next, the reaction was started by introducing 3 mL of water into the test tube 50. Then, the hydrogen generation rate was measured by the soap film flow meter 54 every time the reaction time elapsed.
(Examples 2 to 5)
An experiment was performed in the same procedure as in Example 1 except that the amounts of aluminum powder and calcium oxide powder shown in Table 1 were used.
[0028]
(Comparative Example 1)
An experiment was conducted in the same procedure as in Example 1, except that 3 g of aluminum powder alone was filled in a test tube 50, and 3 mL of water was introduced.
(Comparative Examples 2-3)
An experiment was performed in the same procedure as in Example 1 except that the amounts of aluminum powder and calcium oxide powder shown in Table 1 were used.
(Comparative Example 4)
An experiment was performed in the same procedure as in Example 1 except that 3 g of the calcium oxide powder alone was filled in a test tube 50, and 3 mL of water was introduced.
[0029]
Table 1 shows the results of the weight (g) and weight ratio (wt%) of each material of Examples 1 to 5 and Comparative Examples 1 to 4 and the total amount of hydrogen generated (mL). FIG. 3 shows the result of the time change of the hydrogen generation rate.
[0030]
[Table 1]
Figure 2004231466
[0031]
As shown in FIG. 3, in Examples 1 to 5, hydrogen began to be generated in about 2 to 3 minutes from the start of the reaction, and although there was a difference depending on the mixing ratio of the aluminum powder, the hydrogen generation rate increased with time. After the hydrogen generation rate reached the maximum value, the reaction was completed. In Example 1 in which the mixing ratio of the aluminum powder was 85% by weight, the maximum value of the hydrogen generation rate reached about 150 mL / min, and the reaction time was as long as about 13 minutes.
On the other hand, in Comparative Examples 1 and 4 in which only the aluminum powder and the calcium oxide powder were used, generation of hydrogen could not be confirmed even after 10 minutes from the start of the reaction. In Comparative Examples 2 and 3 in which the mixing ratio of the aluminum powder was 90 wt% and 95 wt%, generation of hydrogen was hardly observed even after 10 minutes from the start of the reaction.
[0032]
FIG. 4 shows the relationship between the weight ratio of the aluminum powder and the total amount of hydrogen generation based on the results of Examples 1 to 5 and Comparative Examples 1 to 4. As shown in FIG. 4, when the mixing ratio of the aluminum powder was 90 wt% or more (Comparative Examples 1 to 3), the total amount of generated hydrogen was almost 0 mL, but the mixing ratio of the aluminum powder was 85 wt% (Example 1). ), It was found that the total amount of hydrogen generation increased dramatically. Further, when the mixing ratio of the aluminum powder was reduced from 85 wt% or less, the total amount of hydrogen generation also decreased in proportion to the mixing ratio of the aluminum powder. When the mixing ratio of the aluminum powder was 0 wt%, the total amount of hydrogen generation was 0 mL.
[0033]
(Example 6)
1.2 g of aluminum powder and 0.3 g of calcium oxide powder were mixed and filled in a test tube 50. Next, the reaction was started by introducing 5 mL of water into the test tube 50. Then, the hydrogen generation rate was measured by the soap film flow meter 54 every time the reaction time elapsed.
(Example 7)
An experiment was carried out in the same procedure as in Example 6, except that 1.5 g of alumina powder was further mixed as a water retention agent into the mixture of the aluminum powder and the calcium oxide powder.
(Example 8)
An experiment was performed in the same procedure as in Example 7, except that 3 g of alumina powder was mixed.
[0034]
From the results of Examples 6 to 8, the relationship between the hydrogen generation rate and each reaction time is shown in FIG. As shown in FIG. 5, by adding 1.5 g (Example 7) and 3 g (Example 8) of a water retention agent to 1.5 g of the total weight of the aluminum powder and the calcium oxide powder, the reaction rate was increased. Became constant at a low value, and hydrogen could be generated for a long time. In Example 6 in which the alumina powder was not added, hydrogen was generated in a short time, and no hydrogen was generated after 20 minutes. In comparison, in Example 8 in which 3 g of alumina powder was added, hydrogen could be continuously generated for one hour. As described above, by adding the water retention agent, a fixed amount of hydrogen can be generated for a long time without generating extra hydrogen than required by the fuel cell.
[0035]
【The invention's effect】
As described above, according to the present invention, there is provided a hydrogen generating material, a hydrogen generating method, and a hydrogen generating apparatus capable of stably generating hydrogen at room temperature without by-producing carbon monoxide or carbon dioxide. can do.
[Brief description of the drawings]
FIG. 1A is a plan view schematically showing an embodiment of a hydrogen generator according to the present invention, and FIG. 1B is a cross-sectional view taken along line BB of FIG.
FIG. 2 is a schematic diagram illustrating an outline of an experimental apparatus used for a hydrogen generation experiment.
FIG. 3 is a graph showing a change in a hydrogen generation rate with a lapse of reaction time in Examples and Comparative Examples of the present invention.
FIG. 4 is a graph showing the relationship between the mixing ratio of aluminum powder and the total amount of hydrogen generation in Examples and Comparative Examples of the present invention.
FIG. 5 is a graph showing a change in a hydrogen generation rate with the passage of reaction time in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Container 10a Engaging part 10b Side part 20 Cap 20a Side part 20b Ceiling part 26 Packing 28 Piping 30 Hydrogen generator 32 Hydrogen generating material 50 Test tube 52 Water trap device 54 Soap film flow meter

Claims (10)

アルミニウム粉末と酸化カルシウム粉末とを含んでなり、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水と反応する水素発生材料。A hydrogen generating material comprising an aluminum powder and a calcium oxide powder, wherein the total amount of the aluminum powder and the calcium oxide powder is 100% by weight, and the compounding ratio of the aluminum powder is 85% by weight or less and reacts with water. 保水剤をさらに含んでなる請求項1に記載の水素発生材料。The hydrogen generating material according to claim 1, further comprising a water retention agent. 前記アルミニウム粉末と前記酸化カルシウム粉末の合計を100重量部として、前記保水剤の配合比が10〜300重量部である請求項2に記載の水素発生材料。The hydrogen generating material according to claim 2, wherein the mixing ratio of the water retention agent is 10 to 300 parts by weight, with the total of the aluminum powder and the calcium oxide powder being 100 parts by weight. 前記保水剤が、アルミナ粉、シリカ粉、アルミナ系多孔質物質、シリカ系多孔質物質、バーミキュライト、パーライト、木粉、シリカゲル、ゼオライト、活性炭、吸水性ポリマーよりなる群から少なくとも1つを含むものである請求項3に記載の水素発生材料。The water retention agent contains at least one selected from the group consisting of alumina powder, silica powder, alumina-based porous material, silica-based porous material, vermiculite, perlite, wood powder, silica gel, zeolite, activated carbon, and a water-absorbing polymer. Item 7. A hydrogen generating material according to Item 3. 請求項1〜4のいずれか1項に記載の水素発生材料と、この水素発生材料を充填した通水性を有する袋と含んでなる水素発生剤。A hydrogen generating agent comprising the hydrogen generating material according to any one of claims 1 to 4, and a water-permeable bag filled with the hydrogen generating material. アルミニウム粉末と酸化カルシウム粉末とを混合し、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を調製する工程と、該水素発生材料に水を加えて水素を発生させる工程とを含んでなる水素発生方法。Mixing an aluminum powder and a calcium oxide powder to prepare a hydrogen generating material having a mixing ratio of the aluminum powder of 85% by weight or less, with the total of the aluminum powder and the calcium oxide powder being 100% by weight; Adding water to the hydrogen generating material to generate hydrogen. 前記水素発生工程を常温で行う請求項6に記載の水素発生方法。The hydrogen generation method according to claim 6, wherein the hydrogen generation step is performed at normal temperature. アルミニウム粉末及び酸化カルシウム粉末を含み、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を収容するための容器と、該容器内に水を導入するための配管と、該容器内で発生した水素を排出するための配管とを含んでなる水素発生装置。A container for containing a hydrogen generating material containing an aluminum powder and a calcium oxide powder, wherein a total ratio of the aluminum powder and the calcium oxide powder is 100% by weight, and a mixing ratio of the aluminum powder is 85% by weight or less; A hydrogen generator comprising: a pipe for introducing water into a container; and a pipe for discharging hydrogen generated in the container. 前記容器には、収納された水素発生材料を交換するための開閉手段が設けられている請求項8に記載の水素発生装置。The hydrogen generator according to claim 8, wherein the container is provided with an opening / closing means for exchanging the stored hydrogen generating material. 前記水導入用の配管と前記水素排出用の配管とが、1つの配管により兼用されている請求項8又は9に記載の水素発生装置。The hydrogen generator according to claim 8 or 9, wherein one pipe is used for the water introduction pipe and the hydrogen discharge pipe.
JP2003021995A 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus Expired - Lifetime JP4276854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021995A JP4276854B2 (en) 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021995A JP4276854B2 (en) 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus

Publications (2)

Publication Number Publication Date
JP2004231466A true JP2004231466A (en) 2004-08-19
JP4276854B2 JP4276854B2 (en) 2009-06-10

Family

ID=32951187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021995A Expired - Lifetime JP4276854B2 (en) 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus

Country Status (1)

Country Link
JP (1) JP4276854B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025511A1 (en) * 2004-08-30 2006-03-09 Nitto Denko Corporation Hydrogen generating composition
JP2006104017A (en) * 2004-10-05 2006-04-20 Nitto Denko Corp Hydrogen generation device and method
JP2006160545A (en) * 2004-12-03 2006-06-22 Seiko Instruments Inc Hydrogen producing device and fuel cell system
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
WO2006103959A1 (en) * 2005-03-25 2006-10-05 Hitachi Maxell, Ltd. Hydrogen generating material, method for producing same, and method for producing hydrogen
JP2006335603A (en) * 2005-06-02 2006-12-14 Nitto Denko Corp Hydrogen generating agent and hydrogen generating method
WO2007010897A1 (en) * 2005-07-20 2007-01-25 Hitachi Maxell, Ltd. Hydrogen-generating material and process for producing hydrogen-generating material
JP2007045646A (en) * 2005-08-08 2007-02-22 Hitachi Maxell Ltd Hydrogen producing method and hydrogen producing apparatus
JP2007153667A (en) * 2005-12-05 2007-06-21 Saiseiko Kk Hydrogen generator and fuel cell
JP2007238383A (en) * 2006-03-09 2007-09-20 Nitto Denko Corp Hydrogen generator and hydrogen generating method
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP2008013431A (en) * 2006-07-05 2008-01-24 Rohm & Haas Co High temperature-stabilized borohydride formulation
KR100803076B1 (en) * 2006-06-21 2008-02-18 박정태 Composition for generating hydrogen gas, and hydrogen generator using the same
KR100803074B1 (en) 2007-03-20 2008-02-18 박정태 Composition for generating hydrogen gas, and apparatus for generating high purity hydrogen gas using thereof
EP1908729A1 (en) * 2005-08-11 2008-04-09 Hitachi Maxell, Ltd. Hydrogen-generating material and hydrogen generation apparatus
JP2008156159A (en) * 2006-12-22 2008-07-10 Equos Research Co Ltd Hydrogen generating apparatus and power generation system
JP2008273758A (en) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd Hydrogen generating material composition and hydrogen generating apparatus
WO2009028722A1 (en) * 2007-08-29 2009-03-05 Rubycon Corporation Portable hydrogen generation unit
JPWO2007052607A1 (en) * 2005-10-31 2009-04-30 日立マクセル株式会社 Hydrogen production apparatus and fuel cell system using the same
JP2009221097A (en) * 2008-02-22 2009-10-01 Hydro-Device Co Ltd Hydrogen generation material, communicated porous membrane, and hydrogen generation method
JP2009286676A (en) * 2008-05-30 2009-12-10 Panasonic Corp Hydrogen generation apparatus
JP2010110753A (en) * 2008-10-07 2010-05-20 Akira Haneda Manufacturing method of ceramic catalyst, hydrogen generation apparatus using ceramic catalyst and hydrogen using apparatus
US20110008216A1 (en) * 2008-02-27 2011-01-13 Hitachi Maxell, Ltd. Hydrogen generator
JP2011011968A (en) * 2009-07-06 2011-01-20 Pal Corporation:Kk Method for easily generating gaseous hydrogen and device therefor
US8137638B2 (en) 2005-03-18 2012-03-20 Tokyo Institute Of Technology Hydrogen generation apparatus, laser reduction apparatus, energy conversion apparatus, hydrogen generation method and electric power generation system
JP2013006734A (en) * 2011-06-24 2013-01-10 Kri Inc Hydrogen generating agent, and method for producing hydrogen
US8821834B2 (en) 2008-12-23 2014-09-02 Societe Bic Hydrogen generator with aerogel catalyst
EP2947046A4 (en) * 2013-01-17 2016-08-24 Hitachi Shipbuilding Eng Co Hydrogen production method
WO2017119840A1 (en) * 2016-01-05 2017-07-13 Myfc Ab Distribution of reactant solution in a fuel cartridge
JP6244056B1 (en) * 2017-08-31 2017-12-06 浩章 皆川 Hydrogen generator comprising calcium oxide powder and aluminum powder
KR101937706B1 (en) 2017-09-15 2019-04-11 한국에너지기술연구원 High temperature generating device
KR102051476B1 (en) 2018-06-11 2019-12-04 한국에너지기술연구원 Heat-rising apparatus of superheated steam
CN111410170A (en) * 2020-04-28 2020-07-14 江苏汉卓医疗科技有限公司 Composite material for generating hydrogen and application method and application device thereof
KR20200114278A (en) 2019-03-28 2020-10-07 한국에너지기술연구원 High-tmeperature steam generator with helical coiled heat exchanger
KR20200114280A (en) 2019-03-28 2020-10-07 한국에너지기술연구원 Decompression apparatus for superheated steam
KR20200114284A (en) 2019-03-28 2020-10-07 한국에너지기술연구원 Heat-rising apparatus of superheated steam
US11054130B2 (en) 2018-06-11 2021-07-06 Korea Institute Of Energy Research Apparatus for raising the temperature of superheated steam and ultra-high temperature steam generator

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771612B2 (en) 2004-08-30 2010-08-10 Nitto Denko Corporation Hydrogen generating composition
WO2006025511A1 (en) * 2004-08-30 2006-03-09 Nitto Denko Corporation Hydrogen generating composition
JP2006104017A (en) * 2004-10-05 2006-04-20 Nitto Denko Corp Hydrogen generation device and method
JP2006160545A (en) * 2004-12-03 2006-06-22 Seiko Instruments Inc Hydrogen producing device and fuel cell system
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
JP2008150289A (en) * 2005-01-07 2008-07-03 Hitachi Maxell Ltd Hydrogen generating material, cartridge for producing hydrogen, device for producing hydrogen, method for producing hydrogen and fuel cell system
US7883805B2 (en) 2005-01-07 2011-02-08 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
KR100837291B1 (en) * 2005-01-07 2008-06-11 히다치 막셀 가부시키가이샤 Hydrogen generating material, hydrogen generator and fuel cell
US8137638B2 (en) 2005-03-18 2012-03-20 Tokyo Institute Of Technology Hydrogen generation apparatus, laser reduction apparatus, energy conversion apparatus, hydrogen generation method and electric power generation system
US7695709B2 (en) 2005-03-25 2010-04-13 Hitachi Maxell, Ltd. Hydrogen generating material and method for producing the same, and method for producing hydrogen
EP1867603A1 (en) * 2005-03-25 2007-12-19 Hitachi Maxell, Ltd. Hydrogen generating material, method for producing same, and method for producing hydrogen
KR100870723B1 (en) * 2005-03-25 2008-11-27 히다치 막셀 가부시키가이샤 Hydrogen generating material, method for producing same, and method for producing hydrogen
EP1867603A4 (en) * 2005-03-25 2008-10-08 Hitachi Maxell Hydrogen generating material, method for producing same, and method for producing hydrogen
WO2006103959A1 (en) * 2005-03-25 2006-10-05 Hitachi Maxell, Ltd. Hydrogen generating material, method for producing same, and method for producing hydrogen
JP2007254256A (en) * 2005-04-28 2007-10-04 Hitachi Maxell Ltd Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP4537337B2 (en) * 2005-04-28 2010-09-01 日立マクセル株式会社 Hydrogen generating material, method for producing hydrogen generating material, method for producing hydrogen, hydrogen producing apparatus and fuel cell
JP2006335603A (en) * 2005-06-02 2006-12-14 Nitto Denko Corp Hydrogen generating agent and hydrogen generating method
KR100934740B1 (en) 2005-07-20 2009-12-30 히다치 막셀 가부시키가이샤 Hydrogen Generating Material and Manufacturing Method of Hydrogen Generating Material
WO2007010897A1 (en) * 2005-07-20 2007-01-25 Hitachi Maxell, Ltd. Hydrogen-generating material and process for producing hydrogen-generating material
US20090267023A1 (en) * 2005-07-20 2009-10-29 Takeshi Miki Hydrogen Generating Material and Method for Producing the Same
JPWO2007010897A1 (en) * 2005-07-20 2009-01-29 日立マクセル株式会社 Hydrogen generating material and method for producing hydrogen generating material
EP1905735A4 (en) * 2005-07-20 2008-09-17 Hitachi Maxell Hydrogen-generating material and process for producing hydrogen-generating material
JP4761248B2 (en) * 2005-07-20 2011-08-31 日立マクセルエナジー株式会社 Hydrogen generating material and method for producing hydrogen generating material
EP1905735A1 (en) * 2005-07-20 2008-04-02 Hitachi Maxell, Ltd. Hydrogen-generating material and process for producing hydrogen-generating material
JP2007045646A (en) * 2005-08-08 2007-02-22 Hitachi Maxell Ltd Hydrogen producing method and hydrogen producing apparatus
JP4574487B2 (en) * 2005-08-08 2010-11-04 日立マクセル株式会社 Hydrogen production method, hydrogen production apparatus and power supply
JPWO2007018244A1 (en) * 2005-08-11 2009-02-19 日立マクセル株式会社 Hydrogen generating material and hydrogen generating apparatus
EP1908729A4 (en) * 2005-08-11 2008-09-10 Hitachi Maxell Hydrogen-generating material and hydrogen generation apparatus
JP4947718B2 (en) * 2005-08-11 2012-06-06 日立マクセルエナジー株式会社 Hydrogen generating material and hydrogen generating apparatus
EP1908729A1 (en) * 2005-08-11 2008-04-09 Hitachi Maxell, Ltd. Hydrogen-generating material and hydrogen generation apparatus
KR100956669B1 (en) * 2005-08-11 2010-05-10 히다치 막셀 가부시키가이샤 Hydrogen-generating material and hydrogen generation apparatus
US8021793B2 (en) 2005-10-31 2011-09-20 Hitachi Maxell Energy, Ltd. Hydrogen producing apparatus and fuel cell system using the same
JPWO2007052607A1 (en) * 2005-10-31 2009-04-30 日立マクセル株式会社 Hydrogen production apparatus and fuel cell system using the same
JP4800319B2 (en) * 2005-10-31 2011-10-26 日立マクセルエナジー株式会社 Hydrogen production apparatus and fuel cell system using the same
JP2007153667A (en) * 2005-12-05 2007-06-21 Saiseiko Kk Hydrogen generator and fuel cell
JP2007238383A (en) * 2006-03-09 2007-09-20 Nitto Denko Corp Hydrogen generator and hydrogen generating method
KR100803076B1 (en) * 2006-06-21 2008-02-18 박정태 Composition for generating hydrogen gas, and hydrogen generator using the same
JP2008013431A (en) * 2006-07-05 2008-01-24 Rohm & Haas Co High temperature-stabilized borohydride formulation
JP2008156159A (en) * 2006-12-22 2008-07-10 Equos Research Co Ltd Hydrogen generating apparatus and power generation system
KR100803074B1 (en) 2007-03-20 2008-02-18 박정태 Composition for generating hydrogen gas, and apparatus for generating high purity hydrogen gas using thereof
AU2008227365B2 (en) * 2007-03-20 2010-08-05 Jung-Tae Park Apparatus for generating hydrogen gas using composition for generating hydrogen gas and composition for generating hydrogen gas
JP2010509170A (en) * 2007-03-20 2010-03-25 ジュンタエ パク Hydrogen generating apparatus using hydrogen generating composition and hydrogen generating composition
US9359199B2 (en) 2007-03-20 2016-06-07 Jung-Tae Park Apparatus for generating hydrogen gas using composition for generating hydrogen gas and composition for generating hydrogen gas
WO2008114951A1 (en) * 2007-03-20 2008-09-25 Jung-Tae Park Apparatus for generating hydrogen gas using composition for generating hydrogen gas and composition for generating hydrogen gas
JP2008273758A (en) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd Hydrogen generating material composition and hydrogen generating apparatus
JP5409367B2 (en) * 2007-08-29 2014-02-05 ルビコン株式会社 Portable hydrogen generation unit
WO2009028722A1 (en) * 2007-08-29 2009-03-05 Rubycon Corporation Portable hydrogen generation unit
JP2009221097A (en) * 2008-02-22 2009-10-01 Hydro-Device Co Ltd Hydrogen generation material, communicated porous membrane, and hydrogen generation method
US20110008216A1 (en) * 2008-02-27 2011-01-13 Hitachi Maxell, Ltd. Hydrogen generator
JPWO2009107779A1 (en) * 2008-02-27 2011-07-07 日立マクセル株式会社 Hydrogen generator
JP2009286676A (en) * 2008-05-30 2009-12-10 Panasonic Corp Hydrogen generation apparatus
JP2010110753A (en) * 2008-10-07 2010-05-20 Akira Haneda Manufacturing method of ceramic catalyst, hydrogen generation apparatus using ceramic catalyst and hydrogen using apparatus
US8821834B2 (en) 2008-12-23 2014-09-02 Societe Bic Hydrogen generator with aerogel catalyst
JP2011011968A (en) * 2009-07-06 2011-01-20 Pal Corporation:Kk Method for easily generating gaseous hydrogen and device therefor
JP2013006734A (en) * 2011-06-24 2013-01-10 Kri Inc Hydrogen generating agent, and method for producing hydrogen
EP2947046A4 (en) * 2013-01-17 2016-08-24 Hitachi Shipbuilding Eng Co Hydrogen production method
US9457334B2 (en) 2013-01-17 2016-10-04 Hitachi Zosen Corporation Hydrogen production process
WO2017119840A1 (en) * 2016-01-05 2017-07-13 Myfc Ab Distribution of reactant solution in a fuel cartridge
JP6244056B1 (en) * 2017-08-31 2017-12-06 浩章 皆川 Hydrogen generator comprising calcium oxide powder and aluminum powder
JP2019043791A (en) * 2017-08-31 2019-03-22 浩章 皆川 Hydrogen generating agent comprising calcium oxide powder and aluminum powder
KR101937706B1 (en) 2017-09-15 2019-04-11 한국에너지기술연구원 High temperature generating device
KR102051476B1 (en) 2018-06-11 2019-12-04 한국에너지기술연구원 Heat-rising apparatus of superheated steam
US11054130B2 (en) 2018-06-11 2021-07-06 Korea Institute Of Energy Research Apparatus for raising the temperature of superheated steam and ultra-high temperature steam generator
KR20200114278A (en) 2019-03-28 2020-10-07 한국에너지기술연구원 High-tmeperature steam generator with helical coiled heat exchanger
KR20200114280A (en) 2019-03-28 2020-10-07 한국에너지기술연구원 Decompression apparatus for superheated steam
KR20200114284A (en) 2019-03-28 2020-10-07 한국에너지기술연구원 Heat-rising apparatus of superheated steam
US11035393B2 (en) 2019-03-28 2021-06-15 Korea Institute Of Energy Research Decompression apparatus for superheated steam
CN111410170A (en) * 2020-04-28 2020-07-14 江苏汉卓医疗科技有限公司 Composite material for generating hydrogen and application method and application device thereof

Also Published As

Publication number Publication date
JP4276854B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4276854B2 (en) Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus
KR100803074B1 (en) Composition for generating hydrogen gas, and apparatus for generating high purity hydrogen gas using thereof
US8021793B2 (en) Hydrogen producing apparatus and fuel cell system using the same
CA2746895C (en) Hydrogen generator with aerogel catalyst
JPWO2009031578A1 (en) Hydrogen generating material composition, hydrogen generating material molded body, and method for producing hydrogen
WO2006073113A1 (en) Hydrogen generating material, hydrogen generator and fuel cell
JP2003313001A (en) Method and apparatus for producing hydrogen
ZA200605051B (en) Method and apparatus for generating oxygen
JP2016204177A (en) Hydrogen generating method and hydrogen generating device
JP2007326731A (en) Manufacturing method of hydrogen
JP2007326742A (en) Manufacturing method of hydrogen
JP2011121826A (en) Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
US20080090116A1 (en) Hydrogen producing apparatus, fuel cell system and electronic equipment
JP4762684B2 (en) Hydrogen generating material and hydrogen production method
US20110008216A1 (en) Hydrogen generator
KR100803076B1 (en) Composition for generating hydrogen gas, and hydrogen generator using the same
CN101296859A (en) Hydrogen production equipment and fuel cell system with the same
CN111788148B (en) Composition for generating hydrogen
JP2006143537A (en) Manufacturing method for tetrahydroborate
JP2010058992A (en) Apparatus for manufacturing hydrogen and fuel cell system
JP2010265137A (en) Method and apparatus for producing hydrogen
JP2008105926A (en) Hydrogen producing apparatus, fuel cell system and electronic apparatus
JP2010235391A (en) Method of producing hydrogen and apparatus of producing hydrogen
KR20180112781A (en) Distribution of reagent solution in fuel cartridge
JP2010058991A (en) Method and apparatus for manufacturing hydrogen and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4276854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term