JP2004174301A - Structure for making water high in hydrogen concentration - Google Patents

Structure for making water high in hydrogen concentration Download PDF

Info

Publication number
JP2004174301A
JP2004174301A JP2002340614A JP2002340614A JP2004174301A JP 2004174301 A JP2004174301 A JP 2004174301A JP 2002340614 A JP2002340614 A JP 2002340614A JP 2002340614 A JP2002340614 A JP 2002340614A JP 2004174301 A JP2004174301 A JP 2004174301A
Authority
JP
Japan
Prior art keywords
water
hydrogen concentration
magnesium
high hydrogen
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340614A
Other languages
Japanese (ja)
Other versions
JP3973152B2 (en
Inventor
Tomoko Akiyama
知子 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZENDAMA CLUB KK
Original Assignee
ZENDAMA CLUB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZENDAMA CLUB KK filed Critical ZENDAMA CLUB KK
Priority to JP2002340614A priority Critical patent/JP3973152B2/en
Priority to KR20030083701A priority patent/KR100567779B1/en
Publication of JP2004174301A publication Critical patent/JP2004174301A/en
Application granted granted Critical
Publication of JP3973152B2 publication Critical patent/JP3973152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple structure for making a water high in hydrogen concentration capable of ensuring a sufficient hydrogen concentration when used. <P>SOLUTION: A cloth bag 20 is put in a columnar container 10 which has a large number of holes 14 bored in its side surface, has an opening 28 provided to one end part thereof and closed at its other end part and a hydrogen concentrating agent 22 containing magnesium and tourmaline is housed in the bag to constitute the structure for making water high in hydrogen concentration. This structure for making a water high in hydrogen concentration is housed in a water container along with water and this container is shaken by the hand to produce hydrogen by the contact of water with magnesium. Since hydrogen is continuously produced so far as water is in contact with magnesium, high hydrogen-concentration water having a sufficient dissolved hydrogen concentration when used can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水中の溶存水素濃度を高くするための高水素濃度水製造用構造物の改良に関する。
【0002】
【従来の技術】
従来より、溶存水素濃度を高めた水を飲用に使用すると、人体内の活性酸素を減少でき、健康の維持増進に効果があることが知られている。また、溶存水素濃度が高く還元力のある水を使用して洗顔等を行うと、肌の汚れが落ちやすく、肌への水分補給を行いやすいので、肌の老化の抑制に効果があることも知られている。このような、水中の溶存水素濃度が高められた高水素濃度水を製造するための装置の例が、特許文献1に記載されている。
【0003】
【特許文献1】特開2002−301483
【0004】
【発明が解決しようとする課題】
しかし、上記従来例においては、水中に水素を吹き込むための特別の大がかりな装置が必要であり、家庭用、個人用の用途、特に携帯用途に適さないという問題があった。
【0005】
また、家庭用の電気分解式の装置等により製造した高水素濃度水をPET(ポリエチレンテレフタラート)ボトル等に詰めて、使用時まで保存しておくことも考えられるが、水素は非常に軽い気体なので短時間で水中から空気中に放散してしまい、使用時に十分な水素濃度を確保できないという問題もあった。
【0006】
本発明は、上記従来の課題に鑑みなされたものであり、その目的は、使用時に十分な水素濃度を確保できる簡易な高水素濃度水製造用構造物を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、高水素濃度水製造用構造物であって、側面に複数の穴があけられ、一方側の端部が開口し他方側の端部が閉じられた柱状容器と、頂部に少なくとも1つの穴があけられ、前記開口を覆う蓋と、前記柱状容器の中に収容された布製の袋と、前記布製の袋の中に収容され、水中の溶存水素濃度を高くするための高水素濃度化剤と、を備えることを特徴とする。
【0008】
上記構成によれば、柱状容器中に、布製の袋に収容された高水素濃度化剤を入れるので、水中で振ったときに布製の袋が振動に合わせて変形し、攪拌効果により水と高水素濃度化剤との接触が促進される。
【0009】
また、上記高水素濃度水製造用構造物において、前記高水素濃度化剤は、500mlの水に対して前記布製の袋の中に5g以上収容されていることを特徴とする。この高水素濃度化剤は、マグネシウムであることが好適である。さらに、この高水素濃度化剤は、トルマリンを含むことが好適である。
【0010】
上記各構成によれば、マグネシウムと水とが接触している限り十分な水素を常に発生でき、使用時に十分な水素濃度を容易に確保することができる。
【0011】
また、上記高水素濃度水製造用構造物において、前記柱状容器の中に収容された布製の袋の中には、トルマリン層とマグネシウム層とが存在し、前記トルマリン層が前記マグネシウム層より前記蓋から遠い位置に配置されていることを特徴とする。
【0012】
上記構成によれば、水中で柱状容器が蓋の側を上にして立つので、蓋の頂部の穴から発生した水素が抜けやすい。
【0013】
また、上記高水素濃度水製造用構造物は、同一形状のものが同時に2本以上使用されることを特徴とする。
【0014】
上記構成によれば、PETボトル等に入れて使用する際、水を飲むときにボトルの口から高水素濃度水製造用構造物が飛び出すことを防止できる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。
【0016】
図1には、本発明にかかる高水素濃度水製造用構造物の一実施形態の外形の斜視図が示される。図1において、高水素濃度水製造用構造物は、柱状容器10と柱状容器10の蓋12とを備えている。この柱状容器10は、円柱状、角柱状のいずれでもよい。また、柱状容器10の側面には、複数の穴14があけられており、一方側の端部が開口し他方側の端部が閉じられている。上記蓋12は、柱状容器10の開口を覆うように構成されており、その頂部には少なくとも1つの穴15があけられている。
【0017】
上記柱状容器10の中には、布製の袋と、この布製の袋に収容された水中の溶存水素濃度を高くするための高水素濃度化剤とが収容されている。図2(a)〜(g)には、柱状容器10の中に布製の袋と高水素濃度化剤とを収容して本実施形態にかかる高水素濃度水製造用構造物を組み立てる際の工程図が示される。
【0018】
図2(a)において、まず所定の大きさの矩形状の布16を用意する。この布16としては、オーガンジー等の薄くて織目の細かいものが好適である。また、布16の素材としては、ポリエステル等の化学繊維を使用することができる。
【0019】
次に、図2(b)に示されるように、上記布16を一辺に平行な中心線で2つに折り、破線18で示された位置で縫い合わせて一方の端部が開口した袋状にする。このように、袋状にした布16を中表にし、図2(c)に示されるような布製の袋20とする。
【0020】
次に、図2(d)に示されるように、上記布製の袋20の中に、水中の溶存水素濃度を高くするための高水素濃度化剤22を入れる。この高水素濃度化剤22としては、マグネシウムが好適である。また、高水素濃度化剤22には、トルマリン(電気石)を含むことが好適である。トルマリンは、水分子のクラスターを小さくする作用があり、飲用にされる水の味を向上させたり、肌につけたときの吸収を良くして肌への水分補給を容易にすることができるからである。マグネシウムとトルマリンとを布製の袋20の中に入れる場合は、最初にマグネシウムを入れ、次にトルマリンを入れる。これにより、布製の袋20の中には、マグネシウム層24とトルマリン層26とが分離して存在することになる。
【0021】
次に、図2(e)に示されるように、布製の袋20の中に高水素濃度化剤22が収容された状態で破線18の位置で縫い合わせ、布製の袋20の口を閉じる。このようにして口が閉じられた布製の袋20は、図2(f)に示されるように、閉じた口の方を下にして柱状容器10の開口28から柱状容器10の中に収容される。柱状容器10は、前述したように、一方側の端部に開口28が形成され、他方側の端部が閉じられているので、布製の袋20は閉じられた端部すなわち柱状容器10の底部30に接するまで柱状容器10の中に入れられる。
【0022】
次に、図2(g)に示されるように、柱状容器10の開口28を蓋12で覆い、本実施形態にかかる高水素濃度水製造用構造物とする。この際、蓋12の内径と柱状容器10の外形とをほぼ同じ値として、蓋12を柱状容器10に嵌め合わせ、開口28を覆った時に摩擦力により互いに外れない構成とするのが好適である。なお、蓋12の外形と柱状容器10の開口28の内径とをほぼ同じ値として、蓋12を開口28に押し込み、開口28に栓をした時に摩擦力により互いに外れない構成としてもよい。
【0023】
以上のようにして組み立てた本実施形態にかかる高水素濃度水製造用構造物を水の中に入れると、水がマグネシウムに接して水素が発生する。この発生した水素が水に溶け、水中の溶存水素濃度が高くなるので、高水素濃度水を製造することができる。このように、本実施形態にかかる高水素濃度水製造用構造物を水を入れた容器の中に入れ、必要に応じてその容器を手で振るだけで、容易に高水素濃度水を製造できる。また、水がマグネシウムに接している限り水素が発生し続けるので、飲用その他の用途に使用する時に十分な水素濃度の高水素濃度水を確保することができる。
【0024】
また、高水素濃度化剤22は布製の袋20の中に収容されているので、水中で本実施形態にかかる高水素濃度水製造用構造物を振ると、布製の袋20が振動に合わせて変形し、高水素濃度化剤22の攪拌効果が生じて高水素濃度化剤22と水との接触が促進されるという効果がある。これにより、水素の発生を促進することができる。
【0025】
上述した布製の袋20は、閉じた口の方を下にして柱状容器10に収容されているので、閉じた口に近い方のトルマリン層26がマグネシウム層24よりも柱状容器10の底部30に近くなり、トルマリン層26がマグネシウム層24よりも蓋12から遠くなる。ここで、マグネシウムは密度が1.74g/cmであるが、粒状または粉状のものは軽くて水に浮いてしまう。これに対して、トルマリンは、密度が3.0〜3.3g/cmであり、重いので水に沈む。したがって、上述のようにトルマリン層26をマグネシウム層24よりも蓋12から遠い位置に配置すると、本実施形態にかかる高水素濃度水製造用構造物を水の中に入れた場合、トルマリン層26に近い柱状容器10の底部30が下に沈み、蓋12の側が上になるように立った状態となる。このため、マグネシウムに水が触れて発生した水素が、蓋12の頂部に設けられた穴15から抜けやすくなる。
【0026】
なお、図2(d)に示されたように、マグネシウム層24とトルマリン層26とを分離して存在させずに、マグネシウムとトルマリンとを混合して布製の袋20に入れてもよい。この場合、前述のように、布製の袋20を柱状容器10の底部30に接するまで入れると、柱状容器10の蓋12の近傍に空間ができ、これによって柱状容器10の底部30側と蓋12側で比重差ができ、底部30側が重くなるので、水中で蓋12側を上にして高水素濃度水製造用構造物を立てることができる。
【0027】
図3には、高水素濃度化剤22として使用するマグネシウムの使用量と水の酸化還元電位及び残留塩素濃度との関係が示される。図3に示された結果は、図2(a)〜(g)に示された工程にしたがって、トルマリン9gとマグネシウムのそれぞれ1g、3g、5g、7gとを入れた布製の袋20を柱状容器10に収容して組み立てた高水素濃度水製造用構造物を通常の水道水500ml中に入れ、それぞれ手で10秒間振った後3分間放置して測定したものである。使用した水道水は、酸化還元電位が+620mvであり、残留塩素濃度が1.2ppm、pHは中性であった。この実測値が表1に示される。
【0028】
【表1】

Figure 2004174301
なお、本実測値の測定には、酸化還元電位計として、アメリカンマクリーンインク社製ピンポイントORPモニター酸化還元電位計を使用し、残留塩素濃度計として、タニタEW−500を使用した。この時の残留塩素測定試薬はオルトトリジンであった。また、pH(水素イオン指数)はフェノールフタレイン溶液を使用して測定した。
【0029】
上記表1及び図3からわかるように、マグネシウムの使用量を水500mlに対して5g以上とすると、酸化還元電位が急激に負の値となり、還元力の十分な水となる。これは、水がマグネシウムと接触して十分な量の水素が発生したためである。一方、マグネシウムの使用量が水500mlに対して5gより少ないと水素の発生量が不十分であるので酸化還元電位が大きな正の値のままであり、十分な還元力を得られなかった。さらに、マグネシウムの使用量を水500mlに対して5gより多くしても水の還元力に大きな向上はなかった。
【0030】
次に、水中の残留塩素濃度についても、マグネシウムの使用量を水500mlに対して5g以上とすると0.05ppmまで低下し、その際の水のpHもアルカリ性を示した。これは、水中の残留塩素がマグネシウムと反応して塩化マグネシウムとなってマグネシウム粒子の表面等に析出し、水中から除去されるからである。また、マグネシウムが水中に溶解することにより、ミネラルを含んだアルカリ性の水となり、飲料水等に使用すれば健康に良い影響を与えることができる。なお、マグネシウムの使用量が水500mlに対して5gより少ないと、残留塩素濃度が十分低くならず、pHも中性から弱アルカリ性に留まった。また、マグネシウムの使用量を水500mlに対して5gより多くしても残留塩素濃度、pHともに大きな変化はなかった。
【0031】
以上より、本発明にかかる高水素濃度水製造用構造物には、水500mlに対して5g以上のマグネシウムを使用することが好適であることがわかる。ただし、マグネシウムの量を多くすると、柱状容器10の大きさも大きくなり、飲料水の入ったPETボトル等に高水素濃度水製造用構造物を入れて携帯することが困難または不可能になる。このため、マグネシウムの使用量は水500mlに対して7g以下とすることが好適である。なお、このマグネシウムの使用量は、水の量に比例して増減させる。この場合、上限とした水500mlに対して7gの値は、下限である水500mlに対して5gの値以上であれば、使用する水の容器に応じて適宜変更できる。例えば、50ml程度の容量の容器に高水素濃度水を入れ、化粧水として使用する場合には、マグネシウムを2g程度使用した方が肌への吸収性の良い水を得ることができる。
【0032】
なお、高水素濃度化剤22として使用されるマグネシウムは、表面が酸化されやすく、また上述のように塩化マグネシウムも表面に付着する。このため、時間の経過とともに水素の発生量や残留塩素の除去効果が低くなる。しかし、これらの問題は、1ヶ月に1回程度クエン酸等で洗浄し、酸化膜、塩化マグネシウム等のマグネシウム粒子の表面付着物を除去することにより容易に解決できる。
【0033】
また、上述した例では、トルマリンを9g使用しているが、これは500ml程度の量の水のクラスターを小さくして水の味を良くし、また、身体への吸収性を向上させるために十分な量だからである。ただし、トルマリンも多く使用すると柱状容器10を大きくする必要があるため、水500mlに対して12g以下とすることが好適である。このトルマリンの使用量も、水及びマグネシウムの量に比例して増減させる。
【0034】
図4には、本実施形態にかかる高水素濃度水製造用構造物の使用例が示される。図4において、PETボトル、スプレー付ビン等の水容器32の中に、本実施形態にかかる高水素濃度水製造用構造物34が2本入れられている。この本数は2本以上であればよい。このように、水容器32に同一形状の高水素濃度水製造用構造物34を同時に2本以上使用するのは、もし1本であると、水容器32の口36を下にして水を飲む際に、高水素濃度水製造用構造物34が飛び出してきて、飲みにくく、また、危険でもあるからである。同一形状の高水素濃度水製造用構造物34を2本以上同時に使用すれば、水容器32の口36の手前の肩部38で互いに干渉し、口36から飛び出すことを防止できる。ただし、この本数を多くしすぎると取り扱いが不便となるので、2〜3本とするのが好適である。
【0035】
上記高水素濃度水製造用構造物34は、水容器32の口36から入れられるので、柱状容器10及び蓋12の外径は水容器32の口36の内径より小さくなっている。例えば、市販されている携帯用のPETボトルの口の内径は、約22mm程度であるので、柱状容器10及び蓋12の外径は19〜21mm程度とする。また、前述のように、柱状容器10には、マグネシウムを5〜7g、トルマリンを9〜12g入れる必要があるが、これらを上述のように2本に分けて入れるとすると、その内径を18〜20mm、長さを64〜66mmとするのが好適である。
【0036】
なお、高水素濃度水製造用構造物34を水容器32に入れるときには、水容器32の中に予め水を入れておいてもよいし、高水素濃度水製造用構造物34を入れた後で水を入れてもよい。水と高水素濃度水製造用構造物34を水容器32に入れた後、10秒程度手で振り、3分程度放置すれば、十分な溶存水素濃度を有し、アルカリ性で残留塩素濃度の低い高水素濃度水を得ることができる。また、マグネシウムが水と接している限り水素を発生し続けるので、使用時まで十分な水素濃度を確保することができる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、柱状容器中に、布製の袋に収容された高水素濃度化剤を入れるので、水中で振ったときに布製の袋が振動に合わせて変形し、攪拌効果により水と高水素濃度化剤との接触が促進される。
【0038】
また、マグネシウムと水との接触により十分な水素を常に発生でき、使用時に十分な水素濃度を容易に確保することができる。
【0039】
また、水中で柱状容器が蓋の側を上にして立つので、発生した水素が蓋の頂部の穴から抜けやすくできる。
【0040】
また、PETボトル等の水容器に入れて使用する際、水を飲むときに水容器の口から高水素濃度水製造用構造物が飛び出すことを防止できる。
【図面の簡単な説明】
【図1】本発明にかかる高水素濃度水製造用構造物の一実施形態の外形の斜視図である。
【図2】図1に示された実施形態にかかる高水素濃度水製造用構造物を組み立てる際の工程図である。
【図3】マグネシウムの使用量と水の酸化還元電位及び残留塩素濃度との関係を示す図である。
【図4】図1に示された実施形態にかかる高水素濃度水製造用構造物の使用例を示す図である。
【符号の説明】
10 柱状容器、12 蓋、14,15 穴、16 布、18 破線、
20 布製の袋、22 高水素濃度化剤、24 マグネシウム層、26 トルマリン層、28 開口、30 底部、32 水容器、34 高水素濃度水製造用構造物、36 口、38 肩部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a structure for producing high hydrogen concentration water for increasing the concentration of dissolved hydrogen in water.
[0002]
[Prior art]
BACKGROUND ART Conventionally, it has been known that use of water having an increased dissolved hydrogen concentration for drinking can reduce active oxygen in the human body and is effective in maintaining and promoting health. In addition, if the face is washed using water having a high concentration of dissolved hydrogen and reducing power, dirt on the skin is easily removed and hydration of the skin is easily performed, which may be effective in suppressing skin aging. Are known. An example of such an apparatus for producing high-hydrogen-concentration water in which the concentration of dissolved hydrogen in water is increased is described in Patent Document 1.
[0003]
[Patent Document 1] JP-A-2002-301483
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional example, a special large-scale device for blowing hydrogen into water is required, and there is a problem that it is not suitable for home use and personal use, particularly for portable use.
[0005]
It is also conceivable that high-hydrogen-concentration water produced by a household electrolyzer is packed in a PET (polyethylene terephthalate) bottle or the like and stored until use, but hydrogen is a very light gas. Therefore, there is a problem that the hydrogen is released from the water into the air in a short time, and a sufficient hydrogen concentration cannot be secured during use.
[0006]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a simple structure for producing high-hydrogen-concentration water that can ensure a sufficient hydrogen concentration during use.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a structure for producing high-hydrogen-concentration water, in which a plurality of holes are formed in a side surface, one end is opened, and the other end is closed. A column-shaped container, a lid having at least one hole formed in a top thereof, covering the opening, a cloth bag stored in the column-shaped container, and a dissolved hydrogen concentration in water stored in the cloth bag. And a high hydrogen concentration agent for increasing the hydrogen concentration.
[0008]
According to the above configuration, the high hydrogen concentration agent contained in the cloth bag is placed in the columnar container. Therefore, when shaken in water, the cloth bag is deformed in accordance with the vibration, and the water is mixed with water by the stirring effect. Contact with the hydrogen concentration agent is promoted.
[0009]
In the structure for producing a high hydrogen concentration water, the high hydrogen concentration agent is contained in the cloth bag in an amount of 5 g or more per 500 ml of water. This high hydrogen concentration agent is preferably magnesium. Further, the high hydrogen concentration agent preferably contains tourmaline.
[0010]
According to each of the above configurations, sufficient hydrogen can always be generated as long as magnesium and water are in contact, and a sufficient hydrogen concentration can be easily ensured during use.
[0011]
In the structure for producing high-hydrogen-concentration water, a tourmaline layer and a magnesium layer are present in a cloth bag housed in the columnar container, and the tourmaline layer is more closed than the magnesium layer in the lid. Characterized in that it is arranged at a position far from the camera.
[0012]
According to the above configuration, since the columnar container stands with the lid side up in water, hydrogen generated from the hole at the top of the lid is easily released.
[0013]
The structure for producing high hydrogen concentration water is characterized in that two or more structures having the same shape are used at the same time.
[0014]
According to the above configuration, when used in a PET bottle or the like, it is possible to prevent the structure for producing high hydrogen concentration water from jumping out of the mouth of the bottle when drinking water.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter, referred to as embodiments) will be described with reference to the drawings.
[0016]
FIG. 1 is a perspective view of the outer shape of one embodiment of a structure for producing high hydrogen concentration water according to the present invention. In FIG. 1, the structure for producing high hydrogen concentration water includes a columnar container 10 and a lid 12 of the columnar container 10. The columnar container 10 may have a columnar shape or a prismatic shape. Further, a plurality of holes 14 are formed in the side surface of the columnar container 10, and one end is open and the other end is closed. The lid 12 is configured to cover the opening of the columnar container 10, and has at least one hole 15 at the top.
[0017]
The columnar container 10 contains a cloth bag and a high hydrogen concentration agent for increasing the concentration of dissolved hydrogen in water contained in the cloth bag. FIGS. 2A to 2G show steps of assembling the structure for producing high hydrogen concentration water according to the present embodiment by storing a cloth bag and a high hydrogen concentration agent in the columnar container 10. The figure is shown.
[0018]
In FIG. 2A, first, a rectangular cloth 16 having a predetermined size is prepared. The cloth 16 is preferably a thin and fine-textured cloth such as organdy. Further, as a material of the cloth 16, a chemical fiber such as polyester can be used.
[0019]
Next, as shown in FIG. 2B, the cloth 16 is folded in two at a center line parallel to one side and stitched at a position indicated by a broken line 18 to form a bag with one end opened. I do. In this manner, the bag-shaped cloth 16 is set in the middle, and a cloth bag 20 as shown in FIG.
[0020]
Next, as shown in FIG. 2D, a high hydrogen concentration agent 22 for increasing the concentration of dissolved hydrogen in water is put in the cloth bag 20. As the high hydrogen concentration agent 22, magnesium is preferable. Further, the high hydrogen concentration agent 22 preferably contains tourmaline (tourmaline). Tourmaline has the effect of reducing clusters of water molecules, improving the taste of drinking water and improving absorption when applied to the skin to facilitate hydration of the skin. is there. When magnesium and tourmaline are put in the cloth bag 20, magnesium is put first, and then tourmaline is put. Thereby, the magnesium layer 24 and the tourmaline layer 26 are present separately in the cloth bag 20.
[0021]
Next, as shown in FIG. 2E, the cloth bag 20 is sewn at a position indicated by a broken line 18 in a state where the high hydrogen concentration agent 22 is contained in the cloth bag 20, and the mouth of the cloth bag 20 is closed. As shown in FIG. 2 (f), the cloth bag 20 whose mouth is closed in this way is accommodated in the pillar-shaped container 10 through the opening 28 of the pillar-shaped container 10 with the closed mouth facing down. You. As described above, since the opening 28 is formed at one end of the columnar container 10 and the other end is closed, the cloth bag 20 is closed at the closed end, that is, the bottom of the columnar container 10. It is put in the columnar container 10 until it touches 30.
[0022]
Next, as shown in FIG. 2G, the opening 28 of the columnar container 10 is covered with the lid 12 to obtain a structure for producing high hydrogen concentration water according to the present embodiment. At this time, it is preferable that the inner diameter of the lid 12 and the outer shape of the columnar container 10 are set to substantially the same value, and the lid 12 is fitted to the columnar container 10 so that the lid 12 does not come off from each other due to frictional force when the opening 28 is covered. . The outer shape of the lid 12 and the inner diameter of the opening 28 of the columnar container 10 may be set to substantially the same value, and the lid 12 may be pushed into the opening 28 so as not to come off from each other due to frictional force when the opening 28 is plugged.
[0023]
When the structure for producing high-hydrogen-concentration water according to the present embodiment assembled as described above is put into water, the water comes into contact with magnesium to generate hydrogen. The generated hydrogen is dissolved in water, and the concentration of dissolved hydrogen in the water increases, so that high hydrogen concentration water can be produced. As described above, the structure for producing high-hydrogen-concentration water according to the present embodiment is placed in a container containing water, and if necessary, the container is shaken by hand, whereby high-concentration water can be easily produced. . In addition, since hydrogen is continuously generated as long as water is in contact with magnesium, high hydrogen concentration water having a sufficient hydrogen concentration can be secured when used for drinking or other uses.
[0024]
In addition, since the high hydrogen concentration agent 22 is contained in the cloth bag 20, when the structure for producing high hydrogen concentration water according to the present embodiment is shaken in water, the cloth bag 20 moves in accordance with the vibration. It is deformed, and there is an effect that the stirring effect of the high hydrogen concentration agent 22 is generated and the contact between the high hydrogen concentration agent 22 and water is promoted. Thereby, generation of hydrogen can be promoted.
[0025]
Since the cloth bag 20 described above is accommodated in the columnar container 10 with the closed mouth facing down, the tourmaline layer 26 closer to the closed mouth is closer to the bottom 30 of the columnar container 10 than the magnesium layer 24. And the tourmaline layer 26 is farther from the lid 12 than the magnesium layer 24. Here, magnesium has a density of 1.74 g / cm 3 , but particles or powders are light and float on water. In contrast, tourmaline has a density of 3.0 to 3.3 g / cm 3 and is heavy and sinks in water. Therefore, when the tourmaline layer 26 is disposed at a position farther from the lid 12 than the magnesium layer 24 as described above, when the structure for producing high hydrogen concentration water according to the present embodiment is put in water, The bottom portion 30 of the nearby columnar container 10 sinks down, and the lid 12 stands up with the side of the lid 12 facing upward. For this reason, hydrogen generated by contact of magnesium with water is easily released from the hole 15 provided at the top of the lid 12.
[0026]
As shown in FIG. 2D, magnesium and tourmaline may be mixed and put in the cloth bag 20 without separating the magnesium layer 24 and the tourmaline layer 26. In this case, as described above, when the cloth bag 20 is inserted until it comes into contact with the bottom 30 of the columnar container 10, a space is created near the lid 12 of the columnar container 10. Since the specific gravity difference is generated on the side and the bottom 30 side is heavier, the structure for producing high hydrogen concentration water can be erected in water with the lid 12 side up.
[0027]
FIG. 3 shows the relationship between the amount of magnesium used as the high hydrogen concentration agent 22 and the oxidation-reduction potential of water and the residual chlorine concentration. The result shown in FIG. 3 is based on the steps shown in FIGS. 2A to 2G. According to the steps shown in FIGS. 2A to 2G, a cloth bag 20 containing 9 g of tourmaline and 1 g, 3 g, 5 g, and 7 g of magnesium respectively is placed in a columnar container The structure for producing a high hydrogen concentration water housed and assembled in No. 10 was placed in 500 ml of ordinary tap water, shaken by hand for 10 seconds, and then left for 3 minutes for measurement. The tap water used had an oxidation-reduction potential of +620 mv, a residual chlorine concentration of 1.2 ppm, and a neutral pH. Table 1 shows the measured values.
[0028]
[Table 1]
Figure 2004174301
In the measurement of the actual measurement value, a pinpoint ORP monitor oxidation-reduction potentiometer manufactured by American McLean Inc. was used as an oxidation-reduction potentiometer, and Tanita EW-500 was used as a residual chlorine concentration meter. The reagent for measuring residual chlorine at this time was ortho-tolidine. The pH (hydrogen ion index) was measured using a phenolphthalein solution.
[0029]
As can be seen from Table 1 and FIG. 3, when the amount of magnesium used is 5 g or more with respect to 500 ml of water, the oxidation-reduction potential rapidly becomes a negative value, and the water has sufficient reducing power. This is because a sufficient amount of hydrogen was generated by contact of water with magnesium. On the other hand, if the amount of magnesium used is less than 5 g per 500 ml of water, the amount of generated hydrogen is insufficient, so that the oxidation-reduction potential remains at a large positive value, and sufficient reducing power cannot be obtained. Furthermore, even if the amount of magnesium used was more than 5 g per 500 ml of water, there was no significant improvement in the reducing power of water.
[0030]
Next, the concentration of residual chlorine in water was reduced to 0.05 ppm when the amount of magnesium used was 5 g or more with respect to 500 ml of water, and the pH of the water at that time also showed alkalinity. This is because residual chlorine in the water reacts with magnesium to form magnesium chloride, which precipitates on the surface of the magnesium particles and is removed from the water. Further, when magnesium is dissolved in water, the water becomes alkaline water containing minerals, and if used in drinking water or the like, it can have a favorable effect on health. If the amount of magnesium used was less than 5 g per 500 ml of water, the residual chlorine concentration was not sufficiently reduced, and the pH remained neutral to weakly alkaline. Even when the amount of magnesium used was more than 5 g per 500 ml of water, there was no significant change in the residual chlorine concentration and pH.
[0031]
From the above, it is understood that it is preferable to use 5 g or more of magnesium for 500 ml of water in the structure for producing high hydrogen concentration water according to the present invention. However, when the amount of magnesium is increased, the size of the columnar container 10 is also increased, and it is difficult or impossible to carry the high hydrogen concentration water producing structure in a PET bottle or the like containing drinking water. Therefore, it is preferable that the amount of magnesium used is 7 g or less per 500 ml of water. The amount of magnesium used is increased or decreased in proportion to the amount of water. In this case, the value of 7 g with respect to 500 ml of water as the upper limit can be appropriately changed according to the container of water to be used, as long as the value is 5 g or more with respect to 500 ml of water as the lower limit. For example, when high-hydrogen-concentration water is placed in a container having a capacity of about 50 ml and used as a lotion, it is preferable to use about 2 g of magnesium to obtain water with good absorbability to the skin.
[0032]
The surface of magnesium used as the high hydrogen concentration agent 22 is easily oxidized, and magnesium chloride also adheres to the surface as described above. For this reason, the amount of generated hydrogen and the effect of removing residual chlorine decrease with time. However, these problems can be easily solved by washing with citric acid or the like about once a month to remove oxide film and surface deposits of magnesium particles such as magnesium chloride.
[0033]
In the above example, 9 g of tourmaline is used, which is enough to reduce the cluster of water of about 500 ml to improve the taste of the water and to improve the absorption to the body. Because it is a large amount. However, if a large amount of tourmaline is used, it is necessary to make the columnar container 10 large. The amount of tourmaline used is also increased or decreased in proportion to the amounts of water and magnesium.
[0034]
FIG. 4 shows an example of using the structure for producing high hydrogen concentration water according to the present embodiment. In FIG. 4, two structures 34 for producing high hydrogen concentration water according to the present embodiment are placed in a water container 32 such as a PET bottle or a spray bottle. The number may be two or more. As described above, when two or more structures 34 for producing high-hydrogen-concentration water having the same shape are simultaneously used in the water container 32, if only one structure is used, the mouth 36 of the water container 32 is turned down to drink water. At that time, the structure 34 for producing high-hydrogen-concentration water pops out, making it difficult to drink and dangerous. When two or more structures 34 for producing high-hydrogen-concentration water having the same shape are used at the same time, they can interfere with each other at the shoulder 38 in front of the opening 36 of the water container 32 and can be prevented from jumping out of the opening 36. However, if the number is too large, handling becomes inconvenient. Therefore, it is preferable to set the number to two or three.
[0035]
Since the structure 34 for producing high-hydrogen-concentration water is inserted through the opening 36 of the water container 32, the outer diameters of the columnar container 10 and the lid 12 are smaller than the inner diameter of the opening 36 of the water container 32. For example, since the inner diameter of the mouth of a commercially available portable PET bottle is about 22 mm, the outer diameters of the columnar container 10 and the lid 12 are about 19 to 21 mm. Further, as described above, it is necessary to put 5 to 7 g of magnesium and 9 to 12 g of tourmaline in the columnar container 10, but if these are divided into two as described above, the inner diameter is 18 to Preferably, the length is 20 mm and the length is 64 to 66 mm.
[0036]
When the structure 34 for producing high hydrogen concentration water is placed in the water container 32, water may be previously placed in the water container 32, or after the structure 34 for producing high hydrogen concentration water is placed. May be filled with water. After the water and the structure 34 for high hydrogen concentration water production are put into the water container 32 and shaken by hand for about 10 seconds and allowed to stand for about 3 minutes, it has a sufficient dissolved hydrogen concentration, is alkaline, and has a low residual chlorine concentration. High hydrogen concentration water can be obtained. In addition, since hydrogen is continuously generated as long as magnesium is in contact with water, a sufficient hydrogen concentration can be ensured until use.
[0037]
【The invention's effect】
As described above, according to the present invention, since the high hydrogen concentration agent contained in the cloth bag is put in the columnar container, the cloth bag is deformed in accordance with the vibration when shaken in water, The contact between water and the high hydrogen concentration agent is promoted by the stirring effect.
[0038]
In addition, sufficient hydrogen can always be generated by contact between magnesium and water, and a sufficient hydrogen concentration can be easily ensured during use.
[0039]
In addition, since the columnar container stands with the side of the lid facing upward in water, the generated hydrogen can easily escape from the hole at the top of the lid.
[0040]
Further, when used in a water container such as a PET bottle or the like, it is possible to prevent the structure for producing high hydrogen concentration water from jumping out of the mouth of the water container when drinking water.
[Brief description of the drawings]
FIG. 1 is a perspective view of the outer shape of an embodiment of a structure for producing high hydrogen concentration water according to the present invention.
FIG. 2 is a process chart when assembling the structure for producing high hydrogen concentration water according to the embodiment shown in FIG. 1;
FIG. 3 is a graph showing the relationship between the amount of magnesium used, the oxidation-reduction potential of water, and the concentration of residual chlorine.
FIG. 4 is a view showing an example of use of the structure for producing high hydrogen concentration water according to the embodiment shown in FIG. 1;
[Explanation of symbols]
10 pillar container, 12 lids, 14, 15 holes, 16 cloths, 18 broken lines,
20 cloth bag, 22 high hydrogen concentration agent, 24 magnesium layer, 26 tourmaline layer, 28 opening, 30 bottom, 32 water container, 34 structure for producing high hydrogen concentration water, 36 ports, 38 shoulder.

Claims (6)

側面に複数の穴があけられ、一方側の端部が開口し他方側の端部が閉じられた柱状容器と、
頂部に少なくとも1つの穴があけられ、前記開口を覆う蓋と、
前記柱状容器の中に収容された布製の袋と、
前記布製の袋の中に収容され、水中の溶存水素濃度を高くするための高水素濃度化剤と、
を備えることを特徴とする高水素濃度水製造用構造物。
A plurality of holes are drilled on the side, a columnar container with one end open and the other end closed,
A lid having at least one hole in the top and covering the opening;
A cloth bag stored in the columnar container,
Stored in the fabric bag, a high hydrogen concentration agent for increasing the dissolved hydrogen concentration in water,
A structure for producing high hydrogen concentration water, comprising:
請求項1記載の高水素濃度水製造用構造物において、前記高水素濃度化剤は、500mlの水に対して前記布製の袋の中に5g以上収容されていることを特徴とする高水素濃度水製造用構造物。The structure for producing high hydrogen concentration water according to claim 1, wherein the high hydrogen concentration agent is contained in the cloth bag in an amount of 5 g or more per 500 ml of water. Structure for water production. 請求項1または請求項2記載の高水素濃度水製造用構造物において、前記高水素濃度化剤はマグネシウムであることを特徴とする高水素濃度水製造用構造物。The structure for producing high hydrogen concentration water according to claim 1 or 2, wherein the high hydrogen concentration agent is magnesium. 請求項3記載の高水素濃度水製造用構造物において、前記高水素濃度化剤はトルマリンを含むことを特徴とする高水素濃度水製造用構造物。The structure for producing high hydrogen concentration water according to claim 3, wherein the high hydrogen concentration agent comprises tourmaline. 請求項4記載の高水素濃度水製造用構造物において、前記柱状容器の中に収容された布製の袋の中には、トルマリン層とマグネシウム層とが存在し、前記トルマリン層が前記マグネシウム層より前記蓋から遠い位置に配置されていることを特徴とする高水素濃度水製造用構造物。In the structure for producing high-hydrogen-concentration water according to claim 4, a tourmaline layer and a magnesium layer are present in the cloth bag accommodated in the columnar container, and the tourmaline layer is more than the magnesium layer. A structure for producing high hydrogen concentration water, wherein the structure is arranged at a position far from the lid. 請求項1から請求項5のいずれか一項記載の高水素濃度水製造用構造物は、同一形状のものが同時に2本以上使用されることを特徴とする高水素濃度水製造用構造物。The high hydrogen concentration water producing structure according to any one of claims 1 to 5, wherein two or more structures having the same shape are used at the same time.
JP2002340614A 2002-11-25 2002-11-25 Structure for producing high hydrogen concentration water Expired - Fee Related JP3973152B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002340614A JP3973152B2 (en) 2002-11-25 2002-11-25 Structure for producing high hydrogen concentration water
KR20030083701A KR100567779B1 (en) 2002-11-25 2003-11-24 Structure for manufacturing water in high concentration of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340614A JP3973152B2 (en) 2002-11-25 2002-11-25 Structure for producing high hydrogen concentration water

Publications (2)

Publication Number Publication Date
JP2004174301A true JP2004174301A (en) 2004-06-24
JP3973152B2 JP3973152B2 (en) 2007-09-12

Family

ID=32703183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340614A Expired - Fee Related JP3973152B2 (en) 2002-11-25 2002-11-25 Structure for producing high hydrogen concentration water

Country Status (2)

Country Link
JP (1) JP3973152B2 (en)
KR (1) KR100567779B1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322020A (en) * 2003-04-28 2004-11-18 Norimi Okada Simple hydrogen water generation implement
WO2006008997A1 (en) * 2004-07-23 2006-01-26 Nagata, Shoji Process for producing reduced water with use of natural ore
WO2006098003A1 (en) * 2005-03-15 2006-09-21 The Zendama Club Company, Ltd. Structure for producing water containing hydrogen at high concentration
JP2006281119A (en) * 2005-04-01 2006-10-19 Hidemitsu Hayashi Hydrogen-rich water generating method and hydrogen-rich water generator
WO2007021034A1 (en) * 2005-08-19 2007-02-22 Shigeo Ohta Scavenger of harmful active oxygen and/or free radical in living body
JP2007153861A (en) * 2005-12-02 2007-06-21 Mitsuo Kuwano Implement for vanishing cancer or the like using active hydrogen
JP2007167696A (en) * 2005-11-22 2007-07-05 Hidemitsu Hayashi Method and material for modifying drinking water
JP2009131825A (en) * 2007-11-01 2009-06-18 Security:Kk Reduced-water making catalyst and reduced-water making container
CN101899671A (en) * 2009-05-28 2010-12-01 深井利春 Method for preparing hydrogen
JP2011011968A (en) * 2009-07-06 2011-01-20 Pal Corporation:Kk Method for easily generating gaseous hydrogen and device therefor
JP4652479B1 (en) * 2010-07-14 2011-03-16 ミズ株式会社 Selective hydrogenation device for biological fluids
US20120263629A1 (en) * 2010-10-25 2012-10-18 Fumitake Satoh Selective hydrogen adding equipment for living organism applicable fluid
US20140010483A1 (en) * 2012-07-06 2014-01-09 Kyowa Co., Ltd. Sealing Bag for Hydrogen Gas, and Method for Dissolving Hydrogen Gas
JP2014016088A (en) * 2012-07-09 2014-01-30 Yukio Hirose Active hydrogen containing ice
WO2017183262A1 (en) * 2016-04-21 2017-10-26 株式会社光未来 Method for forming hydrogen foam, and tool for forming hydrogen foam
JP2018202378A (en) * 2017-06-09 2018-12-27 エコモ・インターナショナル株式会社 Hydrogen gas generating apparatus
JP2019187588A (en) * 2018-04-20 2019-10-31 永井 陽子 Portable hydrogen gas suction system
US11111141B1 (en) 2019-12-08 2021-09-07 Ltag Systems Llc Storing activated aluminum
US11148947B1 (en) * 2020-02-15 2021-10-19 Ltag Systems Llc Controlling hydrogen production from water-reactive aluminum
US11312466B1 (en) 2020-09-14 2022-04-26 Ltag Systems Llc Inflatable structure deployment
US11318437B1 (en) 2020-04-28 2022-05-03 Ltag Systems Llc Controlling contamination in hydrogen production from water-reactive aluminum
US11332366B2 (en) 2020-08-09 2022-05-17 Ltag Systems Llc Controlling reactability of water-reactive aluminum
US11958585B1 (en) 2020-11-25 2024-04-16 Ltag Systems Llc Midair deployment of aerostats
US11964748B1 (en) 2022-01-27 2024-04-23 Ltag Systems Llc Remote generation of lifting gas

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322020A (en) * 2003-04-28 2004-11-18 Norimi Okada Simple hydrogen water generation implement
WO2006008997A1 (en) * 2004-07-23 2006-01-26 Nagata, Shoji Process for producing reduced water with use of natural ore
JPWO2006008997A1 (en) * 2004-07-23 2008-05-01 永田 正助 Method for producing reduced water using natural ore
WO2006098003A1 (en) * 2005-03-15 2006-09-21 The Zendama Club Company, Ltd. Structure for producing water containing hydrogen at high concentration
JP4642530B2 (en) * 2005-04-01 2011-03-02 秀光 林 Hydrogen-rich water production method and hydrogen-rich water generator
JP2006281119A (en) * 2005-04-01 2006-10-19 Hidemitsu Hayashi Hydrogen-rich water generating method and hydrogen-rich water generator
WO2007021034A1 (en) * 2005-08-19 2007-02-22 Shigeo Ohta Scavenger of harmful active oxygen and/or free radical in living body
US9050278B2 (en) 2005-08-19 2015-06-09 Shigeo Ohta Scavenger of in vivo harmful reactive oxygen species and/or free radicals
JP5106110B2 (en) * 2005-08-19 2012-12-26 成男 太田 Remove harmful active oxygen and / or free radicals in vivo
JP2007167696A (en) * 2005-11-22 2007-07-05 Hidemitsu Hayashi Method and material for modifying drinking water
JP2007153861A (en) * 2005-12-02 2007-06-21 Mitsuo Kuwano Implement for vanishing cancer or the like using active hydrogen
JP2009131825A (en) * 2007-11-01 2009-06-18 Security:Kk Reduced-water making catalyst and reduced-water making container
CN101899671A (en) * 2009-05-28 2010-12-01 深井利春 Method for preparing hydrogen
JP2011011968A (en) * 2009-07-06 2011-01-20 Pal Corporation:Kk Method for easily generating gaseous hydrogen and device therefor
JP4652479B1 (en) * 2010-07-14 2011-03-16 ミズ株式会社 Selective hydrogenation device for biological fluids
JP2012020962A (en) * 2010-07-14 2012-02-02 Mizu Kk Device for selectively hydrogenating biocompatible solution
US20130112600A1 (en) * 2010-07-14 2013-05-09 Miz Co. Ltd. Selective hydrogen adding equipment for living organism applicable fluid
US9108871B2 (en) * 2010-07-14 2015-08-18 Miz Co. Ltd. Selective hydrogen adding equipment for living organism applicable fluid
US20120263629A1 (en) * 2010-10-25 2012-10-18 Fumitake Satoh Selective hydrogen adding equipment for living organism applicable fluid
US9120672B2 (en) * 2010-10-25 2015-09-01 Miz Co., Ltd. Selective hydrogen adding equipment for living organism applicable fluid
US20140010483A1 (en) * 2012-07-06 2014-01-09 Kyowa Co., Ltd. Sealing Bag for Hydrogen Gas, and Method for Dissolving Hydrogen Gas
US10023360B2 (en) * 2012-07-06 2018-07-17 Hirakimirai Co. Ltd. Sealing bag for hydrogen gas, and method for dissolving hydrogen gas
JP2014016088A (en) * 2012-07-09 2014-01-30 Yukio Hirose Active hydrogen containing ice
WO2017183262A1 (en) * 2016-04-21 2017-10-26 株式会社光未来 Method for forming hydrogen foam, and tool for forming hydrogen foam
JPWO2017183262A1 (en) * 2016-04-21 2019-03-28 株式会社光未来 Hydrogen bubble forming method and hydrogen bubble forming device
JP2018202378A (en) * 2017-06-09 2018-12-27 エコモ・インターナショナル株式会社 Hydrogen gas generating apparatus
JP7054500B2 (en) 2017-06-09 2022-04-14 J.E.A株式会社 Hydrogen gas generator
JP2019187588A (en) * 2018-04-20 2019-10-31 永井 陽子 Portable hydrogen gas suction system
JP7105599B2 (en) 2018-04-20 2022-07-25 永井 陽子 portable hydrogen gas suction system
US11111141B1 (en) 2019-12-08 2021-09-07 Ltag Systems Llc Storing activated aluminum
US11148947B1 (en) * 2020-02-15 2021-10-19 Ltag Systems Llc Controlling hydrogen production from water-reactive aluminum
US11318437B1 (en) 2020-04-28 2022-05-03 Ltag Systems Llc Controlling contamination in hydrogen production from water-reactive aluminum
US11772062B1 (en) 2020-04-28 2023-10-03 Ltag Systems, Llc Controlling contamination in hydrogen production from water-reactive aluminum
US11332366B2 (en) 2020-08-09 2022-05-17 Ltag Systems Llc Controlling reactability of water-reactive aluminum
US11840451B2 (en) 2020-08-09 2023-12-12 Ltag Systems Llc Controlling reactabtlity of water-reactive aluminum
US11312466B1 (en) 2020-09-14 2022-04-26 Ltag Systems Llc Inflatable structure deployment
US11738849B1 (en) 2020-09-14 2023-08-29 Ltag Systems, Llc Inflatable structure deployment
US11958585B1 (en) 2020-11-25 2024-04-16 Ltag Systems Llc Midair deployment of aerostats
US11964748B1 (en) 2022-01-27 2024-04-23 Ltag Systems Llc Remote generation of lifting gas

Also Published As

Publication number Publication date
KR100567779B1 (en) 2006-04-05
JP3973152B2 (en) 2007-09-12
KR20040045378A (en) 2004-06-01

Similar Documents

Publication Publication Date Title
JP2004174301A (en) Structure for making water high in hydrogen concentration
JP5474242B1 (en) Pouch container storing drinks and exterior sheet material thereof
US20070221556A1 (en) Container for Reducing alkaline Water
JP6330156B2 (en) Hydrogen generator and hydrogen generation vessel
CN102317214B (en) Method for producing active hydrogen-dissolved water and apparatus for producing active hydrogen-dissolved water
KR101165197B1 (en) Device for selectively hydrogenating biocompatible solution
JP3164934U (en) Hydrogen gas generator
WO2018047958A1 (en) Hydrogen generator for beverages
CN206354817U (en) A kind of hydrogen-rich cup
WO2006098003A1 (en) Structure for producing water containing hydrogen at high concentration
WO2019130598A1 (en) Hydrogen gas generating body
KR20060051562A (en) Vessel having a material for making alkali-water and mineral-water
JP2015058423A (en) Ozone water generator
JP2015042397A (en) Ozone water generator
JP2007301522A (en) Oxygen-enriched water producing vessel
US5948399A (en) Aqua ammonia production by desorption
JP6480802B2 (en) Hydrogen generator container and hydrogen water generation set
KR101301904B1 (en) A liquid vessel
CN201746373U (en) Hand-held activation water purifier
CN214387056U (en) Hydrogen water cup
JP5837949B2 (en) Method for producing active hydrogen-dissolved water and its production tool
CN210945193U (en) Salt water treatment device
JP2018202378A (en) Hydrogen gas generating apparatus
JP2017047364A (en) Hydrogen water generation device, and hydrogen water generator including hydrogen water generating device
JP3044879U (en) Bathtub water purification equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070608

R150 Certificate of patent or registration of utility model

Ref document number: 3973152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees