JP2011009716A - Method of manufacturing substrate for light emitting element mounting - Google Patents

Method of manufacturing substrate for light emitting element mounting Download PDF

Info

Publication number
JP2011009716A
JP2011009716A JP2010112431A JP2010112431A JP2011009716A JP 2011009716 A JP2011009716 A JP 2011009716A JP 2010112431 A JP2010112431 A JP 2010112431A JP 2010112431 A JP2010112431 A JP 2010112431A JP 2011009716 A JP2011009716 A JP 2011009716A
Authority
JP
Japan
Prior art keywords
metal
substrate
emitting element
light emitting
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010112431A
Other languages
Japanese (ja)
Other versions
JP5479214B2 (en
Inventor
Eiji Yoshimura
栄二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKA AGSP KK
Original Assignee
DENKA AGSP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKA AGSP KK filed Critical DENKA AGSP KK
Priority to JP2010112431A priority Critical patent/JP5479214B2/en
Publication of JP2011009716A publication Critical patent/JP2011009716A/en
Application granted granted Critical
Publication of JP5479214B2 publication Critical patent/JP5479214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a substrate for light emitting element mounting such that when at least an insulating layer is laminated on a substrate having a projection part for a light emitting element mounting position, the projection part is easily exposed and there is neither a problem of positioning nor a problem of precision of opening processing.SOLUTION: The method of manufacturing the substrate for light emitting element mounting includes: a projection part forming step of forming the projection part on a surface of the substrate; a laminating step of laminating at least the insulating layer on the surface of the substrate not at the position where the projection part is formed on the surface; and a removing step of removing an excessive part of the insulating layer which protrudes from a projection end of the projection part.

Description

本発明は、発光ダイオードチップなどの発光素子を基板の表面に搭載するための発光素子搭載用基板の製造方法に関する。本発明により製造された発光素子搭載用基板は、特に小電力の軽薄型照明装置の発光板等として有用である。   The present invention relates to a method for manufacturing a light emitting element mounting substrate for mounting a light emitting element such as a light emitting diode chip on the surface of the substrate. The substrate for mounting a light-emitting element manufactured according to the present invention is particularly useful as a light-emitting plate or the like for a low-power light and thin lighting device.

従来、発光素子を基板の表面に搭載するための発光素子搭載用基板の製造方法として特許文献1が知られている。特許文献1の発光素子搭載用基板の製造方法は、金属基板に積層された表面金属層を選択的にエッチングして発光素子の搭載位置に金属凸部を形成する工程と、その金属凸部の上面と略面一に平坦な絶縁層を形成する工程と、その金属凸部の上面に放熱用パターンを形成しつつその放熱用パターンの近傍に電極部を有する給電用パターンを同時形成する工程と、を含む。この電極部を形成するための金属層を絶縁層と一体に形成する方法として、樹脂付き銅箔をプレス面により加熱プレスして、金属凸部に対応する位置に凸部を有し表面に金属層が形成された積層体を得て、この積層体の凸部を除去して金属凸部を露出させることが記載されている。   Conventionally, Patent Document 1 is known as a method of manufacturing a light emitting element mounting substrate for mounting a light emitting element on the surface of a substrate. The manufacturing method of the light emitting element mounting substrate of Patent Document 1 includes a step of selectively etching the surface metal layer laminated on the metal substrate to form a metal convex portion at the mounting position of the light emitting element; Forming a flat insulating layer substantially flush with the upper surface, and simultaneously forming a power supply pattern having an electrode portion in the vicinity of the heat dissipation pattern while forming a heat dissipation pattern on the upper surface of the metal convex portion; ,including. As a method of integrally forming the metal layer for forming this electrode portion with the insulating layer, a copper foil with resin is heated and pressed by a pressing surface, and the surface has a convex portion at a position corresponding to the metal convex portion. It is described that a laminate in which a layer is formed is obtained, and the protrusions of the laminate are removed to expose the metal protrusions.

特開2005−167086号公報(請求項2、段落番号0054、0061、図7参照)Japanese Patent Laying-Open No. 2005-167086 (see claim 2, paragraph numbers 0054 and 0061, FIG. 7)

上記の特許文献1では、金属凸部上面を樹脂付き銅箔が覆って凸部が形成され、この凸部を除去して金属凸部を露出させている。この凸部を除去する処理は、金属凸部の平面形状サイズが大きい場合や樹脂付き銅箔の厚みが大きい場合に処理時間が増加する傾向にある。一方、金属凸部の平面形状に合わせて絶縁層等に開口を設けておき、これを積層一体化する技術も存在する。しかし、この方法では複雑な形状の金属凸部に合わせた開口の形成が困難であり、また、開口の位置合わせ精度の問題の他、積層一体化する際に、開口から樹脂がはみ出すといった問題もあった。   In the above-mentioned Patent Document 1, a convex portion is formed by covering the upper surface of the metal convex portion with a copper foil with resin, and the convex portion is removed to expose the metallic convex portion. The processing for removing the convex portion tends to increase the processing time when the planar shape size of the metallic convex portion is large or the thickness of the copper foil with resin is large. On the other hand, there is a technique in which an opening is provided in an insulating layer or the like according to the planar shape of the metal convex portion, and this is laminated and integrated. However, with this method, it is difficult to form an opening that matches a complex-shaped metal convex part. In addition to the problem of the positioning accuracy of the opening, there is a problem that the resin protrudes from the opening when stacking and integrating. there were.

そこで、本発明の目的は、発光素子搭載位置の凸部が形成された基板に、少なくとも絶縁層を積層した際に、その凸部を容易に露出することができ、しかも位置合わせの問題や開口加工の精度の問題も生じにくい発光素子搭載用基板の製造方法を提供することにある。   Therefore, an object of the present invention is to easily expose the convex portion when at least an insulating layer is laminated on the substrate on which the convex portion at the light emitting element mounting position is formed, and to solve the problem of alignment and the opening. An object of the present invention is to provide a method for manufacturing a substrate for mounting a light emitting element, which is less likely to cause a problem in processing accuracy.

本発明の発光素子搭載用基板の製造方法は、
基板の表面に凸部を形成する凸部形成工程と、
基板の表面で凸部を形成した場所以外の表面に、少なくとも絶縁層を積層する積層工程と、
絶縁層のうち凸部の突端より突出した余剰部を除去する除去工程とを有する。
The manufacturing method of the light emitting element mounting substrate of the present invention is as follows.
A protrusion forming step of forming a protrusion on the surface of the substrate;
A laminating step of laminating at least an insulating layer on the surface other than the place where the convex portion is formed on the surface of the substrate;
And a removal step of removing an excess portion protruding from the protruding end of the convex portion of the insulating layer.

この構成の製造方法によれば、基板表面に形成された凸部の形成場所以外に、少なくとも絶縁層を積層した際に生じた、絶縁層のうち凸部の突端より突出した余剰部を除去することで、容易に凸部を露出させることができる。そしてこの凸部には発光素子が搭載され、発光素子から発生する熱を放出しやすくするために、凸部および基板を、例えば熱伝導性に優れる金属材料で構成することが好ましい。また、「凸部の突端」は、凸部上面が平面である場合に凸部の縁部を含む概念である。また、「突出した」部分には、凸部上面が平面である場合にその上面高さより突き出た部分を意味し、凸部上面を被覆している部分や被覆していない部分を含む概念である。積層工程で基板に積層される対象としては、少なくとも絶縁層を有していればよく、他の積層されるものは特に制限されず、例えば、後述する金属層、その他の導電層、その他の絶縁層等が挙げられる。   According to the manufacturing method of this configuration, in addition to the location where the convex portions formed on the substrate surface are formed, at least the surplus portions protruding from the protruding ends of the convex portions of the insulating layer generated when the insulating layers are stacked are removed. Thus, the convex portion can be easily exposed. In addition, a light emitting element is mounted on the convex part, and in order to easily release heat generated from the light emitting element, it is preferable that the convex part and the substrate are made of, for example, a metal material having excellent thermal conductivity. Further, the “protruding end of the convex portion” is a concept including an edge portion of the convex portion when the upper surface of the convex portion is a plane. In addition, the “protruding” portion means a portion protruding from the height of the upper surface when the upper surface of the convex portion is a plane, and is a concept including a portion covering the upper surface of the convex portion and a portion not covering the same. . The object to be laminated on the substrate in the lamination step is only required to have at least an insulating layer, and other laminated ones are not particularly limited. For example, a metal layer, other conductive layer, and other insulation to be described later Layer and the like.

また、上記の発明の一実施形態として、積層工程において、絶縁層および金属層を積層する構成が挙げられる。積層する方法としては、例えば、絶縁層を基板表面に積層した後で、絶縁層上に金属層を積層する構成、金属層が予め一体に積層された絶縁層を基板表面に積層する構成、それぞれ別体の金属層と絶縁層とを一緒に基板に積層する構成が挙げられる。   In addition, as an embodiment of the invention described above, a configuration in which an insulating layer and a metal layer are stacked in the stacking step can be given. As a method of laminating, for example, after laminating an insulating layer on the substrate surface, a configuration in which a metal layer is laminated on the insulating layer, a configuration in which an insulating layer in which the metal layers are laminated in advance is laminated on the substrate surface, The structure which laminates | stacks a separate metal layer and an insulating layer on a board | substrate together is mentioned.

また、上記の発明の一実施形態として、少なくとも絶縁層が、基板への積層前に凸部の形状に合わせた貫通部を有し、積層工程時に貫通部を凸部に合わせて積層する構成がある。例えば、金属層も基板に積層する場合に、この金属層にも絶縁層と同様に貫通部を形成していてもよく、金属層には貫通部を形成していない構成もできる。   Moreover, as one embodiment of the present invention, there is a configuration in which at least the insulating layer has a through portion that matches the shape of the convex portion before lamination on the substrate, and the through portion is laminated in accordance with the convex portion during the lamination process. is there. For example, when the metal layer is also laminated on the substrate, a through portion may be formed in the metal layer in the same manner as the insulating layer, and a configuration in which the through portion is not formed in the metal layer may be employed.

この構成によれば、貫通部が形成されているため除去対象となる余剰部が小さく、除去を容易に行なえる。余剰部としては、例えば、絶縁層からはみ出した絶縁層形成材、凸部を覆うように形成された絶縁層形成材や金属層形成材が挙げられる。また、余剰部とともに、凸部の上面を平坦にするために、または凸部上面と金属層上面の高さが略面一になるように凸部の一部を除去するように構成することができる。   According to this configuration, since the through portion is formed, the surplus portion to be removed is small and can be easily removed. Examples of the surplus portion include an insulating layer forming material protruding from the insulating layer, and an insulating layer forming material and a metal layer forming material formed so as to cover the convex portion. Further, together with the surplus part, it may be configured to remove a part of the convex part in order to flatten the upper surface of the convex part or so that the height of the convex part upper surface and the metal layer upper surface are substantially flush with each other. it can.

また、積層工程後または除去工程後の凸部上面と金属層上面の高さが略面一に形成することが好ましい。両者が発光素子に対してフラットな反射面を形成できるため、外周部に反射体を設けることで、反射光を利用して、高効率で光を照射することが可能になる。また、下面に電極とボンディング部とを備える発光素子を実装する場合にも、両者の高さが同じであることが重要である。その結果、発光素子からの放熱効果が高く、しかも低コスト化や高精度化が可能で、光の照射効率を高めることができる。   Further, it is preferable that the height of the upper surface of the convex portion and the upper surface of the metal layer after the laminating step or the removing step is substantially flush. Since both can form a flat reflecting surface with respect to the light emitting element, providing a reflector on the outer peripheral portion makes it possible to irradiate light with high efficiency using reflected light. Moreover, when mounting a light emitting element provided with an electrode and a bonding part on the lower surface, it is important that the height of both is the same. As a result, the heat dissipation effect from the light emitting element is high, and the cost and accuracy can be reduced, and the light irradiation efficiency can be increased.

また、上記の発明の一実施形態として、貫通部の平面形状サイズが、凸部の平面形状サイズより小さく構成されており、積層工程時に貫通部を凸部に合わせて積層した際に、絶縁層および金属層の変形部が凸部の突端より突出して余剰部を形成する構成がある。   Moreover, as one embodiment of the above invention, the planar shape size of the penetrating portion is configured to be smaller than the planar shape size of the convex portion, and the insulating layer is laminated when the penetrating portion is laminated to the convex portion in the stacking step. In addition, there is a configuration in which the deformed portion of the metal layer protrudes from the protruding end of the convex portion to form an excessive portion.

この構成によれば、絶縁層および金属層の変形部が凸部の突端より突出して余剰部を形成し、この余剰部が除去される。貫通部の平面形状と凸部の平面形状は、同じでもよく異なっていてもよい。すなわち、基板と絶縁層および金属層とを積層一体化する際に、凸部位置と貫通部位置が略合っていればよく、位置決めを高精度に行わないですむため、積層工程が容易となる。   According to this structure, the deformation | transformation part of an insulating layer and a metal layer protrudes from the protrusion of a convex part, forms a surplus part, and this surplus part is removed. The planar shape of the penetrating portion and the planar shape of the convex portion may be the same or different. That is, when the substrate, the insulating layer, and the metal layer are laminated and integrated, it is only necessary that the position of the convex portion and the position of the penetrating portion are substantially matched, and positioning is not performed with high accuracy. .

また、上記の発明の一実施形態として、貫通部の平面形状サイズが、凸部の平面形状サイズより大きく構成されており、積層工程時に貫通部を凸部に合わせて積層した際に、絶縁層の変形部が凸部の突端より突出して余剰部を形成する構成がある。   Moreover, as one embodiment of the present invention, the planar shape size of the penetrating portion is configured to be larger than the planar shape size of the convex portion, and the insulating layer is formed when the penetrating portion is laminated with the convex portion in the stacking step. There is a configuration in which the deformed portion protrudes from the protruding end of the convex portion to form an excess portion.

この構成によれば、絶縁層の変形部が凸部の突端より突出して余剰部を形成し、この余剰部が除去される。貫通部の平面形状と凸部の平面形状は、同じでもよく異なっていてもよい。すなわち、基板と絶縁層および金属層とを積層一体化する際に、凸部位置と貫通部位置が略合っていればよく、位置決めを高精度に行わないですむため、積層工程が容易となる。   According to this configuration, the deformed portion of the insulating layer protrudes from the protruding end of the convex portion to form a surplus portion, and the surplus portion is removed. The planar shape of the penetrating portion and the planar shape of the convex portion may be the same or different. That is, when the substrate, the insulating layer, and the metal layer are laminated and integrated, it is only necessary that the position of the convex portion and the position of the penetrating portion are substantially matched, and positioning is not performed with high accuracy. .

また、上記の発明の一実施形態として、貫通部の平面形状が円状であり、凸部の平面形状が楕円状、瓢箪状、矩形、および多角形のうちから選択される形状である構成がある。凸部の平面形状は、発光素子搭載基板の製品仕様に応じて様々な形状を採用する場合があり、それに応じて貫通部の平面形状を同一にする必要がなく、例えば貫通部の平面形状を円状にして、貫通部形成加工を容易にできる。   Moreover, as one embodiment of the present invention, a configuration in which the planar shape of the penetrating portion is circular and the planar shape of the convex portion is a shape selected from an elliptical shape, a bowl shape, a rectangular shape, and a polygonal shape. is there. As the planar shape of the convex portion, various shapes may be adopted depending on the product specifications of the light emitting element mounting substrate, and accordingly, the planar shape of the penetrating portion does not need to be the same. By forming a circular shape, it is possible to easily form the through portion.

発光素子搭載用基板の一例を示す図である。It is a figure which shows an example of the board | substrate for light emitting element mounting. 発光素子搭載用基板の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the light emitting element mounting substrate. 発光素子搭載用基板の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the light emitting element mounting substrate. 除去対象部の他の例を説明するための図である。It is a figure for demonstrating the other example of a removal object part. 金属凸部と貫通部の異なる平面形状を説明するための図である。It is a figure for demonstrating the planar shape from which a metal convex part and a penetration part differ. 別実施形態の発光素子搭載用基板の製造方法の一例の図である。It is a figure of an example of the manufacturing method of the light emitting element mounting substrate of another embodiment. 別実施形態の発光素子搭載用基板の製造方法の一例の図である。It is a figure of an example of the manufacturing method of the light emitting element mounting substrate of another embodiment.

(発光素子搭載用基板)
以下、本発明の実施の形態について、図面を参照しながら説明する。図1に示すように、発光素子搭載用基板は、発光素子30を搭載してこれに給電するための発光素子搭載用基板であって、金属基板10と、その金属基板10の発光素子30の搭載位置に形成された金属凸部14と、その金属凸部14の周囲に形成された絶縁層16と、絶縁層16に積層された金属層17とを備える。本実施形態では、金属基板10と金属凸部14との間に保護金属層12が形成されるが、別実施形態では保護金属層12が形成されない構成もある。また、基板として金属基板を用いた実施形態を示すが、基板を熱伝導性の優れた他の材料で構成することもできる。また、凸部として金属凸部を用いた実施形態を示すが、凸部を熱伝導性の優れた他の材料で構成することもできる。かかる場合に、凸部を形成する方法は公知の形成方法を適用できる。
(Light-emitting element mounting substrate)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the light emitting element mounting substrate is a light emitting element mounting substrate for mounting and supplying power to the light emitting element 30, and includes the metal substrate 10 and the light emitting element 30 of the metal substrate 10. The metal convex part 14 formed in the mounting position, the insulating layer 16 formed in the circumference | surroundings of the metal convex part 14, and the metal layer 17 laminated | stacked on the insulating layer 16 are provided. In the present embodiment, the protective metal layer 12 is formed between the metal substrate 10 and the metal protrusions 14, but in another embodiment, there is a configuration in which the protective metal layer 12 is not formed. Moreover, although embodiment using a metal substrate as a board | substrate is shown, a board | substrate can also be comprised with another material excellent in thermal conductivity. Moreover, although embodiment using a metal convex part as a convex part is shown, a convex part can also be comprised with the other material excellent in thermal conductivity. In such a case, a known forming method can be applied as a method for forming the convex portion.

(発光素子)
発光素子30としては、発光ダイオードチップ、ベアチップ(紫外線発光ダイオードウエハをプロセス加工したもの)、ベアチップを表面実装型にパッケージしたもの、半導体レーザチップ等が挙げられる。発光ダイオードチップを用いる場合、その裏面は、カソードタイプとアノードタイプの2種類がある。また、本実施形態では、ベアチップタイプの発光素子30の方が、放熱性、実装面積の点から優れている。
(Light emitting element)
Examples of the light emitting element 30 include a light emitting diode chip, a bare chip (processed from an ultraviolet light emitting diode wafer), a bare chip packaged in a surface mount type, and a semiconductor laser chip. When a light emitting diode chip is used, there are two types of the back side, a cathode type and an anode type. In this embodiment, the bare chip type light emitting element 30 is superior in terms of heat dissipation and mounting area.

発光素子30は、図1に示すように、両側の金属層17と導電接続されている。この導電接続は、発光素子30の上部電極と各々の金属層17とを、金属細線31によるワイヤボンディング等で結線することで行うことができる。ワイヤボンディングとしては、超音波やこれと加熱を併用したものなどが可能である。この金属層17には電極部が形成されている。   As shown in FIG. 1, the light emitting element 30 is electrically connected to the metal layers 17 on both sides. This conductive connection can be performed by connecting the upper electrode of the light emitting element 30 and each metal layer 17 by wire bonding or the like using a metal thin wire 31. As wire bonding, ultrasonic waves or a combination of this and heating can be used. An electrode portion is formed on the metal layer 17.

また、図1に示すように、反射面を備える反射体22を発光素子30の搭載位置の周囲に形成してもよい。更に、反射体22の内側を透明樹脂等で被覆するのが好ましく、その上方に、凸面の透明樹脂レンズを備えていてもよい。透明樹脂レンズが凸面を有することで、効率良く基板から上方に光を発射させることができる。なお、透明樹脂レンズは着色されたものでもよい。   Further, as shown in FIG. 1, a reflector 22 having a reflecting surface may be formed around the mounting position of the light emitting element 30. Furthermore, it is preferable to coat the inner side of the reflector 22 with a transparent resin or the like, and a convex transparent resin lens may be provided thereabove. Since the transparent resin lens has a convex surface, light can be efficiently emitted upward from the substrate. The transparent resin lens may be colored.

この実施形態では、金属凸部14の上面と金属層17の上面とを略面一に構成しており、その両者が発光素子30に対してフラットな反射面を形成できる。このため、外周部に反射体22を設けることで、反射光を利用して、高効率で光を照射することが可能になる。なお、発光素子30の搭載方法は、導電性ペースト、両面テープ、半田による接合など何れでもよいが、金属による接合が放熱性の点から好ましい。   In this embodiment, the upper surface of the metal convex portion 14 and the upper surface of the metal layer 17 are substantially flush with each other, and both of them can form a flat reflective surface with respect to the light emitting element 30. For this reason, by providing the reflector 22 in the outer peripheral portion, it becomes possible to irradiate light with high efficiency using reflected light. Note that the light emitting element 30 may be mounted by any method such as conductive paste, double-sided tape, and solder bonding, but metal bonding is preferred from the viewpoint of heat dissipation.

(製造方法)
本実施形態の発光素子搭載用基板の製造方法を図2、3を用いて説明する。先ず、金属基板10に金属凸部14を形成する(図2のステップS1、金属凸部形成工程)。図3(a)〜(c)に示すように、金属基板10に積層された表面金属層4を選択的にエッチングして発光素子30の搭載位置に金属凸部14を形成する。本実施形態では、表面金属層4は、そのエッチング時に耐性を示す別の保護金属層2を介して金属基板10に積層されている例を示す。
(Production method)
A method for manufacturing the light emitting element mounting substrate of this embodiment will be described with reference to FIGS. First, the metal convex part 14 is formed in the metal substrate 10 (step S1 of FIG. 2, metal convex part formation process). As shown in FIGS. 3A to 3C, the surface metal layer 4 laminated on the metal substrate 10 is selectively etched to form the metal protrusion 14 at the mounting position of the light emitting element 30. In this embodiment, the surface metal layer 4 shows the example laminated | stacked on the metal substrate 10 through another protective metal layer 2 which shows tolerance at the time of the etching.

本実施形態では、図3(a)に示すような、金属基板10と保護金属層2と金属凸部14とを形成するための表面金属層4とが積層された積層板SPを用意する。積層板SPは、何れの方法で製造したものでもよく、例えば電解メッキ、無電解メッキ、スパッタリング、蒸着などを利用して製造したものや、クラッド材などが何れも使用可能である。積層板SPの各層の厚みについては、例えば、金属基板10の厚みは、30〜5000μm、保護金属層2の厚みは、1〜20μm、表面金属層4の厚みは10〜500μmである。   In this embodiment, as shown in FIG. 3A, a laminated plate SP in which a metal substrate 10, a protective metal layer 2, and a surface metal layer 4 for forming a metal convex portion 14 are laminated is prepared. The laminated plate SP may be manufactured by any method, and for example, any of those manufactured using electrolytic plating, electroless plating, sputtering, vapor deposition, or a clad material can be used. Regarding the thickness of each layer of the laminated plate SP, for example, the thickness of the metal substrate 10 is 30 to 5000 μm, the thickness of the protective metal layer 2 is 1 to 20 μm, and the thickness of the surface metal layer 4 is 10 to 500 μm.

上記の電解メッキは、周知の方法で行うことができるが、一般的には、対象となる基板をメッキ浴内に浸漬しながら、それを陰極とし、メッキする金属の金属イオン補給源を陽極として、電気分解反応により陰極側に金属を析出させることにより行われる。   The above-described electrolytic plating can be performed by a known method. In general, while the target substrate is immersed in a plating bath, it is used as a cathode, and a metal ion replenishment source of a metal to be plated is used as an anode. This is carried out by depositing a metal on the cathode side by an electrolysis reaction.

一方、無電解メッキには、通常、銅、ニッケル、錫等のメッキ液が使用できる。無電解メッキのメッキ液は、各種金属に対応して周知であり、各種のものが市販されている。一般的には、液組成として、金属イオン源、アルカリ源、還元剤、キレート剤、安定剤などを含有する。なお、無電解メッキに先立って、パラジウム等のメッキ触媒を沈着させてもよい。   On the other hand, for electroless plating, a plating solution such as copper, nickel, or tin can be used. Electroless plating solutions are well known for various metals, and various types are commercially available. In general, the liquid composition contains a metal ion source, an alkali source, a reducing agent, a chelating agent, a stabilizer, and the like. A plating catalyst such as palladium may be deposited prior to electroless plating.

金属基板10は、単層または積層体の何れでもよく、構成する金属としては、何れの金属でもよく、例えば銅、銅合金、アルミニウム、ステンレス、ニッケル、鉄、その他の合金等が使用できる。なかでも、熱伝導性や電気伝導性の点から、銅、アルミニウムが好ましい。上記のような、放熱が良好な金属基板10を備える構造により、発光素子30の温度上昇を防止できるため、駆動電流をより多く流せ、発光量を増加させることができる。   The metal substrate 10 may be either a single layer or a laminated body, and any metal may be used as a constituent metal. For example, copper, copper alloy, aluminum, stainless steel, nickel, iron, other alloys, and the like can be used. Of these, copper and aluminum are preferable from the viewpoint of thermal conductivity and electrical conductivity. With the structure including the metal substrate 10 with good heat dissipation as described above, the temperature rise of the light emitting element 30 can be prevented, so that a larger amount of drive current can be supplied and the amount of light emission can be increased.

表面金属層4を構成する金属としては、銅、銅合金、ニッケル、錫等が使用でき、特に熱伝導性や電気伝導性の点から、銅が好ましい。   As the metal constituting the surface metal layer 4, copper, a copper alloy, nickel, tin or the like can be used, and copper is particularly preferable from the viewpoint of thermal conductivity and electrical conductivity.

保護金属層2を構成する金属としては、金属基板10及び表面金属層4とは別の金属が使用され、これらの金属のエッチング時に耐性を示す別の金属が使用できる。具体的には、これらの金属が銅である場合、保護金属層2を構成する別の金属としては、金、銀、亜鉛、パラジウム、ルテニウム、ニッケル、ロジウム、鉛−錫系はんだ合金、又はニッケル−金合金等が使用される。但し、これらの金属の組合せに限らず、上記金属のエッチング時に耐性を示す別の金属との組合せが何れも使用可能である。なお、本実施形態では保護金属層2を金属基板10に形成した一例を示したが、この保護金属層2は、必須ではなく、他の実施形態においては保護金属層2を金属基板10に形成しない構成もある。   As the metal constituting the protective metal layer 2, a metal different from the metal substrate 10 and the surface metal layer 4 is used, and another metal exhibiting resistance when etching these metals can be used. Specifically, when these metals are copper, another metal constituting the protective metal layer 2 is gold, silver, zinc, palladium, ruthenium, nickel, rhodium, lead-tin solder alloy, or nickel. -A gold alloy or the like is used. However, not only a combination of these metals, but also any combination with another metal exhibiting resistance when the metal is etched can be used. In the present embodiment, an example in which the protective metal layer 2 is formed on the metal substrate 10 is shown. However, the protective metal layer 2 is not essential, and in other embodiments, the protective metal layer 2 is formed on the metal substrate 10. Some configurations do not.

次に、図3(b)に示すように、エッチングレジストMを用いて、表面金属層4の選択的なエッチングを行う。これにより、発光素子30の搭載位置に金属凸部14を形成する。金属凸部14の平面形状は、特に制限されず、例えば円形、楕円形、矩形等の何れでもよいが、面積を出来るだけ大きくすることが、放熱性の観点から好ましい。このエッチングにより、保護金属層2が露出する。   Next, as shown in FIG. 3B, the surface metal layer 4 is selectively etched using the etching resist M. Thereby, the metal convex part 14 is formed in the mounting position of the light emitting element 30. The planar shape of the metal convex portion 14 is not particularly limited, and may be any of, for example, a circle, an ellipse, and a rectangle, but it is preferable to increase the area as much as possible from the viewpoint of heat dissipation. By this etching, the protective metal layer 2 is exposed.

本実施形態では、略円形の金属凸部14が形成され、その金属凸部14の周囲には、半円弧状の電極部が形成された金属層17が形成され、これが給電用パターンに電気的に接続されている。このように、略円形の金属凸部14やその周囲に形成された金属層17は、発光素子30からの光を効率良く反射することができる。   In the present embodiment, a substantially circular metal convex portion 14 is formed, and a metal layer 17 having a semicircular arc-shaped electrode portion is formed around the metal convex portion 14, and this is electrically connected to the power feeding pattern. It is connected to the. Thus, the substantially circular metal protrusion 14 and the metal layer 17 formed around the metal protrusion 14 can reflect light from the light emitting element 30 efficiently.

エッチングレジストMは、感光性樹脂やドライフィルムレジスト(フォトレジスト)などが使用できる。なお、金属基板10が表面金属層4と同時にエッチングされる場合、これを防止するためのマスク材を、金属基板10の下面に設けるのが好ましい(図示省略)。   As the etching resist M, a photosensitive resin, a dry film resist (photoresist), or the like can be used. In addition, when the metal substrate 10 is etched simultaneously with the surface metal layer 4, it is preferable to provide the mask material for preventing this on the lower surface of the metal substrate 10 (not shown).

エッチングの方法としては、保護金属層2及び表面金属層4を構成する各金属の種類に応じた、各種エッチング液を用いたエッチング方法が挙げられる。例えば、表面金属層4が銅であり、保護金属層2が前述の金属(金属系レジストを含む)の場合、市販のアルカリエッチング液、過硫酸アンモニウム、過酸化水素/硫酸等が使用できる。エッチング後には、エッチングレジストが除去される。   Examples of the etching method include etching methods using various etching solutions according to the types of each metal constituting the protective metal layer 2 and the surface metal layer 4. For example, when the surface metal layer 4 is copper and the protective metal layer 2 is the aforementioned metal (including a metal resist), a commercially available alkaline etching solution, ammonium persulfate, hydrogen peroxide / sulfuric acid, or the like can be used. After the etching, the etching resist is removed.

次に、図3(d)に示すように、露出した保護金属層2を除去する。なお、別実施形態として保護金属層2を除去せずに、絶縁層16を積層形成することも可能である。保護金属層2は、エッチングにより除去することができ、具体的には、表面金属層4が銅であり、保護金属層2が上述の金属である場合、はんだ剥離用として市販されている、硝酸系、硫酸系、シアン系などの酸系のエッチング液等を用いるのが好ましい。   Next, as shown in FIG. 3D, the exposed protective metal layer 2 is removed. In another embodiment, the insulating layer 16 can be laminated without removing the protective metal layer 2. The protective metal layer 2 can be removed by etching. Specifically, when the surface metal layer 4 is copper and the protective metal layer 2 is the above-described metal, nitric acid that is commercially available for removing solder. It is preferable to use an acid-based etching solution such as an acid-based, sulfuric acid-based, or cyan-based acid.

露出している保護金属層2を除去した後、除去部分から金属基板10の表面が露出するが、これと絶縁層16との密着性を高めるために、金属基板10露出面に黒化処理、粗化処理などの表面処理を行うことが好ましい。   After removing the exposed protective metal layer 2, the surface of the metal substrate 10 is exposed from the removed portion. In order to improve the adhesion between this and the insulating layer 16, the exposed surface of the metal substrate 10 is blackened. It is preferable to perform a surface treatment such as a roughening treatment.

次いで、金属基板10の表面で金属凸部14を形成した場所以外の表面に絶縁層16および金属層17を積層する(図2のステップS2、積層工程)。図3(d)に示すように、貫通部18が形成された絶縁層16および金属層17を準備する。貫通部18は、積層される金属基板10の金属凸部14の位置に対応するように形成される。貫通部18は、金属凸部14に対応する位置に形成されるが、貫通部18の平面形状サイズが金属凸部14の平面形状サイズより小さく構成してもよく、貫通部18の平面形状サイズが金属凸部14の平面形状サイズより大きく構成してもよい。また、貫通部18の平面形状が金属凸部14の平面形状と一致または略一致していてもよく、全く異なる形状に構成することもできる。図5(a)から(c)に、金属凸部14の平面形状と貫通部18の平面形状が異なる例を示す。   Next, the insulating layer 16 and the metal layer 17 are laminated on the surface of the metal substrate 10 other than the place where the metal protrusions 14 are formed (step S2 in FIG. 2, laminating process). As shown in FIG. 3D, the insulating layer 16 and the metal layer 17 in which the penetrating portion 18 is formed are prepared. The through portion 18 is formed to correspond to the position of the metal convex portion 14 of the metal substrate 10 to be laminated. The penetrating portion 18 is formed at a position corresponding to the metal convex portion 14, but the planar shape size of the penetrating portion 18 may be smaller than the planar shape size of the metal convex portion 14, and the planar shape size of the penetrating portion 18. May be larger than the planar shape size of the metal protrusion 14. In addition, the planar shape of the penetrating portion 18 may coincide with or substantially coincide with the planar shape of the metal convex portion 14, or may be configured in a completely different shape. FIGS. 5A to 5C show examples in which the planar shape of the metal convex portion 14 and the planar shape of the penetrating portion 18 are different.

貫通部18が形成された絶縁層16と、貫通部18が形成された金属層17を別々に金属基板10に積層するように構成できるが、予め絶縁層16と金属層17とを積層一体化した絶縁層付き金属層に貫通部18を形成しておき、この絶縁層付き金属層を金属基板10に積層することが好ましい。   Although the insulating layer 16 in which the penetrating part 18 is formed and the metal layer 17 in which the penetrating part 18 is formed can be separately laminated on the metal substrate 10, the insulating layer 16 and the metal layer 17 are laminated and integrated in advance. It is preferable that the penetrating portion 18 is formed in the metal layer with an insulating layer and the metal layer with the insulating layer is laminated on the metal substrate 10.

本実施形態では、絶縁層付き金属層として絶縁樹脂付き銅箔を例に説明する。絶縁樹脂付き銅箔には、金属凸部14に対応するように貫通部18が形成される。この絶縁樹脂付き銅箔によって絶縁層16と金属層17とを同時に形成することができる。例えば、絶縁樹脂付き銅箔をプレス面(不図示)により加熱プレスして、金属凸部14が貫通部18に挿入されるように、絶縁層16および金属層17とが金属基板10に同時に積層される。このとき、プレス面と被積層体との間に、少なくとも、シート材を配置しておくのが好ましい。このシート材によって、貫通部18内に金属凸部14が挿入された際に生じる絶縁樹脂形成材や金属層形成材の変形である余剰部41、42に対応することができる。金属凸部14の上面と金属層17の上面とが略面一になるように、積層されることが好ましい。また、絶縁層16は、金属凸部14の周囲に接触するように金属基板10に積層されることが好ましい。   In the present embodiment, a copper foil with an insulating resin will be described as an example of the metal layer with an insulating layer. A through-hole 18 is formed in the copper foil with insulating resin so as to correspond to the metal protrusion 14. The insulating layer 16 and the metal layer 17 can be formed simultaneously with this copper foil with insulating resin. For example, a copper foil with insulating resin is heated and pressed by a pressing surface (not shown), and the insulating layer 16 and the metal layer 17 are simultaneously laminated on the metal substrate 10 so that the metal convex portion 14 is inserted into the through portion 18. Is done. At this time, it is preferable to arrange at least a sheet material between the press surface and the laminated body. With this sheet material, it is possible to cope with the surplus portions 41 and 42 that are deformations of the insulating resin forming material and the metal layer forming material that are generated when the metal convex portion 14 is inserted into the through portion 18. It is preferable that the metal protrusions 14 and the metal layer 17 are laminated so that the upper surface thereof is substantially flush with the upper surface of the metal layer 17. Moreover, it is preferable that the insulating layer 16 is laminated | stacked on the metal substrate 10 so that the circumference | surroundings of the metal convex part 14 may be contacted.

また、絶縁樹脂付き銅箔は、各種のものが市販されており、それらをいずれも使用できる。また、金属層17を形成する金属層形成材と絶縁層16を形成する絶縁層形成材とは各々を別々に配置してもよい。   Various types of copper foil with insulating resin are commercially available, and any of them can be used. Further, the metal layer forming material forming the metal layer 17 and the insulating layer forming material forming the insulating layer 16 may be separately arranged.

加熱プレスの方法としては、加熱加圧装置(熱ラミネータ、加熱プレス)などを用いて行えばよく、その際、空気の混入を避けるために、雰囲気を真空(真空ラミネータ等)にしてもよい。加熱温度、圧力など条件等は、絶縁層形成材と金属層形成材の材質や厚みに応じて適宜設定すればよいが、圧力としては、0.5〜30MPaが好ましい。加熱プレスによって、金属基板10の表面に応じて絶縁層形成材と金属層形成材が変形して、硬化した絶縁層16と金属層17が形成される。この加熱プレス後に、冷却を行ってもよい。また、プレス手段としては、例えば、平面プレス、ロールプレス、それらの組合せプレスが挙げられる。   As a heating press method, a heating / pressurizing apparatus (thermal laminator, heating press) or the like may be used. In this case, the atmosphere may be set to a vacuum (vacuum laminator or the like) in order to avoid air contamination. Conditions such as heating temperature and pressure may be appropriately set according to the material and thickness of the insulating layer forming material and the metal layer forming material, but the pressure is preferably 0.5 to 30 MPa. By the heat press, the insulating layer forming material and the metal layer forming material are deformed according to the surface of the metal substrate 10 to form the hardened insulating layer 16 and the metal layer 17. You may cool after this heat press. Moreover, as a press means, a plane press, a roll press, and those combination press are mentioned, for example.

絶縁層16を形成する絶縁層形成材としては、積層時に変形して加熱等により固化すると共に、配線基板に要求される耐熱性を有するものであれば何れの材料でもよい。具体的には、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂等の各種反応硬化性樹脂や、それとガラス繊維、セラミック繊維、アラミド繊維等との複合体(プリプレグ)などが挙げられる。絶縁層16を形成する絶縁層形成材の厚みは、金属凸部14の厚みと金属層17の厚みを考慮して設定される。   As the insulating layer forming material for forming the insulating layer 16, any material may be used as long as it is deformed at the time of lamination and solidified by heating or the like and has heat resistance required for the wiring board. Specific examples include various reaction curable resins such as polyimide resins, phenol resins, and epoxy resins, and composites (prepregs) of the same with glass fibers, ceramic fibers, aramid fibers, and the like. The thickness of the insulating layer forming material that forms the insulating layer 16 is set in consideration of the thickness of the metal protrusion 14 and the thickness of the metal layer 17.

金属層17を形成する金属層形成材としては、銅、銅合金、ニッケル、錫等が使用でき、特に熱伝導性や電気伝導性の点から、銅が好ましい。金属層17を形成する金属層形成材の厚みは、例えば5〜50μm程度である。   As the metal layer forming material for forming the metal layer 17, copper, copper alloy, nickel, tin and the like can be used, and copper is particularly preferable from the viewpoint of thermal conductivity and electrical conductivity. The thickness of the metal layer forming material forming the metal layer 17 is, for example, about 5 to 50 μm.

シート材は、加熱プレス時の金属層形成材や絶縁層形成材の変形を許容する材料であればよく、クッション紙、ゴムシート、エラストマーシート、不織布、織布、多孔質シート、発泡体シート、金属箔、これらの複合体、などが挙げられる。特に、クッション紙、ゴムシート、エラストマーシート、発泡体シート、これらの複合体などの、弾性変形可能なものが好ましい。また、シート材の厚みは、金属層17や絶縁層16の厚みに応じて設定することができる。   The sheet material only needs to be a material that allows deformation of the metal layer forming material or the insulating layer forming material at the time of heating press, such as cushion paper, rubber sheet, elastomer sheet, nonwoven fabric, woven fabric, porous sheet, foam sheet, Examples thereof include metal foils and composites thereof. In particular, those that can be elastically deformed, such as cushion paper, rubber sheets, elastomer sheets, foam sheets, and composites thereof, are preferable. Further, the thickness of the sheet material can be set according to the thickness of the metal layer 17 or the insulating layer 16.

なお、シート材と共に離型シートを追加配置してもよい。離型シートとしては、フッ素樹脂フィルム、シリコーン樹脂フィルム、各種の離型紙、繊維補強フッ素樹脂フィルム、繊維補強シリコーン樹脂フィルムなどが挙げられる。   A release sheet may be additionally arranged together with the sheet material. Examples of the release sheet include a fluororesin film, a silicone resin film, various release papers, a fiber reinforced fluororesin film, and a fiber reinforced silicone resin film.

次いで、絶縁層16および金属層17のうち金属凸部14の突端より突出した余剰部41、42を除去する(図2のステップS3、除去工程)。余剰部41、42は、図3(f)に示すように、貫通部18内に金属凸部14が挿入された際に、金属凸部14の突端より突出した金属層17の変形部や絶縁層16の変形部である。貫通部18の平面形状サイズを金属凸部14の平面形状サイズより小さく設定した場合に、図3(f)に示す余剰部41、42が生じる。また、貫通部18と金属凸部14の平面形状サイズの誤差、積層形成時の位置合わせ誤差等によって、余剰部41、42が生じることになるが、これらの余剰部41、42は、そのサイズが小さく容易に除去できるため、位置合わせ等を高精度に行わなくてもよい。   Next, the surplus portions 41 and 42 that protrude from the protruding ends of the metal protrusions 14 in the insulating layer 16 and the metal layer 17 are removed (step S3 in FIG. 2, removal step). As shown in FIG. 3 (f), the surplus portions 41, 42 are deformed portions or insulating portions of the metal layer 17 that protrude from the protruding end of the metal convex portion 14 when the metal convex portion 14 is inserted into the penetrating portion 18. This is a deformed portion of the layer 16. When the planar shape size of the penetrating portion 18 is set smaller than the planar shape size of the metal convex portion 14, surplus portions 41 and 42 shown in FIG. Further, the surplus portions 41 and 42 are generated due to an error in the planar shape size of the penetrating portion 18 and the metal convex portion 14, an alignment error at the time of stacking, and the like. Therefore, it is not necessary to perform alignment or the like with high accuracy.

また、上述の平面形状サイズ誤差や位置合わせ誤差を考慮し、図4に示すように、貫通部18の平面形状サイズを金属凸部14の平面形状サイズよりも大きくすることで、絶縁層16の形成材が変形し、金属凸部14の突端より突出した余剰部42を形成する構成もできる。   Further, in consideration of the above-described planar shape size error and alignment error, the planar shape size of the penetrating portion 18 is made larger than the planar shape size of the metal convex portion 14 as shown in FIG. The forming material may be deformed to form the surplus portion 42 protruding from the protruding end of the metal convex portion 14.

また、既に図5(a)から(c)に示したように貫通部18の平面形状(開口形状)と金属凸部14の平面形状を同じにする必要がなく、特に金属凸部14の平面形状が複雑な場合に、貫通部18の平面形状を簡単な形状、例えば円状に形成することができる。   Further, as already shown in FIGS. 5A to 5C, the planar shape (opening shape) of the penetrating portion 18 and the planar shape of the metal convex portion 14 do not need to be the same. When the shape is complicated, the planar shape of the penetrating portion 18 can be formed into a simple shape, for example, a circle.

図3(g)に示すように、余剰部41、42を除去する。その際、金属層17の上面より金属凸部14の上面が高くなる分を、同時に除去して平坦化してもよい。   As shown in FIG. 3G, the surplus portions 41 and 42 are removed. At this time, the portion where the upper surface of the metal convex portion 14 is higher than the upper surface of the metal layer 17 may be simultaneously removed and planarized.

この除去方法としては、研削や研磨による方法が好ましく、ダイヤモンド製等の硬質刃を回転板の半径方向に複数配置した硬質回転刃を有する研削装置を使用する方法や、サンダ、ベルトサンダ、グラインダ、平面研削盤、硬質砥粒成形品などを用いる方法などが挙げられる。研削装置を使用すると、当該硬質回転刃を回転させながら、固定支持された配線基板の上面に沿って移動させることによって、上面を平坦化することができる。また、研磨の方法としては、ベルトサンダ、バフ研磨等により軽く研磨する方法が挙げられる。   As this removal method, a method by grinding or polishing is preferable, a method using a grinding device having a hard rotating blade in which a plurality of hard blades made of diamond or the like are arranged in the radial direction of the rotating plate, a sander, a belt sander, a grinder, Examples thereof include a method using a surface grinder, a hard abrasive molded product, and the like. When the grinding apparatus is used, the upper surface can be flattened by moving the hard rotary blade along the upper surface of the fixedly supported wiring board while rotating the hard rotary blade. Moreover, as a grinding | polishing method, the method of lightly grind | polishing by a belt sander, buff grinding | polishing etc. is mentioned.

次いで、エッチングレジストを使用して金属層17をエッチングすることで半円弧状の電極部を形成する。その後、電極部を有する給電用パターン等の厚みを増加させるためにメッキ等を行ってもよい。   Next, the metal layer 17 is etched using an etching resist to form a semicircular arc electrode portion. Thereafter, plating or the like may be performed in order to increase the thickness of the power supply pattern having electrode portions.

また、金属凸部14の上面や金属層17には、反射効率を高めるために金、ニッケル、銀などの貴金属によるメッキを行うのが好ましい。また、金属凸部14の上面や金属層17に、従来の配線基板と同様にソルダレジストを形成したり、部分的に半田メッキを行ってもよい。   Further, it is preferable to perform plating with a noble metal such as gold, nickel or silver on the upper surface of the metal convex portion 14 or the metal layer 17 in order to increase the reflection efficiency. In addition, a solder resist may be formed on the upper surface of the metal convex portion 14 or the metal layer 17 in the same manner as a conventional wiring substrate, or solder plating may be partially performed.

(発光素子搭載用基板の他の実施形態)
前述の実施形態では、絶縁樹脂付き銅箔を加熱プレスした後に研削等を行う例を示したが、別実施形態として、絶縁樹脂付き銅箔を加熱プレスした後に、エッチングで金属層17の余剰部41を除去し、その後に研削等を行うように構成できる。
(Another embodiment of a light-emitting element mounting substrate)
In the above-described embodiment, an example in which grinding or the like is performed after heat-pressing the copper foil with insulating resin is shown. However, as another embodiment, after the copper foil with insulating resin is heat-pressed, an excess portion of the metal layer 17 is etched. 41 can be removed, and then grinding or the like can be performed.

また、別の実施形態として、図6(a)は、2つの貫通部18を有する絶縁層16を、当該2つの貫通部18に挿入される2つの金属凸部14が形成された金属基板10に積層する一例を示している。この実施形態では、上記実施形態とは異なり金属基板10に金属保護層2を形成していない。絶縁層16を積層した後に生じた余剰部(不図示)を除去した後に、当該絶縁層16上に金属層(不図示)を積層することが好ましい。また、金属層(不図示)を積層することで余剰部が生じた場合にはそれを除去する。また、この場合の金属層には、貫通部が形成された構成もでき、貫通部が形成されていない構成もできる。また、図6(b)に示すように、金属基板10は、エッチングされて2つの金属基板パターン10a、10bとして形成されて、金属基板パターン10aには金属凸部14を介して発光素子30が実装され、金属基板パターン10bは、金属凸部14を介して、発光素子30の上部電極と金属細線31によって導電接続されている。   As another embodiment, FIG. 6A shows an insulating layer 16 having two penetrations 18 and a metal substrate 10 on which two metal projections 14 are inserted into the two penetrations 18. An example of stacking is shown. In this embodiment, unlike the above embodiment, the metal protective layer 2 is not formed on the metal substrate 10. It is preferable to stack a metal layer (not shown) on the insulating layer 16 after removing an excess portion (not shown) generated after the insulating layer 16 is stacked. Moreover, when an excess part arises by laminating | stacking a metal layer (not shown), it removes it. In addition, the metal layer in this case may have a configuration in which a through portion is formed, or may have a configuration in which no through portion is formed. Also, as shown in FIG. 6B, the metal substrate 10 is etched to form two metal substrate patterns 10a and 10b, and the light emitting element 30 is formed on the metal substrate pattern 10a via the metal protrusions 14. The mounted metal substrate pattern 10 b is conductively connected to the upper electrode of the light emitting element 30 and the thin metal wire 31 through the metal protrusion 14.

さらに、別の実施形態として、図7は、貫通部18が形成された絶縁層16と貫通部が形成されていない金属層17とを、当該貫通部18に挿入される金属凸部14が形成された金属基板10に積層する一例を示している。絶縁層16および金属層17を積層することで生じた余剰部(不図示)は除去される。なお、図7において、絶縁層16と金属層17は、予め一体に積層された構成もできる。   Furthermore, as another embodiment, FIG. 7 shows that an insulating layer 16 in which a through portion 18 is formed and a metal layer 17 in which no through portion is formed are formed into a metal convex portion 14 that is inserted into the through portion 18. An example of stacking on the metal substrate 10 is shown. Excess portions (not shown) generated by laminating the insulating layer 16 and the metal layer 17 are removed. In FIG. 7, the insulating layer 16 and the metal layer 17 may be laminated in advance.

また、前述の実施形態では、発光素子30の搭載位置に形成する金属凸部14が、そのエッチング時に耐性を示す別の保護金属層2を介して金属基板10に接合されている例を示したが、金属凸部14と金属基板10とを同じ金属で構成することで、保護金属層2を省略することも可能である。その場合、金属凸部14と金属基板10とを併せた厚みの金属板をハーフエッチングすることで、金属凸部14を形成することができる。   Moreover, in the above-mentioned embodiment, the metal convex part 14 formed in the mounting position of the light emitting element 30 showed the example joined to the metal substrate 10 via the another protective metal layer 2 which shows tolerance at the time of the etching. However, it is also possible to omit the protective metal layer 2 by configuring the metal convex portion 14 and the metal substrate 10 with the same metal. In that case, the metal convex part 14 can be formed by half-etching a metal plate having a thickness obtained by combining the metal convex part 14 and the metal substrate 10.

また、金属凸部14の形成方法は、前述の形成方法に限定されず、公知の金属凸部形成方法を適用できる。   Moreover, the formation method of the metal convex part 14 is not limited to the above-mentioned formation method, A well-known metal convex part formation method is applicable.

また、前述の実施形態では、積層工程によって生じた余剰部41、42を除去する除去工程を備えていたが、これに限定されず、余剰部41、42が、発光素子搭載用基板の品質として問題がない場合、余剰部41、42の除去工程を省略できる。   Moreover, in the above-mentioned embodiment, although the removal process which removes the surplus parts 41 and 42 which arose by the lamination process was provided, it is not limited to this, The surplus parts 41 and 42 are the quality of the light emitting element mounting substrate. When there is no problem, the removal process of the surplus parts 41 and 42 can be omitted.

また、前述の実施形態では、発光素子搭載用基板が電極部を有する給電用パターンで構成されている例を示したが、その他の電子回路を同じ基板上に形成してもよい。例えば、発光ダイオードの駆動回路などを形成するのが好ましい。この場合、基板の周辺、特に角部およびその近傍に配線、ランド、ボンディング用のパッド、外部との電気的接続パッド等がパターニングされ、配線間はチップコンデンサ、チップ抵抗および印刷抵抗等の部品、トランジスタ、ダイオード、IC等を設ければよい。   In the above-described embodiment, an example in which the light emitting element mounting substrate is configured by a power feeding pattern having an electrode portion is shown, but other electronic circuits may be formed on the same substrate. For example, it is preferable to form a drive circuit for a light emitting diode. In this case, wiring, lands, pads for bonding, pads for electrical connection to the outside, etc. are patterned in the periphery of the substrate, particularly in the corner and the vicinity thereof, and components such as chip capacitors, chip resistors and printing resistors, A transistor, a diode, an IC, or the like may be provided.

また、前述の実施形態では、配線層が単層である発光素子搭載用基板の例を説明したが、これに制限されず、配線層が2層以上の多層配線の発光素子搭載用基板の構成もできる。その場合、配線層間の導電接続構造を金属凸部14の形成工程と同様の工程で形成することも可能である。このような導電接続構造の形成方法の詳細は、国際公開公報WO00/52977号に記載されており、これらをいずれも適用することができる。   In the above-described embodiment, the example of the light emitting element mounting substrate in which the wiring layer is a single layer has been described. However, the present invention is not limited to this, and the configuration of the light emitting element mounting substrate having two or more wiring layers is described. You can also. In that case, it is also possible to form the conductive connection structure between the wiring layers in the same process as the process of forming the metal protrusions 14. Details of the method of forming such a conductive connection structure are described in International Publication No. WO 00/52977, and any of these can be applied.

また、前述の実施形態では、図1に示すように、発光素子30と反射体22とが別々に発光素子搭載用基板に搭載される例を示したが、発光素子30と反射体22とが一体に形成された発光素子ユニットを発光素子搭載用基板に搭載等するようにしてもよい。このような発光素子ユニットは、各種のものが市販されており、これらを何れも使用することができる。   In the above-described embodiment, as shown in FIG. 1, the example in which the light emitting element 30 and the reflector 22 are separately mounted on the light emitting element mounting substrate has been described. The integrally formed light emitting element unit may be mounted on the light emitting element mounting substrate. Various types of such light emitting element units are commercially available, and any of these can be used.

また、前述の実施形態では、フェイスアップ型の発光素子を搭載する例を示したが、一対の電極を底面に備えるフェイスダウン型の発光素子を搭載してもよい。その場合、給電を行うための電極部が金属凸部14に形成される。   In the above-described embodiment, an example in which a face-up light emitting element is mounted has been described. However, a face-down light emitting element having a pair of electrodes on the bottom surface may be mounted. In that case, the electrode part for supplying electric power is formed in the metal convex part 14.

10 金属基板
14 金属凸部
16 絶縁層
17 金属層
18 貫通部
41、42 余剰部
DESCRIPTION OF SYMBOLS 10 Metal substrate 14 Metal convex part 16 Insulating layer 17 Metal layer 18 Through part 41, 42 Surplus part

Claims (6)

基板の表面に凸部を形成する凸部形成工程と、
基板の表面で凸部を形成した場所以外の表面に、少なくとも絶縁層を積層する積層工程と、
絶縁層のうち凸部の突端より突出した余剰部を除去する除去工程とを有する発光素子搭載用基板の製造方法。
A protrusion forming step of forming a protrusion on the surface of the substrate;
A laminating step of laminating at least an insulating layer on the surface other than the place where the convex portion is formed on the surface of the substrate;
A method for manufacturing a substrate for mounting a light emitting element, comprising: removing a surplus portion protruding from a protruding end of the protruding portion of the insulating layer.
積層工程において、絶縁層および金属層を積層する構成とした請求項1に記載の発光素子搭載用基板の製造方法。   The method for manufacturing a light-emitting element mounting substrate according to claim 1, wherein in the stacking step, the insulating layer and the metal layer are stacked. 少なくとも絶縁層が、基板への積層前に凸部の形状に合わせた貫通部を有し、積層工程時に貫通部を凸部に合わせて積層する請求項1または2に記載の発光素子搭載用基板の製造方法。   The light emitting element mounting substrate according to claim 1 or 2, wherein at least the insulating layer has a penetrating portion matched with the shape of the convex portion before lamination on the substrate, and the penetrating portion is laminated according to the convex portion during the lamination step. Manufacturing method. 貫通部の平面形状サイズが、凸部の平面形状サイズより小さく構成されており、積層工程時に貫通部を凸部に合わせて積層した際に、絶縁層および金属層の変形部が凸部の突端より突出して余剰部を形成する請求項3に記載の発光素子搭載用基板の製造方法。   The planar shape size of the penetrating portion is configured to be smaller than the planar shape size of the convex portion, and when the through portion is laminated to the convex portion during the stacking process, the deformed portion of the insulating layer and the metal layer is the tip of the convex portion. The manufacturing method of the light emitting element mounting substrate of Claim 3 which protrudes more and forms a surplus part. 貫通部の平面形状サイズが、凸部の平面形状サイズより大きく構成されており、積層工程時に貫通部を凸部に合わせて積層した際に、絶縁層の変形部が凸部の突端より突出して余剰部を形成する請求項3に記載の発光素子搭載用基板の製造方法。   The planar shape size of the penetrating portion is configured to be larger than the planar shape size of the projecting portion, and when the penetrating portion is laminated to the projecting portion during the lamination process, the deformed portion of the insulating layer protrudes from the projecting end of the projecting portion. The manufacturing method of the light emitting element mounting substrate of Claim 3 which forms a surplus part. 貫通部の平面形状が円状であり、凸部の平面形状が楕円状、瓢箪状、矩形、および多角形のうちから選択される形状である請求項1から5のいずれか1項に記載の発光素子搭載用基板の製造方法。
The planar shape of the penetrating portion is circular, and the planar shape of the convex portion is a shape selected from an elliptical shape, a bowl shape, a rectangular shape, and a polygonal shape. Manufacturing method of substrate for mounting light emitting element.
JP2010112431A 2009-05-28 2010-05-14 Manufacturing method of light emitting element mounting substrate Active JP5479214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112431A JP5479214B2 (en) 2009-05-28 2010-05-14 Manufacturing method of light emitting element mounting substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009129287 2009-05-28
JP2009129287 2009-05-28
JP2010112431A JP5479214B2 (en) 2009-05-28 2010-05-14 Manufacturing method of light emitting element mounting substrate

Publications (2)

Publication Number Publication Date
JP2011009716A true JP2011009716A (en) 2011-01-13
JP5479214B2 JP5479214B2 (en) 2014-04-23

Family

ID=43565965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112431A Active JP5479214B2 (en) 2009-05-28 2010-05-14 Manufacturing method of light emitting element mounting substrate

Country Status (1)

Country Link
JP (1) JP5479214B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050539A (en) * 2015-09-02 2017-03-09 株式会社ダイワ工業 Manufacturing method for wiring board laminate and wiring board laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614809A (en) * 1984-06-18 1986-01-10 Toyota Motor Corp Method of securing sintered part by securing engagement
JPH0380596A (en) * 1989-08-23 1991-04-05 Fujitsu Ltd Manufacture of multilayer ceramic circuit substrate
JP2001274432A (en) * 2000-03-24 2001-10-05 Mitsui High Tec Inc Producing method for semiconductor device
JP2004289016A (en) * 2003-03-24 2004-10-14 Matsushita Electric Works Ltd Electric wiring module and connection method between flexible printed wiring board and wiring board
JP2005167086A (en) * 2003-12-04 2005-06-23 Daiwa Kogyo:Kk Substrate for mounting light emitting element and fabrication method thereof
JP2006066519A (en) * 2004-08-25 2006-03-09 Kyocera Corp Wiring circuit board for light-emitting element and the light-emitting device
JP2006073763A (en) * 2004-09-01 2006-03-16 Denso Corp Manufacturing method for multilayer board
JP2007324501A (en) * 2006-06-05 2007-12-13 Ngk Spark Plug Co Ltd Wiring board
JP2009010360A (en) * 2007-05-31 2009-01-15 Toshiba Lighting & Technology Corp Lighting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614809A (en) * 1984-06-18 1986-01-10 Toyota Motor Corp Method of securing sintered part by securing engagement
JPH0380596A (en) * 1989-08-23 1991-04-05 Fujitsu Ltd Manufacture of multilayer ceramic circuit substrate
JP2001274432A (en) * 2000-03-24 2001-10-05 Mitsui High Tec Inc Producing method for semiconductor device
JP2004289016A (en) * 2003-03-24 2004-10-14 Matsushita Electric Works Ltd Electric wiring module and connection method between flexible printed wiring board and wiring board
JP2005167086A (en) * 2003-12-04 2005-06-23 Daiwa Kogyo:Kk Substrate for mounting light emitting element and fabrication method thereof
JP2006066519A (en) * 2004-08-25 2006-03-09 Kyocera Corp Wiring circuit board for light-emitting element and the light-emitting device
JP2006073763A (en) * 2004-09-01 2006-03-16 Denso Corp Manufacturing method for multilayer board
JP2007324501A (en) * 2006-06-05 2007-12-13 Ngk Spark Plug Co Ltd Wiring board
JP2009010360A (en) * 2007-05-31 2009-01-15 Toshiba Lighting & Technology Corp Lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050539A (en) * 2015-09-02 2017-03-09 株式会社ダイワ工業 Manufacturing method for wiring board laminate and wiring board laminate

Also Published As

Publication number Publication date
JP5479214B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP4255367B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP5072405B2 (en) Light-emitting element mounting substrate and method for manufacturing the same
JP4747265B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP5063555B2 (en) Light-emitting element mounting substrate
JP2004282004A (en) Substrate for mounting light emitting element and fabrication method thereof
JP2007150002A (en) Substrate with built-in semiconductor ic and its manufacturing method
US20060273451A1 (en) Semiconductor IC and its manufacturing method, and module with embedded semiconductor IC and its manufacturing method
US9549458B2 (en) Radiant heat circuit board, heat generating device package having the same, and backlight unit
JP6121099B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP2008091814A (en) Circuit substrate, and method of manufacturing circuit substrate
JP4294967B2 (en) Multilayer wiring board and manufacturing method thereof
JP5479214B2 (en) Manufacturing method of light emitting element mounting substrate
JP2011165737A (en) Light-emitting element carrying board and method for manufacturing the same
JP2010278379A (en) Wiring board and method of manufacturing the same
JP2010021420A (en) Substrate for mounting light-emitting element, light-emitting element panel, light-emitting element package, and method of manufacturing substrate for mounting light-emitting element
JP5204618B2 (en) Light emitting element mounting substrate, light emitting element package, and method of manufacturing light emitting element mounting substrate
JP5101418B2 (en) Light emitting element mounting substrate, light emitting element panel, light emitting element package, and method for manufacturing light emitting element mounting substrate
JP6910630B2 (en) Manufacturing method of wiring board laminate and wiring board laminate
JP2011146739A (en) Substrate for mounting light emitting element and manufacturing method of the same
JP4663172B2 (en) Manufacturing method of semiconductor device
JP2004095757A (en) Laminated metal plate wiring board and its manufacturing method
US20240147633A1 (en) Method for manufacturing wiring board or wiring board material
JP5610039B2 (en) Wiring board manufacturing method
JP2021040061A (en) Circuit board with built-in electronic component and manufacturing method thereof
JP2020102577A (en) Built-in semiconductor ic circuit board and manufacturing method of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5479214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250